blob: ea4d9ff9a84367692c6ed0672561fcf4c7a4521a [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "core/layout/LayoutGrid.h"
#include "core/layout/LayoutState.h"
#include "core/layout/TextAutosizer.h"
#include "core/paint/GridPainter.h"
#include "core/paint/PaintLayer.h"
#include "core/style/ComputedStyle.h"
#include "core/style/GridArea.h"
#include "platform/LengthFunctions.h"
#include "wtf/PtrUtil.h"
#include <algorithm>
#include <memory>
namespace blink {
static const int infinity = -1;
class GridItemWithSpan;
class GridTrack {
public:
GridTrack()
: m_infinitelyGrowable(false)
{
}
LayoutUnit baseSize() const
{
DCHECK(isGrowthLimitBiggerThanBaseSize());
return m_baseSize;
}
LayoutUnit growthLimit() const
{
DCHECK(isGrowthLimitBiggerThanBaseSize());
DCHECK(!m_growthLimitCap || m_growthLimitCap.value() >= m_growthLimit || m_baseSize >= m_growthLimitCap.value());
return m_growthLimit;
}
void setBaseSize(LayoutUnit baseSize)
{
m_baseSize = baseSize;
ensureGrowthLimitIsBiggerThanBaseSize();
}
void setGrowthLimit(LayoutUnit growthLimit)
{
m_growthLimit = growthLimit == infinity ? growthLimit : std::min(growthLimit, m_growthLimitCap.value_or(growthLimit));
ensureGrowthLimitIsBiggerThanBaseSize();
}
bool infiniteGrowthPotential() const { return growthLimitIsInfinite() || m_infinitelyGrowable; }
LayoutUnit plannedSize() const { return m_plannedSize; }
void setPlannedSize(const LayoutUnit& plannedSize)
{
ASSERT(plannedSize >= 0 || plannedSize == infinity);
m_plannedSize = plannedSize;
}
LayoutUnit sizeDuringDistribution() const { return m_sizeDuringDistribution; }
void setSizeDuringDistribution(const LayoutUnit& sizeDuringDistribution)
{
DCHECK_GE(sizeDuringDistribution, 0);
DCHECK(growthLimitIsInfinite() || growthLimit() >= sizeDuringDistribution);
m_sizeDuringDistribution = sizeDuringDistribution;
}
void growSizeDuringDistribution(const LayoutUnit& sizeDuringDistribution)
{
DCHECK_GE(sizeDuringDistribution, 0);
m_sizeDuringDistribution += sizeDuringDistribution;
}
bool infinitelyGrowable() const { return m_infinitelyGrowable; }
void setInfinitelyGrowable(bool infinitelyGrowable) { m_infinitelyGrowable = infinitelyGrowable; }
void setGrowthLimitCap(Optional<LayoutUnit> growthLimitCap)
{
DCHECK(!growthLimitCap || *growthLimitCap >= 0);
m_growthLimitCap = growthLimitCap;
}
Optional<LayoutUnit> growthLimitCap() const { return m_growthLimitCap; }
private:
bool growthLimitIsInfinite() const { return m_growthLimit == infinity; }
bool isGrowthLimitBiggerThanBaseSize() const { return growthLimitIsInfinite() || m_growthLimit >= m_baseSize; }
void ensureGrowthLimitIsBiggerThanBaseSize()
{
if (m_growthLimit != infinity && m_growthLimit < m_baseSize)
m_growthLimit = m_baseSize;
}
LayoutUnit m_baseSize;
LayoutUnit m_growthLimit;
LayoutUnit m_plannedSize;
LayoutUnit m_sizeDuringDistribution;
Optional<LayoutUnit> m_growthLimitCap;
bool m_infinitelyGrowable;
};
struct ContentAlignmentData {
STACK_ALLOCATED();
public:
ContentAlignmentData() {};
ContentAlignmentData(LayoutUnit position, LayoutUnit distribution)
: positionOffset(position)
, distributionOffset(distribution)
{
}
bool isValid() { return positionOffset >= 0 && distributionOffset >= 0; }
LayoutUnit positionOffset = LayoutUnit(-1);
LayoutUnit distributionOffset = LayoutUnit(-1);
};
enum TrackSizeRestriction {
AllowInfinity,
ForbidInfinity,
};
class LayoutGrid::GridIterator {
WTF_MAKE_NONCOPYABLE(GridIterator);
public:
// |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
// GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
GridIterator(const GridRepresentation& grid, GridTrackSizingDirection direction, size_t fixedTrackIndex, size_t varyingTrackIndex = 0)
: m_grid(grid)
, m_direction(direction)
, m_rowIndex((direction == ForColumns) ? varyingTrackIndex : fixedTrackIndex)
, m_columnIndex((direction == ForColumns) ? fixedTrackIndex : varyingTrackIndex)
, m_childIndex(0)
{
DCHECK(!m_grid.isEmpty());
DCHECK(!m_grid[0].isEmpty());
DCHECK(m_rowIndex < m_grid.size());
DCHECK(m_columnIndex < m_grid[0].size());
}
LayoutBox* nextGridItem()
{
DCHECK(!m_grid.isEmpty());
DCHECK(!m_grid[0].isEmpty());
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const GridCell& children = m_grid[m_rowIndex][m_columnIndex];
if (m_childIndex < children.size())
return children[m_childIndex++];
m_childIndex = 0;
}
return nullptr;
}
bool checkEmptyCells(size_t rowSpan, size_t columnSpan) const
{
DCHECK(!m_grid.isEmpty());
DCHECK(!m_grid[0].isEmpty());
// Ignore cells outside current grid as we will grow it later if needed.
size_t maxRows = std::min(m_rowIndex + rowSpan, m_grid.size());
size_t maxColumns = std::min(m_columnIndex + columnSpan, m_grid[0].size());
// This adds a O(N^2) behavior that shouldn't be a big deal as we expect spanning areas to be small.
for (size_t row = m_rowIndex; row < maxRows; ++row) {
for (size_t column = m_columnIndex; column < maxColumns; ++column) {
const GridCell& children = m_grid[row][column];
if (!children.isEmpty())
return false;
}
}
return true;
}
std::unique_ptr<GridArea> nextEmptyGridArea(size_t fixedTrackSpan, size_t varyingTrackSpan)
{
DCHECK(!m_grid.isEmpty());
DCHECK(!m_grid[0].isEmpty());
ASSERT(fixedTrackSpan >= 1 && varyingTrackSpan >= 1);
size_t rowSpan = (m_direction == ForColumns) ? varyingTrackSpan : fixedTrackSpan;
size_t columnSpan = (m_direction == ForColumns) ? fixedTrackSpan : varyingTrackSpan;
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
if (checkEmptyCells(rowSpan, columnSpan)) {
std::unique_ptr<GridArea> result = wrapUnique(new GridArea(GridSpan::translatedDefiniteGridSpan(m_rowIndex, m_rowIndex + rowSpan), GridSpan::translatedDefiniteGridSpan(m_columnIndex, m_columnIndex + columnSpan)));
// Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
++varyingTrackIndex;
return result;
}
}
return nullptr;
}
private:
const GridRepresentation& m_grid;
GridTrackSizingDirection m_direction;
size_t m_rowIndex;
size_t m_columnIndex;
size_t m_childIndex;
};
struct LayoutGrid::GridSizingData {
WTF_MAKE_NONCOPYABLE(GridSizingData);
STACK_ALLOCATED();
public:
GridSizingData(size_t gridColumnCount, size_t gridRowCount)
: columnTracks(gridColumnCount)
, rowTracks(gridRowCount)
{
}
Vector<GridTrack> columnTracks;
Vector<GridTrack> rowTracks;
Vector<size_t> contentSizedTracksIndex;
// Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free.
Vector<GridTrack*> filteredTracks;
Vector<GridItemWithSpan> itemsSortedByIncreasingSpan;
Vector<GridTrack*> growBeyondGrowthLimitsTracks;
LayoutUnit& freeSpace(GridTrackSizingDirection direction) { return direction == ForColumns ? freeSpaceForColumns : freeSpaceForRows; }
LayoutUnit availableSpace() const { return m_availableSpace; }
void setAvailableSpace(LayoutUnit availableSpace) { m_availableSpace = availableSpace; }
SizingOperation sizingOperation { TrackSizing };
enum SizingState { ColumnSizingFirstIteration, RowSizingFirstIteration, ColumnSizingSecondIteration, RowSizingSecondIteration};
SizingState sizingState { ColumnSizingFirstIteration };
void nextState()
{
switch (sizingState) {
case ColumnSizingFirstIteration:
sizingState = RowSizingFirstIteration;
return;
case RowSizingFirstIteration:
sizingState = ColumnSizingSecondIteration;
return;
case ColumnSizingSecondIteration:
sizingState = RowSizingSecondIteration;
return;
case RowSizingSecondIteration:
sizingState = ColumnSizingFirstIteration;
return;
}
NOTREACHED();
sizingState = ColumnSizingFirstIteration;
}
bool isValidTransition(GridTrackSizingDirection direction) const
{
switch (sizingState) {
case ColumnSizingFirstIteration:
case ColumnSizingSecondIteration:
return direction == ForColumns;
case RowSizingFirstIteration:
case RowSizingSecondIteration:
return direction == ForRows;
}
NOTREACHED();
return false;
}
private:
LayoutUnit freeSpaceForColumns { };
LayoutUnit freeSpaceForRows { };
// No need to store one per direction as it will be only used for computations during each axis
// track sizing. It's cached here because we need it to compute relative sizes.
LayoutUnit m_availableSpace;
};
struct GridItemsSpanGroupRange {
Vector<GridItemWithSpan>::iterator rangeStart;
Vector<GridItemWithSpan>::iterator rangeEnd;
};
LayoutGrid::LayoutGrid(Element* element)
: LayoutBlock(element)
, m_gridIsDirty(true)
, m_orderIterator(this)
{
ASSERT(!childrenInline());
}
LayoutGrid::~LayoutGrid()
{
}
LayoutGrid* LayoutGrid::createAnonymous(Document* document)
{
LayoutGrid* layoutGrid = new LayoutGrid(nullptr);
layoutGrid->setDocumentForAnonymous(document);
return layoutGrid;
}
void LayoutGrid::addChild(LayoutObject* newChild, LayoutObject* beforeChild)
{
LayoutBlock::addChild(newChild, beforeChild);
// The grid needs to be recomputed as it might contain auto-placed items that will change their position.
dirtyGrid();
}
void LayoutGrid::removeChild(LayoutObject* child)
{
LayoutBlock::removeChild(child);
// The grid needs to be recomputed as it might contain auto-placed items that will change their position.
dirtyGrid();
}
void LayoutGrid::styleDidChange(StyleDifference diff, const ComputedStyle* oldStyle)
{
LayoutBlock::styleDidChange(diff, oldStyle);
if (!oldStyle)
return;
// FIXME: The following checks could be narrowed down if we kept track of which type of grid items we have:
// - explicit grid size changes impact negative explicitely positioned and auto-placed grid items.
// - named grid lines only impact grid items with named grid lines.
// - auto-flow changes only impacts auto-placed children.
if (explicitGridDidResize(*oldStyle)
|| namedGridLinesDefinitionDidChange(*oldStyle)
|| oldStyle->getGridAutoFlow() != styleRef().getGridAutoFlow()
|| (diff.needsLayout() && (styleRef().gridAutoRepeatColumns().size() || styleRef().gridAutoRepeatRows().size())))
dirtyGrid();
}
bool LayoutGrid::explicitGridDidResize(const ComputedStyle& oldStyle) const
{
return oldStyle.gridTemplateColumns().size() != styleRef().gridTemplateColumns().size()
|| oldStyle.gridTemplateRows().size() != styleRef().gridTemplateRows().size()
|| oldStyle.namedGridAreaColumnCount() != styleRef().namedGridAreaColumnCount()
|| oldStyle.namedGridAreaRowCount() != styleRef().namedGridAreaRowCount()
|| oldStyle.gridAutoRepeatColumns().size() != styleRef().gridAutoRepeatColumns().size()
|| oldStyle.gridAutoRepeatRows().size() != styleRef().gridAutoRepeatRows().size();
}
bool LayoutGrid::namedGridLinesDefinitionDidChange(const ComputedStyle& oldStyle) const
{
return oldStyle.namedGridRowLines() != styleRef().namedGridRowLines()
|| oldStyle.namedGridColumnLines() != styleRef().namedGridColumnLines();
}
size_t LayoutGrid::gridColumnCount() const
{
DCHECK(!m_gridIsDirty);
// Due to limitations in our internal representation, we cannot know the number of columns from
// m_grid *if* there is no row (because m_grid would be empty). That's why in that case we need
// to get it from the style. Note that we know for sure that there are't any implicit tracks,
// because not having rows implies that there are no "normal" children (out-of-flow children are
// not stored in m_grid).
return m_grid.size() ? m_grid[0].size() : GridPositionsResolver::explicitGridColumnCount(styleRef(), m_autoRepeatColumns);
}
size_t LayoutGrid::gridRowCount() const
{
DCHECK(!m_gridIsDirty);
return m_grid.size();
}
LayoutUnit LayoutGrid::computeTrackBasedLogicalHeight(const GridSizingData& sizingData) const
{
LayoutUnit logicalHeight;
for (const auto& row : sizingData.rowTracks)
logicalHeight += row.baseSize();
logicalHeight += guttersSize(ForRows, 0, sizingData.rowTracks.size(), sizingData.sizingOperation);
return logicalHeight;
}
void LayoutGrid::computeTrackSizesForDirection(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit availableSpace)
{
DCHECK(sizingData.isValidTransition(direction));
sizingData.setAvailableSpace(availableSpace);
sizingData.freeSpace(direction) = availableSpace - guttersSize(direction, 0, direction == ForRows ? gridRowCount() : gridColumnCount(), sizingData.sizingOperation);
sizingData.sizingOperation = TrackSizing;
LayoutUnit baseSizes, growthLimits;
computeUsedBreadthOfGridTracks(direction, sizingData, baseSizes, growthLimits);
ASSERT(tracksAreWiderThanMinTrackBreadth(direction, sizingData));
sizingData.nextState();
}
void LayoutGrid::repeatTracksSizingIfNeeded(GridSizingData& sizingData, LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows)
{
DCHECK(sizingData.sizingState > GridSizingData::RowSizingFirstIteration);
// In orthogonal flow cases column track's size is determined by using the computed
// row track's size, which it was estimated during the first cycle of the sizing
// algorithm. Hence we need to repeat computeUsedBreadthOfGridTracks for both,
// columns and rows, to determine the final values.
// TODO (lajava): orthogonal flows is just one of the cases which may require
// a new cycle of the sizing algorithm; there may be more. In addition, not all the
// cases with orthogonal flows require this extra cycle; we need a more specific
// condition to detect whether child's min-content contribution has changed or not.
if (m_hasAnyOrthogonalChild) {
computeTrackSizesForDirection(ForColumns, sizingData, availableSpaceForColumns);
computeTrackSizesForDirection(ForRows, sizingData, availableSpaceForRows);
}
}
void LayoutGrid::layoutBlock(bool relayoutChildren)
{
ASSERT(needsLayout());
if (!relayoutChildren && simplifiedLayout())
return;
SubtreeLayoutScope layoutScope(*this);
{
// LayoutState needs this deliberate scope to pop before updating scroll information (which
// may trigger relayout).
LayoutState state(*this, locationOffset());
LayoutSize previousSize = size();
updateLogicalWidth();
bool logicalHeightWasIndefinite = !hasDefiniteLogicalHeight();
TextAutosizer::LayoutScope textAutosizerLayoutScope(this, &layoutScope);
// TODO(svillar): we won't need to do this once the intrinsic width computation is isolated
// from the LayoutGrid object state (it should not touch any attribute) (see crbug.com/627812)
if (m_autoRepeatColumns && m_autoRepeatColumns != computeAutoRepeatTracksCount(ForColumns, TrackSizing))
dirtyGrid();
placeItemsOnGrid(TrackSizing);
GridSizingData sizingData(gridColumnCount(), gridRowCount());
// 1- First, the track sizing algorithm is used to resolve the sizes of the grid columns.
// At this point the logical width is always definite as the above call to updateLogicalWidth()
// properly resolves intrinsic sizes. We cannot do the same for heights though because many code
// paths inside updateLogicalHeight() require a previous call to setLogicalHeight() to resolve
// heights properly (like for positioned items for example).
LayoutUnit availableSpaceForColumns = availableLogicalWidth();
computeTrackSizesForDirection(ForColumns, sizingData, availableSpaceForColumns);
// 2- Next, the track sizing algorithm resolves the sizes of the grid rows, using the
// grid column sizes calculated in the previous step.
if (logicalHeightWasIndefinite)
computeIntrinsicLogicalHeight(sizingData);
else
computeTrackSizesForDirection(ForRows, sizingData, availableLogicalHeight(ExcludeMarginBorderPadding));
setLogicalHeight(computeTrackBasedLogicalHeight(sizingData) + borderAndPaddingLogicalHeight() + scrollbarLogicalHeight());
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
// The above call might have changed the grid's logical height depending on min|max height restrictions.
// Update the sizes of the rows whose size depends on the logical height (also on definite|indefinite sizes).
LayoutUnit availableSpaceForRows = contentLogicalHeight();
if (logicalHeightWasIndefinite)
computeTrackSizesForDirection(ForRows, sizingData, availableSpaceForRows);
// 3- If the min-content contribution of any grid items have changed based on the row
// sizes calculated in step 2, steps 1 and 2 are repeated with the new min-content
// contribution (once only).
repeatTracksSizingIfNeeded(sizingData, availableSpaceForColumns, availableSpaceForRows);
// Grid container should have the minimum height of a line if it's editable. That doesn't affect track sizing though.
if (hasLineIfEmpty())
setLogicalHeight(std::max(logicalHeight(), minimumLogicalHeightForEmptyLine()));
applyStretchAlignmentToTracksIfNeeded(ForColumns, sizingData);
applyStretchAlignmentToTracksIfNeeded(ForRows, sizingData);
layoutGridItems(sizingData);
if (size() != previousSize)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isDocumentElement());
computeOverflow(oldClientAfterEdge);
}
updateLayerTransformAfterLayout();
updateAfterLayout();
clearNeedsLayout();
}
bool LayoutGrid::hasAutoRepeatEmptyTracks(GridTrackSizingDirection direction) const
{
return direction == ForColumns ? !!m_autoRepeatEmptyColumns : !!m_autoRepeatEmptyRows;
}
bool LayoutGrid::isEmptyAutoRepeatTrack(GridTrackSizingDirection direction, size_t line) const
{
DCHECK(hasAutoRepeatEmptyTracks(direction));
return direction == ForColumns ? m_autoRepeatEmptyColumns->contains(line) : m_autoRepeatEmptyRows->contains(line);
}
LayoutUnit LayoutGrid::gridGapForDirection(GridTrackSizingDirection direction, SizingOperation sizingOperation) const
{
LayoutUnit availableSize;
if (sizingOperation == TrackSizing)
availableSize = direction == ForColumns ? availableLogicalWidth() : availableLogicalHeightForPercentageComputation();
// TODO(rego): Maybe we could cache the computed percentage as a performance improvement.
return valueForLength(direction == ForColumns ? styleRef().gridColumnGap() : styleRef().gridRowGap(), availableSize);
}
LayoutUnit LayoutGrid::guttersSize(GridTrackSizingDirection direction, size_t startLine, size_t span, SizingOperation sizingOperation) const
{
if (span <= 1)
return LayoutUnit();
bool isRowAxis = direction == ForColumns;
LayoutUnit gap = gridGapForDirection(direction, sizingOperation);
// Fast path, no collapsing tracks.
if (!hasAutoRepeatEmptyTracks(direction))
return gap * (span - 1);
// If there are collapsing tracks we need to be sure that gutters are properly collapsed. Apart
// from that, if we have a collapsed track in the edges of the span we're considering, we need
// to move forward (or backwards) in order to know whether the collapsed tracks reach the end of
// the grid (so the gap becomes 0) or there is a non empty track before that.
LayoutUnit gapAccumulator;
size_t endLine = startLine + span;
for (size_t line = startLine; line < endLine - 1; ++line) {
if (!isEmptyAutoRepeatTrack(direction, line))
gapAccumulator += gap;
}
// If the startLine is the start line of a collapsed track we need to go backwards till we reach
// a non collapsed track. If we find a non collapsed track we need to add that gap.
if (startLine && isEmptyAutoRepeatTrack(direction, startLine)) {
size_t nonEmptyTracksBeforeStartLine = startLine;
auto begin = isRowAxis ? m_autoRepeatEmptyColumns->begin() : m_autoRepeatEmptyRows->begin();
for (auto it = begin; *it != startLine; ++it) {
DCHECK(nonEmptyTracksBeforeStartLine);
--nonEmptyTracksBeforeStartLine;
}
if (nonEmptyTracksBeforeStartLine)
gapAccumulator += gap;
}
// If the endLine is the end line of a collapsed track we need to go forward till we reach a non
// collapsed track. If we find a non collapsed track we need to add that gap.
if (isEmptyAutoRepeatTrack(direction, endLine - 1)) {
size_t nonEmptyTracksAfterEndLine = (isRowAxis ? gridColumnCount() : gridRowCount()) - endLine;
auto currentEmptyTrack = isRowAxis ? m_autoRepeatEmptyColumns->find(endLine - 1) : m_autoRepeatEmptyRows->find(endLine - 1);
auto endEmptyTrack = isRowAxis ? m_autoRepeatEmptyColumns->end() : m_autoRepeatEmptyRows->end();
// HashSet iterators do not implement operator- so we have to manually iterate to know the number of remaining empty tracks.
for (auto it = ++currentEmptyTrack; it != endEmptyTrack; ++it) {
DCHECK(nonEmptyTracksAfterEndLine);
--nonEmptyTracksAfterEndLine;
}
if (nonEmptyTracksAfterEndLine)
gapAccumulator += gap;
}
return gapAccumulator;
}
void LayoutGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
const_cast<LayoutGrid*>(this)->placeItemsOnGrid(IntrinsicSizeComputation);
GridSizingData sizingData(gridColumnCount(), gridRowCount());
sizingData.setAvailableSpace(LayoutUnit());
sizingData.freeSpace(ForColumns) = LayoutUnit();
sizingData.sizingOperation = IntrinsicSizeComputation;
computeUsedBreadthOfGridTracks(ForColumns, sizingData, minLogicalWidth, maxLogicalWidth);
LayoutUnit totalGuttersSize = guttersSize(ForColumns, 0, sizingData.columnTracks.size(), sizingData.sizingOperation);
minLogicalWidth += totalGuttersSize;
maxLogicalWidth += totalGuttersSize;
LayoutUnit scrollbarWidth = LayoutUnit(scrollbarLogicalWidth());
minLogicalWidth += scrollbarWidth;
maxLogicalWidth += scrollbarWidth;
}
void LayoutGrid::computeIntrinsicLogicalHeight(GridSizingData& sizingData)
{
ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, sizingData));
sizingData.setAvailableSpace(LayoutUnit());
sizingData.freeSpace(ForRows) = LayoutUnit();
sizingData.sizingOperation = IntrinsicSizeComputation;
computeUsedBreadthOfGridTracks(ForRows, sizingData, m_minContentHeight, m_maxContentHeight);
LayoutUnit totalGuttersSize = guttersSize(ForRows, 0, gridRowCount(), sizingData.sizingOperation);
m_minContentHeight += totalGuttersSize;
m_maxContentHeight += totalGuttersSize;
ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData));
}
LayoutUnit LayoutGrid::computeIntrinsicLogicalContentHeightUsing(const Length& logicalHeightLength, LayoutUnit intrinsicContentHeight, LayoutUnit borderAndPadding) const
{
if (logicalHeightLength.isMinContent())
return m_minContentHeight;
if (logicalHeightLength.isMaxContent())
return m_maxContentHeight;
if (logicalHeightLength.isFitContent()) {
if (m_minContentHeight == -1 || m_maxContentHeight == -1)
return LayoutUnit(-1);
LayoutUnit fillAvailableExtent = containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding);
return std::min<LayoutUnit>(m_maxContentHeight, std::max(m_minContentHeight, fillAvailableExtent));
}
if (logicalHeightLength.isFillAvailable())
return containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding) - borderAndPadding;
ASSERT_NOT_REACHED();
return LayoutUnit();
}
static inline double normalizedFlexFraction(const GridTrack& track, double flexFactor)
{
return track.baseSize() / std::max<double>(1, flexFactor);
}
void LayoutGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& baseSizesWithoutMaximization, LayoutUnit& growthLimitsWithoutMaximization) const
{
LayoutUnit& freeSpace = sizingData.freeSpace(direction);
const LayoutUnit initialFreeSpace = freeSpace;
Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
Vector<size_t> flexibleSizedTracksIndex;
sizingData.contentSizedTracksIndex.shrink(0);
// Grid gutters were removed from freeSpace by the caller, but we must use them to compute relative (i.e. percentages) sizes.
LayoutUnit maxSize = sizingData.availableSpace().clampNegativeToZero();
bool hasDefiniteFreeSpace = sizingData.sizingOperation == TrackSizing;
// 1. Initialize per Grid track variables.
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrack& track = tracks[i];
GridTrackSize trackSize = gridTrackSize(direction, i, sizingData.sizingOperation);
track.setBaseSize(computeUsedBreadthOfMinLength(trackSize, maxSize));
track.setGrowthLimit(computeUsedBreadthOfMaxLength(trackSize, track.baseSize(), maxSize));
track.setInfinitelyGrowable(false);
if (trackSize.isFitContent()) {
GridLength gridLength = trackSize.fitContentTrackBreadth();
if (!gridLength.hasPercentage() || hasDefiniteFreeSpace)
track.setGrowthLimitCap(valueForLength(gridLength.length(), maxSize));
}
if (trackSize.isContentSized())
sizingData.contentSizedTracksIndex.append(i);
if (trackSize.maxTrackBreadth().isFlex())
flexibleSizedTracksIndex.append(i);
}
// 2. Resolve content-based TrackSizingFunctions.
if (!sizingData.contentSizedTracksIndex.isEmpty())
resolveContentBasedTrackSizingFunctions(direction, sizingData);
baseSizesWithoutMaximization = growthLimitsWithoutMaximization = LayoutUnit();
for (auto& track: tracks) {
ASSERT(!track.infiniteGrowthPotential());
baseSizesWithoutMaximization += track.baseSize();
growthLimitsWithoutMaximization += track.growthLimit();
// The growth limit caps must be cleared now in order to properly sort tracks by growth
// potential on an eventual "Maximize Tracks".
track.setGrowthLimitCap(WTF::nullopt);
}
freeSpace = initialFreeSpace - baseSizesWithoutMaximization;
if (hasDefiniteFreeSpace && freeSpace <= 0)
return;
// 3. Grow all Grid tracks in GridTracks from their baseSize up to their growthLimit value until freeSpace is exhausted.
const size_t tracksSize = tracks.size();
if (hasDefiniteFreeSpace) {
Vector<GridTrack*> tracksForDistribution(tracksSize);
for (size_t i = 0; i < tracksSize; ++i) {
tracksForDistribution[i] = tracks.data() + i;
tracksForDistribution[i]->setPlannedSize(tracksForDistribution[i]->baseSize());
}
distributeSpaceToTracks<MaximizeTracks>(tracksForDistribution, nullptr, sizingData, freeSpace);
for (auto* track : tracksForDistribution)
track->setBaseSize(track->plannedSize());
} else {
for (auto& track : tracks)
track.setBaseSize(track.growthLimit());
}
if (flexibleSizedTracksIndex.isEmpty())
return;
// 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction.
double flexFraction = 0;
if (hasDefiniteFreeSpace) {
flexFraction = findFlexFactorUnitSize(tracks, GridSpan::translatedDefiniteGridSpan(0, tracks.size()), direction, initialFreeSpace);
} else {
for (const auto& trackIndex : flexibleSizedTracksIndex)
flexFraction = std::max(flexFraction, normalizedFlexFraction(tracks[trackIndex], gridTrackSize(direction, trackIndex).maxTrackBreadth().flex()));
if (!m_gridItemArea.isEmpty()) {
for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
GridIterator iterator(m_grid, direction, flexibleSizedTracksIndex[i]);
while (LayoutBox* gridItem = iterator.nextGridItem()) {
const GridSpan span = cachedGridSpan(*gridItem, direction);
// Do not include already processed items.
if (i > 0 && span.startLine() <= flexibleSizedTracksIndex[i - 1])
continue;
flexFraction = std::max(flexFraction, findFlexFactorUnitSize(tracks, span, direction, maxContentForChild(*gridItem, direction, sizingData)));
}
}
}
}
for (const auto& trackIndex : flexibleSizedTracksIndex) {
GridTrackSize trackSize = gridTrackSize(direction, trackIndex);
LayoutUnit oldBaseSize = tracks[trackIndex].baseSize();
LayoutUnit baseSize = std::max(oldBaseSize, LayoutUnit(flexFraction * trackSize.maxTrackBreadth().flex()));
if (LayoutUnit increment = baseSize - oldBaseSize) {
tracks[trackIndex].setBaseSize(baseSize);
freeSpace -= increment;
baseSizesWithoutMaximization += increment;
growthLimitsWithoutMaximization += increment;
}
}
}
LayoutUnit LayoutGrid::computeUsedBreadthOfMinLength(const GridTrackSize& trackSize, LayoutUnit maxSize) const
{
const GridLength& gridLength = trackSize.minTrackBreadth();
if (gridLength.isFlex())
return LayoutUnit();
const Length& trackLength = gridLength.length();
if (trackLength.isSpecified())
return valueForLength(trackLength, maxSize);
ASSERT(trackLength.isMinContent() || trackLength.isAuto() || trackLength.isMaxContent());
return LayoutUnit();
}
LayoutUnit LayoutGrid::computeUsedBreadthOfMaxLength(const GridTrackSize& trackSize, LayoutUnit usedBreadth, LayoutUnit maxSize) const
{
const GridLength& gridLength = trackSize.maxTrackBreadth();
if (gridLength.isFlex())
return usedBreadth;
const Length& trackLength = gridLength.length();
if (trackLength.isSpecified())
return valueForLength(trackLength, maxSize);
ASSERT(trackLength.isMinContent() || trackLength.isAuto() || trackLength.isMaxContent());
return LayoutUnit(infinity);
}
double LayoutGrid::computeFlexFactorUnitSize(const Vector<GridTrack>& tracks, GridTrackSizingDirection direction, double flexFactorSum, LayoutUnit& leftOverSpace, const Vector<size_t, 8>& flexibleTracksIndexes, std::unique_ptr<TrackIndexSet> tracksToTreatAsInflexible) const
{
// We want to avoid the effect of flex factors sum below 1 making the factor unit size to grow exponentially.
double hypotheticalFactorUnitSize = leftOverSpace / std::max<double>(1, flexFactorSum);
// product of the hypothetical "flex factor unit" and any flexible track's "flex factor" must be grater than such track's "base size".
std::unique_ptr<TrackIndexSet> additionalTracksToTreatAsInflexible = std::move(tracksToTreatAsInflexible);
bool validFlexFactorUnit = true;
for (auto index : flexibleTracksIndexes) {
if (additionalTracksToTreatAsInflexible && additionalTracksToTreatAsInflexible->contains(index))
continue;
LayoutUnit baseSize = tracks[index].baseSize();
double flexFactor = gridTrackSize(direction, index).maxTrackBreadth().flex();
// treating all such tracks as inflexible.
if (baseSize > hypotheticalFactorUnitSize * flexFactor) {
leftOverSpace -= baseSize;
flexFactorSum -= flexFactor;
if (!additionalTracksToTreatAsInflexible)
additionalTracksToTreatAsInflexible = wrapUnique(new TrackIndexSet());
additionalTracksToTreatAsInflexible->add(index);
validFlexFactorUnit = false;
}
}
if (!validFlexFactorUnit)
return computeFlexFactorUnitSize(tracks, direction, flexFactorSum, leftOverSpace, flexibleTracksIndexes, std::move(additionalTracksToTreatAsInflexible));
return hypotheticalFactorUnitSize;
}
double LayoutGrid::findFlexFactorUnitSize(const Vector<GridTrack>& tracks, const GridSpan& tracksSpan, GridTrackSizingDirection direction, LayoutUnit leftOverSpace) const
{
if (leftOverSpace <= 0)
return 0;
double flexFactorSum = 0;
Vector<size_t, 8> flexibleTracksIndexes;
for (const auto& trackIndex : tracksSpan) {
GridTrackSize trackSize = gridTrackSize(direction, trackIndex);
if (!trackSize.maxTrackBreadth().isFlex()) {
leftOverSpace -= tracks[trackIndex].baseSize();
} else {
flexibleTracksIndexes.append(trackIndex);
flexFactorSum += trackSize.maxTrackBreadth().flex();
}
}
// The function is not called if we don't have <flex> grid tracks
ASSERT(!flexibleTracksIndexes.isEmpty());
return computeFlexFactorUnitSize(tracks, direction, flexFactorSum, leftOverSpace, flexibleTracksIndexes);
}
static bool hasOverrideContainingBlockContentSizeForChild(const LayoutBox& child, GridTrackSizingDirection direction)
{
return direction == ForColumns ? child.hasOverrideContainingBlockLogicalWidth() : child.hasOverrideContainingBlockLogicalHeight();
}
static LayoutUnit overrideContainingBlockContentSizeForChild(const LayoutBox& child, GridTrackSizingDirection direction)
{
return direction == ForColumns ? child.overrideContainingBlockContentLogicalWidth() : child.overrideContainingBlockContentLogicalHeight();
}
static void setOverrideContainingBlockContentSizeForChild(LayoutBox& child, GridTrackSizingDirection direction, LayoutUnit size)
{
if (direction == ForColumns)
child.setOverrideContainingBlockContentLogicalWidth(size);
else
child.setOverrideContainingBlockContentLogicalHeight(size);
}
static bool shouldClearOverrideContainingBlockContentSizeForChild(const LayoutBox& child, GridTrackSizingDirection direction)
{
if (direction == ForColumns)
return child.hasRelativeLogicalWidth() || child.styleRef().logicalWidth().isIntrinsicOrAuto();
return child.hasRelativeLogicalHeight() || child.styleRef().logicalHeight().isIntrinsicOrAuto();
}
const GridTrackSize& LayoutGrid::rawGridTrackSize(GridTrackSizingDirection direction, size_t translatedIndex) const
{
bool isRowAxis = direction == ForColumns;
const Vector<GridTrackSize>& trackStyles = isRowAxis ? styleRef().gridTemplateColumns() : styleRef().gridTemplateRows();
const Vector<GridTrackSize>& autoRepeatTrackStyles = isRowAxis ? styleRef().gridAutoRepeatColumns() : styleRef().gridAutoRepeatRows();
const Vector<GridTrackSize>& autoTrackStyles = isRowAxis ? styleRef().gridAutoColumns() : styleRef().gridAutoRows();
size_t insertionPoint = isRowAxis ? styleRef().gridAutoRepeatColumnsInsertionPoint() : styleRef().gridAutoRepeatRowsInsertionPoint();
size_t autoRepeatTracksCount = autoRepeatCountForDirection(direction);
// We should not use GridPositionsResolver::explicitGridXXXCount() for this because the
// explicit grid might be larger than the number of tracks in grid-template-rows|columns (if
// grid-template-areas is specified for example).
size_t explicitTracksCount = trackStyles.size() + autoRepeatTracksCount;
int untranslatedIndexAsInt = translatedIndex + (isRowAxis ? m_smallestColumnStart : m_smallestRowStart);
size_t autoTrackStylesSize = autoTrackStyles.size();
if (untranslatedIndexAsInt < 0) {
int index = untranslatedIndexAsInt % static_cast<int>(autoTrackStylesSize);
// We need to traspose the index because the first negative implicit line will get the last defined auto track and so on.
index += index ? autoTrackStylesSize : 0;
return autoTrackStyles[index];
}
size_t untranslatedIndex = static_cast<size_t>(untranslatedIndexAsInt);
if (untranslatedIndex >= explicitTracksCount)
return autoTrackStyles[(untranslatedIndex - explicitTracksCount) % autoTrackStylesSize];
if (LIKELY(!autoRepeatTracksCount) || untranslatedIndex < insertionPoint)
return trackStyles[untranslatedIndex];
if (untranslatedIndex < (insertionPoint + autoRepeatTracksCount)) {
size_t autoRepeatLocalIndex = untranslatedIndexAsInt - insertionPoint;
return autoRepeatTrackStyles[autoRepeatLocalIndex % autoRepeatTrackStyles.size()];
}
return trackStyles[untranslatedIndex - autoRepeatTracksCount];
}
GridTrackSize LayoutGrid::gridTrackSize(GridTrackSizingDirection direction, size_t translatedIndex, SizingOperation sizingOperation) const
{
// Collapse empty auto repeat tracks if auto-fit.
if (hasAutoRepeatEmptyTracks(direction) && isEmptyAutoRepeatTrack(direction, translatedIndex))
return { Length(Fixed), LengthTrackSizing };
const GridTrackSize& trackSize = rawGridTrackSize(direction, translatedIndex);
if (trackSize.isFitContent())
return trackSize;
GridLength minTrackBreadth = trackSize.minTrackBreadth();
GridLength maxTrackBreadth = trackSize.maxTrackBreadth();
// If the logical width/height of the grid container is indefinite, percentage values are treated as <auto>.
if (minTrackBreadth.hasPercentage() || maxTrackBreadth.hasPercentage()) {
// For the inline axis this only happens when we're computing the intrinsic sizes (AvailableSpaceIndefinite).
if ((sizingOperation == IntrinsicSizeComputation) || (direction == ForRows && !hasDefiniteLogicalHeight())) {
if (minTrackBreadth.hasPercentage())
minTrackBreadth = Length(Auto);
if (maxTrackBreadth.hasPercentage())
maxTrackBreadth = Length(Auto);
}
}
// Flex sizes are invalid as a min sizing function. However we still can have a flexible |minTrackBreadth|
// if the track had a flex size directly (e.g. "1fr"), the spec says that in this case it implies an automatic minimum.
if (minTrackBreadth.isFlex())
minTrackBreadth = Length(Auto);
return GridTrackSize(minTrackBreadth, maxTrackBreadth);
}
bool LayoutGrid::isOrthogonalChild(const LayoutBox& child) const
{
return child.isHorizontalWritingMode() != isHorizontalWritingMode();
}
LayoutUnit LayoutGrid::logicalHeightForChild(LayoutBox& child, GridSizingData& sizingData) const
{
GridTrackSizingDirection childBlockDirection = flowAwareDirectionForChild(child, ForRows);
SubtreeLayoutScope layoutScope(child);
// If |child| has a relative logical height, we shouldn't let it override its intrinsic height, which is
// what we are interested in here. Thus we need to set the block-axis override size to -1 (no possible resolution).
if (shouldClearOverrideContainingBlockContentSizeForChild(child, ForRows)) {
setOverrideContainingBlockContentSizeForChild(child, childBlockDirection, LayoutUnit(-1));
layoutScope.setNeedsLayout(&child, LayoutInvalidationReason::GridChanged);
}
// We need to clear the stretched height to properly compute logical height during layout.
if (child.needsLayout())
child.clearOverrideLogicalContentHeight();
child.layoutIfNeeded();
return child.logicalHeight() + child.marginLogicalHeight();
}
GridTrackSizingDirection LayoutGrid::flowAwareDirectionForChild(const LayoutBox& child, GridTrackSizingDirection direction) const
{
return !isOrthogonalChild(child) ? direction : (direction == ForColumns ? ForRows : ForColumns);
}
LayoutUnit LayoutGrid::minSizeForChild(LayoutBox& child, GridTrackSizingDirection direction, GridSizingData& sizingData) const
{
GridTrackSizingDirection childInlineDirection = flowAwareDirectionForChild(child, ForColumns);
bool isRowAxis = direction == childInlineDirection;
const Length& childSize = isRowAxis ? child.styleRef().logicalWidth() : child.styleRef().logicalHeight();
const Length& childMinSize = isRowAxis ? child.styleRef().logicalMinWidth() : child.styleRef().logicalMinHeight();
if (!childSize.isAuto() || childMinSize.isAuto())
return minContentForChild(child, direction, sizingData);
bool overrideSizeHasChanged = updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection, sizingData);
if (isRowAxis) {
LayoutUnit marginLogicalWidth = sizingData.sizingOperation == TrackSizing ? computeMarginLogicalSizeForChild(InlineDirection, child) : marginIntrinsicLogicalWidthForChild(child);
return child.computeLogicalWidthUsing(MinSize, childMinSize, overrideContainingBlockContentSizeForChild(child, childInlineDirection), this) + marginLogicalWidth;
}
if (overrideSizeHasChanged && (direction != ForColumns || sizingData.sizingOperation != IntrinsicSizeComputation))
child.setNeedsLayout(LayoutInvalidationReason::GridChanged);
child.layoutIfNeeded();
return child.computeLogicalHeightUsing(MinSize, childMinSize, child.intrinsicLogicalHeight()) + child.marginLogicalHeight() + child.scrollbarLogicalHeight();
}
bool LayoutGrid::updateOverrideContainingBlockContentSizeForChild(LayoutBox& child, GridTrackSizingDirection direction, GridSizingData& sizingData) const
{
LayoutUnit overrideSize = gridAreaBreadthForChild(child, direction, sizingData);
if (hasOverrideContainingBlockContentSizeForChild(child, direction) && overrideContainingBlockContentSizeForChild(child, direction) == overrideSize)
return false;
setOverrideContainingBlockContentSizeForChild(child, direction, overrideSize);
return true;
}
LayoutUnit LayoutGrid::minContentForChild(LayoutBox& child, GridTrackSizingDirection direction, GridSizingData& sizingData) const
{
GridTrackSizingDirection childInlineDirection = flowAwareDirectionForChild(child, ForColumns);
if (direction == childInlineDirection) {
// If |child| has a relative logical width, we shouldn't let it override its intrinsic width, which is
// what we are interested in here. Thus we need to set the inline-axis override size to -1 (no possible resolution).
if (shouldClearOverrideContainingBlockContentSizeForChild(child, ForColumns))
setOverrideContainingBlockContentSizeForChild(child, childInlineDirection, LayoutUnit(-1));
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child.minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
}
// All orthogonal flow boxes were already laid out during an early layout phase performed in FrameView::performLayout.
// It's true that grid track sizing was not completed at that time and it may afffect the final height of a
// grid item, but since it's forbidden to perform a layout during intrinsic width computation, we have to use
// that computed height for now.
if (direction == ForColumns && sizingData.sizingOperation == IntrinsicSizeComputation) {
DCHECK(isOrthogonalChild(child));
return child.logicalHeight() + child.marginLogicalHeight();
}
SubtreeLayoutScope layouter(child);
if (updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection, sizingData))
child.setNeedsLayout(LayoutInvalidationReason::GridChanged);
return logicalHeightForChild(child, sizingData);
}
LayoutUnit LayoutGrid::maxContentForChild(LayoutBox& child, GridTrackSizingDirection direction, GridSizingData& sizingData) const
{
GridTrackSizingDirection childInlineDirection = flowAwareDirectionForChild(child, ForColumns);
if (direction == childInlineDirection) {
// If |child| has a relative logical width, we shouldn't let it override its intrinsic width, which is
// what we are interested in here. Thus we need to set the inline-axis override size to -1 (no possible resolution).
if (shouldClearOverrideContainingBlockContentSizeForChild(child, ForColumns))
setOverrideContainingBlockContentSizeForChild(child, childInlineDirection, LayoutUnit(-1));
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child.maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
}
// All orthogonal flow boxes were already laid out during an early layout phase performed in FrameView::performLayout.
// It's true that grid track sizing was not completed at that time and it may afffect the final height of a
// grid item, but since it's forbidden to perform a layout during intrinsic width computation, we have to use
// that computed height for now.
if (direction == ForColumns && sizingData.sizingOperation == IntrinsicSizeComputation) {
DCHECK(isOrthogonalChild(child));
return child.logicalHeight() + child.marginLogicalHeight();
}
SubtreeLayoutScope layouter(child);
if (updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection, sizingData))
child.setNeedsLayout(LayoutInvalidationReason::GridChanged);
return logicalHeightForChild(child, sizingData);
}
// We're basically using a class instead of a std::pair because of accessing gridItem() or getGridSpan() is much more
// self-explanatory that using .first or .second members in the pair. Having a std::pair<LayoutBox*, size_t>
// does not work either because we still need the GridSpan so we'd have to add an extra hash lookup for each item
// at the beginning of LayoutGrid::resolveContentBasedTrackSizingFunctionsForItems().
class GridItemWithSpan {
public:
GridItemWithSpan(LayoutBox& gridItem, const GridSpan& gridSpan)
: m_gridItem(&gridItem)
, m_gridSpan(gridSpan)
{
}
LayoutBox& gridItem() const { return *m_gridItem; }
GridSpan getGridSpan() const { return m_gridSpan; }
bool operator<(const GridItemWithSpan other) const { return m_gridSpan.integerSpan() < other.m_gridSpan.integerSpan(); }
private:
LayoutBox* m_gridItem;
GridSpan m_gridSpan;
};
bool LayoutGrid::spanningItemCrossesFlexibleSizedTracks(const GridSpan& span, GridTrackSizingDirection direction, SizingOperation sizingOperation) const
{
for (const auto& trackPosition : span) {
const GridTrackSize& trackSize = gridTrackSize(direction, trackPosition, sizingOperation);
if (trackSize.minTrackBreadth().isFlex() || trackSize.maxTrackBreadth().isFlex())
return true;
}
return false;
}
void LayoutGrid::resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction, GridSizingData& sizingData) const
{
sizingData.itemsSortedByIncreasingSpan.shrink(0);
if (!m_gridItemArea.isEmpty()) {
HashSet<LayoutBox*> itemsSet;
for (const auto& trackIndex : sizingData.contentSizedTracksIndex) {
GridIterator iterator(m_grid, direction, trackIndex);
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex];
while (LayoutBox* gridItem = iterator.nextGridItem()) {
if (itemsSet.add(gridItem).isNewEntry) {
const GridSpan& span = cachedGridSpan(*gridItem, direction);
if (span.integerSpan() == 1) {
resolveContentBasedTrackSizingFunctionsForNonSpanningItems(direction, span, *gridItem, track, sizingData);
} else if (!spanningItemCrossesFlexibleSizedTracks(span, direction, sizingData.sizingOperation)) {
sizingData.itemsSortedByIncreasingSpan.append(GridItemWithSpan(*gridItem, span));
}
}
}
}
std::sort(sizingData.itemsSortedByIncreasingSpan.begin(), sizingData.itemsSortedByIncreasingSpan.end());
}
auto it = sizingData.itemsSortedByIncreasingSpan.begin();
auto end = sizingData.itemsSortedByIncreasingSpan.end();
while (it != end) {
GridItemsSpanGroupRange spanGroupRange = { it, std::upper_bound(it, end, *it) };
resolveContentBasedTrackSizingFunctionsForItems<ResolveIntrinsicMinimums>(direction, sizingData, spanGroupRange);
resolveContentBasedTrackSizingFunctionsForItems<ResolveContentBasedMinimums>(direction, sizingData, spanGroupRange);
resolveContentBasedTrackSizingFunctionsForItems<ResolveMaxContentMinimums>(direction, sizingData, spanGroupRange);
resolveContentBasedTrackSizingFunctionsForItems<ResolveIntrinsicMaximums>(direction, sizingData, spanGroupRange);
resolveContentBasedTrackSizingFunctionsForItems<ResolveMaxContentMaximums>(direction, sizingData, spanGroupRange);
it = spanGroupRange.rangeEnd;
}
for (const auto& trackIndex : sizingData.contentSizedTracksIndex) {
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex];
if (track.growthLimit() == infinity)
track.setGrowthLimit(track.baseSize());
}
}
void LayoutGrid::resolveContentBasedTrackSizingFunctionsForNonSpanningItems(GridTrackSizingDirection direction, const GridSpan& span, LayoutBox& gridItem, GridTrack& track, GridSizingData& sizingData) const
{
const size_t trackPosition = span.startLine();
GridTrackSize trackSize = gridTrackSize(direction, trackPosition, sizingData.sizingOperation);
if (trackSize.hasMinContentMinTrackBreadth())
track.setBaseSize(std::max(track.baseSize(), minContentForChild(gridItem, direction, sizingData)));
else if (trackSize.hasMaxContentMinTrackBreadth())
track.setBaseSize(std::max(track.baseSize(), maxContentForChild(gridItem, direction, sizingData)));
else if (trackSize.hasAutoMinTrackBreadth())
track.setBaseSize(std::max(track.baseSize(), minSizeForChild(gridItem, direction, sizingData)));
if (trackSize.hasMinContentMaxTrackBreadth()) {
track.setGrowthLimit(std::max(track.growthLimit(), minContentForChild(gridItem, direction, sizingData)));
} else if (trackSize.hasMaxContentOrAutoMaxTrackBreadth()) {
LayoutUnit growthLimit = maxContentForChild(gridItem, direction, sizingData);
if (trackSize.isFitContent())
growthLimit = std::min(growthLimit, valueForLength(trackSize.fitContentTrackBreadth().length(), sizingData.availableSpace()));
track.setGrowthLimit(std::max(track.growthLimit(), growthLimit));
}
}
static LayoutUnit trackSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, const GridTrack& track, TrackSizeRestriction restriction)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
case ResolveMaxContentMinimums:
case MaximizeTracks:
return track.baseSize();
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
const LayoutUnit& growthLimit = track.growthLimit();
if (restriction == AllowInfinity)
return growthLimit;
return growthLimit == infinity ? track.baseSize() : growthLimit;
}
ASSERT_NOT_REACHED();
return track.baseSize();
}
static bool shouldProcessTrackForTrackSizeComputationPhase(TrackSizeComputationPhase phase, const GridTrackSize& trackSize)
{
switch (phase) {
case ResolveIntrinsicMinimums:
return trackSize.hasIntrinsicMinTrackBreadth();
case ResolveContentBasedMinimums:
return trackSize.hasMinOrMaxContentMinTrackBreadth();
case ResolveMaxContentMinimums:
return trackSize.hasMaxContentMinTrackBreadth();
case ResolveIntrinsicMaximums:
return trackSize.hasMinOrMaxContentMaxTrackBreadth();
case ResolveMaxContentMaximums:
return trackSize.hasMaxContentOrAutoMaxTrackBreadth();
case MaximizeTracks:
ASSERT_NOT_REACHED();
return false;
}
ASSERT_NOT_REACHED();
return false;
}
static bool trackShouldGrowBeyondGrowthLimitsForTrackSizeComputationPhase(TrackSizeComputationPhase phase, const GridTrackSize& trackSize)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
return trackSize.hasAutoOrMinContentMinTrackBreadthAndIntrinsicMaxTrackBreadth();
case ResolveMaxContentMinimums:
return trackSize.hasMaxContentMinTrackBreadthAndMaxContentMaxTrackBreadth();
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
return true;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return false;
}
ASSERT_NOT_REACHED();
return false;
}
static void markAsInfinitelyGrowableForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
case ResolveMaxContentMinimums:
return;
case ResolveIntrinsicMaximums:
if (trackSizeForTrackSizeComputationPhase(phase, track, AllowInfinity) == infinity && track.plannedSize() != infinity)
track.setInfinitelyGrowable(true);
return;
case ResolveMaxContentMaximums:
if (track.infinitelyGrowable())
track.setInfinitelyGrowable(false);
return;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return;
}
ASSERT_NOT_REACHED();
}
static void updateTrackSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
case ResolveMaxContentMinimums:
track.setBaseSize(track.plannedSize());
return;
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
track.setGrowthLimit(track.plannedSize());
return;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return;
}
ASSERT_NOT_REACHED();
}
LayoutUnit LayoutGrid::currentItemSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, LayoutBox& gridItem, GridTrackSizingDirection direction, GridSizingData& sizingData) const
{
switch (phase) {
case ResolveIntrinsicMinimums:
return minSizeForChild(gridItem, direction, sizingData);
case ResolveContentBasedMinimums:
case ResolveIntrinsicMaximums:
return minContentForChild(gridItem, direction, sizingData);
case ResolveMaxContentMinimums:
case ResolveMaxContentMaximums:
return maxContentForChild(gridItem, direction, sizingData);
case MaximizeTracks:
ASSERT_NOT_REACHED();
return LayoutUnit();
}
ASSERT_NOT_REACHED();
return LayoutUnit();
}
template <TrackSizeComputationPhase phase>
void LayoutGrid::resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction, GridSizingData& sizingData, const GridItemsSpanGroupRange& gridItemsWithSpan) const
{
Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
for (const auto& trackIndex : sizingData.contentSizedTracksIndex) {
GridTrack& track = tracks[trackIndex];
track.setPlannedSize(trackSizeForTrackSizeComputationPhase(phase, track, AllowInfinity));
}
for (auto it = gridItemsWithSpan.rangeStart; it != gridItemsWithSpan.rangeEnd; ++it) {
GridItemWithSpan& gridItemWithSpan = *it;
ASSERT(gridItemWithSpan.getGridSpan().integerSpan() > 1);
const GridSpan& itemSpan = gridItemWithSpan.getGridSpan();
sizingData.growBeyondGrowthLimitsTracks.shrink(0);
sizingData.filteredTracks.shrink(0);
LayoutUnit spanningTracksSize;
for (const auto& trackPosition : itemSpan) {
GridTrackSize trackSize = gridTrackSize(direction, trackPosition);
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackPosition] : sizingData.rowTracks[trackPosition];
spanningTracksSize += trackSizeForTrackSizeComputationPhase(phase, track, ForbidInfinity);
if (!shouldProcessTrackForTrackSizeComputationPhase(phase, trackSize))
continue;
sizingData.filteredTracks.append(&track);
if (trackShouldGrowBeyondGrowthLimitsForTrackSizeComputationPhase(phase, trackSize))
sizingData.growBeyondGrowthLimitsTracks.append(&track);
}
if (sizingData.filteredTracks.isEmpty())
continue;
spanningTracksSize += guttersSize(direction, itemSpan.startLine(), itemSpan.integerSpan(), sizingData.sizingOperation);
LayoutUnit extraSpace = currentItemSizeForTrackSizeComputationPhase(phase, gridItemWithSpan.gridItem(), direction, sizingData) - spanningTracksSize;
extraSpace = extraSpace.clampNegativeToZero();
auto& tracksToGrowBeyondGrowthLimits = sizingData.growBeyondGrowthLimitsTracks.isEmpty() ? sizingData.filteredTracks : sizingData.growBeyondGrowthLimitsTracks;
distributeSpaceToTracks<phase>(sizingData.filteredTracks, &tracksToGrowBeyondGrowthLimits, sizingData, extraSpace);
}
for (const auto& trackIndex : sizingData.contentSizedTracksIndex) {
GridTrack& track = tracks[trackIndex];
markAsInfinitelyGrowableForTrackSizeComputationPhase(phase, track);
updateTrackSizeForTrackSizeComputationPhase(phase, track);
}
}
static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
{
// This check ensures that we respect the irreflexivity property of the strict weak ordering required by std::sort
// (forall x: NOT x < x).
bool track1HasInfiniteGrowthPotentialWithoutCap = track1->infiniteGrowthPotential() && !track1->growthLimitCap();
bool track2HasInfiniteGrowthPotentialWithoutCap = track2->infiniteGrowthPotential() && !track2->growthLimitCap();
if (track1HasInfiniteGrowthPotentialWithoutCap && track2HasInfiniteGrowthPotentialWithoutCap)
return false;
if (track1HasInfiniteGrowthPotentialWithoutCap || track2HasInfiniteGrowthPotentialWithoutCap)
return track2HasInfiniteGrowthPotentialWithoutCap;
LayoutUnit track1Limit = track1->growthLimitCap().value_or(track1->growthLimit());
LayoutUnit track2Limit = track2->growthLimitCap().value_or(track2->growthLimit());
return (track1Limit - track1->baseSize()) < (track2Limit - track2->baseSize());
}
static void clampGrowthShareIfNeeded(TrackSizeComputationPhase phase, const GridTrack& track, LayoutUnit& growthShare)
{
if (phase != ResolveMaxContentMaximums || !track.growthLimitCap())
return;
LayoutUnit distanceToCap = track.growthLimitCap().value() - track.sizeDuringDistribution();
if (distanceToCap <= 0)
return;
growthShare = std::min(growthShare, distanceToCap);
}
template <TrackSizeComputationPhase phase>
void LayoutGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* growBeyondGrowthLimitsTracks, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace) const
{
ASSERT(availableLogicalSpace >= 0);
for (auto* track : tracks)
track->setSizeDuringDistribution(trackSizeForTrackSizeComputationPhase(phase, *track, ForbidInfinity));
if (availableLogicalSpace > 0) {
std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
size_t tracksSize = tracks.size();
for (size_t i = 0; i < tracksSize; ++i) {
GridTrack& track = *tracks[i];
LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
const LayoutUnit& trackBreadth = trackSizeForTrackSizeComputationPhase(phase, track, ForbidInfinity);
LayoutUnit growthShare = track.infiniteGrowthPotential() ? availableLogicalSpaceShare : std::min(availableLogicalSpaceShare, track.growthLimit() - trackBreadth);
clampGrowthShareIfNeeded(phase, track, growthShare);
DCHECK_GE(growthShare, 0) << "We must never shrink any grid track or else we can't guarantee we abide by our min-sizing function.";
track.growSizeDuringDistribution(growthShare);
availableLogicalSpace -= growthShare;
}
}
if (availableLogicalSpace > 0 && growBeyondGrowthLimitsTracks) {
// We need to sort them because there might be tracks with growth limit caps (like the ones
// with fit-content()) which cannot indefinitely grow over the limits.
if (phase == ResolveMaxContentMaximums)
std::sort(growBeyondGrowthLimitsTracks->begin(), growBeyondGrowthLimitsTracks->end(), sortByGridTrackGrowthPotential);
size_t tracksGrowingAboveMaxBreadthSize = growBeyondGrowthLimitsTracks->size();
for (size_t i = 0; i < tracksGrowingAboveMaxBreadthSize; ++i) {
GridTrack* track = growBeyondGrowthLimitsTracks->at(i);
LayoutUnit growthShare = availableLogicalSpace / (tracksGrowingAboveMaxBreadthSize - i);
clampGrowthShareIfNeeded(phase, *track, growthShare);
DCHECK_GE(growthShare, 0) << "We must never shrink any grid track or else we can't guarantee we abide by our min-sizing function.";
track->growSizeDuringDistribution(growthShare);
availableLogicalSpace -= growthShare;
}
}
for (auto* track : tracks)
track->setPlannedSize(track->plannedSize() == infinity ? track->sizeDuringDistribution() : std::max(track->plannedSize(), track->sizeDuringDistribution()));
}
#if ENABLE(ASSERT)
bool LayoutGrid::tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction, GridSizingData& sizingData)
{
const Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
LayoutUnit& maxSize = sizingData.freeSpace(direction);
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrackSize trackSize = gridTrackSize(direction, i, sizingData.sizingOperation);
if (computeUsedBreadthOfMinLength(trackSize, maxSize) > tracks[i].baseSize())
return false;
}
return true;
}
#endif
void LayoutGrid::ensureGridSize(size_t maximumRowSize, size_t maximumColumnSize)
{
const size_t oldRowSize = gridRowCount();
if (maximumRowSize > oldRowSize) {
m_grid.grow(maximumRowSize);
for (size_t row = oldRowSize; row < gridRowCount(); ++row)
m_grid[row].grow(gridColumnCount());
}
if (maximumColumnSize > gridColumnCount()) {
for (size_t row = 0; row < gridRowCount(); ++row)
m_grid[row].grow(maximumColumnSize);
}
}
void LayoutGrid::insertItemIntoGrid(LayoutBox& child, const GridArea& area)
{
RELEASE_ASSERT(area.rows.isTranslatedDefinite() && area.columns.isTranslatedDefinite());
ensureGridSize(area.rows.endLine(), area.columns.endLine());
for (const auto& row : area.rows) {
for (const auto& column: area.columns)
m_grid[row][column].append(&child);
}
}
size_t LayoutGrid::computeAutoRepeatTracksCount(GridTrackSizingDirection direction, SizingOperation sizingOperation) const
{
bool isRowAxis = direction == ForColumns;
const auto& autoRepeatTracks = isRowAxis ? styleRef().gridAutoRepeatColumns() : styleRef().gridAutoRepeatRows();
size_t autoRepeatTrackListLength = autoRepeatTracks.size();
if (!autoRepeatTrackListLength)
return 0;
LayoutUnit availableSize;
if (isRowAxis) {
availableSize = sizingOperation == IntrinsicSizeComputation ? LayoutUnit(-1) : availableLogicalWidth();
} else {
availableSize = availableLogicalHeightForPercentageComputation();
if (availableSize == -1) {
const Length& maxLength = styleRef().logicalMaxHeight();
if (!maxLength.isMaxSizeNone())
availableSize = computeContentLogicalHeight(MaxSize, maxLength, LayoutUnit(-1));
} else {
availableSize = constrainLogicalHeightByMinMax(availableSize, LayoutUnit(-1));
}
}
bool needsToFulfillMinimumSize = false;
bool indefiniteMainAndMaxSizes = availableSize == LayoutUnit(-1);
if (indefiniteMainAndMaxSizes) {
const Length& minSize = isRowAxis ? styleRef().logicalMinWidth() : styleRef().logicalMinHeight();
if (!minSize.isSpecified())
return autoRepeatTrackListLength;
LayoutUnit containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding);
availableSize = valueForLength(minSize, containingBlockAvailableSize);
needsToFulfillMinimumSize = true;
}
LayoutUnit autoRepeatTracksSize;
for (auto autoTrackSize : autoRepeatTracks) {
DCHECK(autoTrackSize.minTrackBreadth().isLength());
DCHECK(!autoTrackSize.minTrackBreadth().isFlex());
bool hasDefiniteMaxTrackSizingFunction = autoTrackSize.maxTrackBreadth().isLength() && !autoTrackSize.maxTrackBreadth().isContentSized();
auto trackLength = hasDefiniteMaxTrackSizingFunction ? autoTrackSize.maxTrackBreadth().length() : autoTrackSize.minTrackBreadth().length();
autoRepeatTracksSize += valueForLength(trackLength, availableSize);
}
// For the purpose of finding the number of auto-repeated tracks, the UA must floor the track size to a UA-specified
// value to avoid division by zero. It is suggested that this floor be 1px.
autoRepeatTracksSize = std::max<LayoutUnit>(LayoutUnit(1), autoRepeatTracksSize);
// There will be always at least 1 auto-repeat track, so take it already into account when computing the total track size.
LayoutUnit tracksSize = autoRepeatTracksSize;
const Vector<GridTrackSize>& trackSizes = isRowAxis ? styleRef().gridTemplateColumns() : styleRef().gridTemplateRows();
for (const auto& track : trackSizes) {
bool hasDefiniteMaxTrackBreadth = track.maxTrackBreadth().isLength() && !track.maxTrackBreadth().isContentSized();
DCHECK(hasDefiniteMaxTrackBreadth || (track.minTrackBreadth().isLength() && !track.minTrackBreadth().isContentSized()));
tracksSize += valueForLength(hasDefiniteMaxTrackBreadth ? track.maxTrackBreadth().length() : track.minTrackBreadth().length(), availableSize);
}
// Add gutters as if there where only 1 auto repeat track. Gaps between auto repeat tracks will be added later when
// computing the repetitions.
LayoutUnit gapSize = gridGapForDirection(direction, sizingOperation);
tracksSize += gapSize * trackSizes.size();
LayoutUnit freeSpace = availableSize - tracksSize;
if (freeSpace <= 0)
return autoRepeatTrackListLength;
size_t repetitions = 1 + (freeSpace / (autoRepeatTracksSize + gapSize)).toInt();
// Provided the grid container does not have a definite size or max-size in the relevant axis,
// if the min size is definite then the number of repetitions is the largest possible positive
// integer that fulfills that minimum requirement.
if (needsToFulfillMinimumSize)
++repetitions;
return repetitions * autoRepeatTrackListLength;
}
std::unique_ptr<LayoutGrid::OrderedTrackIndexSet> LayoutGrid::computeEmptyTracksForAutoRepeat(GridTrackSizingDirection direction) const
{
bool isRowAxis = direction == ForColumns;
if ((isRowAxis && styleRef().gridAutoRepeatColumnsType() != AutoFit)
|| (!isRowAxis && styleRef().gridAutoRepeatRowsType() != AutoFit))
return nullptr;
std::unique_ptr<OrderedTrackIndexSet> emptyTrackIndexes;
size_t insertionPoint = isRowAxis ? styleRef().gridAutoRepeatColumnsInsertionPoint() : styleRef().gridAutoRepeatRowsInsertionPoint();
size_t firstAutoRepeatTrack = insertionPoint + std::abs(isRowAxis ? m_smallestColumnStart : m_smallestRowStart);
size_t lastAutoRepeatTrack = firstAutoRepeatTrack + autoRepeatCountForDirection(direction);
if (m_gridItemArea.isEmpty()) {
emptyTrackIndexes = wrapUnique(new OrderedTrackIndexSet);
for (size_t trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex)
emptyTrackIndexes->add(trackIndex);
} else {
for (size_t trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) {
GridIterator iterator(m_grid, direction, trackIndex);
if (!iterator.nextGridItem()) {
if (!emptyTrackIndexes)
emptyTrackIndexes = wrapUnique(new OrderedTrackIndexSet);
emptyTrackIndexes->add(trackIndex);
}
}
}
return emptyTrackIndexes;
}
void LayoutGrid::placeItemsOnGrid(SizingOperation sizingOperation)
{
if (!m_gridIsDirty)
return;
DCHECK(m_gridItemArea.isEmpty());
DCHECK(m_gridItemsIndexesMap.isEmpty());
if (sizingOperation == IntrinsicSizeComputation)
m_autoRepeatColumns = styleRef().gridAutoRepeatColumns().size();
else
m_autoRepeatColumns = computeAutoRepeatTracksCount(ForColumns, sizingOperation);
m_autoRepeatRows = computeAutoRepeatTracksCount(ForRows, sizingOperation);
populateExplicitGridAndOrderIterator();
// We clear the dirty bit here as the grid sizes have been updated.
m_gridIsDirty = false;
Vector<LayoutBox*> autoMajorAxisAutoGridItems;
Vector<LayoutBox*> specifiedMajorAxisAutoGridItems;
m_hasAnyOrthogonalChild = false;
for (LayoutBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) {
if (child->isOutOfFlowPositioned())
continue;
m_hasAnyOrthogonalChild = m_hasAnyOrthogonalChild || isOrthogonalChild(*child);
GridArea area = cachedGridArea(*child);
if (!area.rows.isIndefinite())
area.rows.translate(abs(m_smallestRowStart));
if (!area.columns.isIndefinite())
area.columns.translate(abs(m_smallestColumnStart));
m_gridItemArea.set(child, area);
if (area.rows.isIndefinite() || area.columns.isIndefinite()) {
GridSpan majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? area.columns : area.rows;
if (majorAxisPositions.isIndefinite())
autoMajorAxisAutoGridItems.append(child);
else
specifiedMajorAxisAutoGridItems.append(child);
continue;
}
insertItemIntoGrid(*child, area);
}
DCHECK_GE(gridRowCount(), GridPositionsResolver::explicitGridRowCount(*style(), m_autoRepeatRows));
DCHECK_GE(gridColumnCount(), GridPositionsResolver::explicitGridColumnCount(*style(), m_autoRepeatColumns));
placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
m_grid.shrinkToFit();
// Compute collapsable tracks for auto-fit.
m_autoRepeatEmptyColumns = computeEmptyTracksForAutoRepeat(ForColumns);
m_autoRepeatEmptyRows = computeEmptyTracksForAutoRepeat(ForRows);
#if ENABLE(ASSERT)
for (LayoutBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) {
if (child->isOutOfFlowPositioned())
continue;
GridArea area = cachedGridArea(*child);
ASSERT(area.rows.isTranslatedDefinite() && area.columns.isTranslatedDefinite());
}
#endif
}
void LayoutGrid::populateExplicitGridAndOrderIterator()
{
OrderIteratorPopulator populator(m_orderIterator);
m_smallestRowStart = m_smallestColumnStart = 0;
size_t maximumRowIndex = GridPositionsResolver::explicitGridRowCount(*style(), m_autoRepeatRows);
size_t maximumColumnIndex = GridPositionsResolver::explicitGridColumnCount(*style(), m_autoRepeatColumns);
ASSERT(m_gridItemsIndexesMap.isEmpty());
size_t childIndex = 0;
for (LayoutBox* child = firstChildBox(); child; child = child->nextInFlowSiblingBox()) {
if (child->isOutOfFlowPositioned())
continue;
populator.collectChild(child);
m_gridItemsIndexesMap.set(child, childIndex++);
// This function bypasses the cache (cachedGridArea()) as it is used to build it.
GridSpan rowPositions = GridPositionsResolver::resolveGridPositionsFromStyle(*style(), *child, ForRows, m_autoRepeatRows);
GridSpan columnPositions = GridPositionsResolver::resolveGridPositionsFromStyle(*style(), *child, ForColumns, m_autoRepeatColumns);
m_gridItemArea.set(child, GridArea(rowPositions, columnPositions));
// |positions| is 0 if we need to run the auto-placement algorithm.
if (!rowPositions.isIndefinite()) {
m_smallestRowStart = std::min(m_smallestRowStart, rowPositions.untranslatedStartLine());
maximumRowIndex = std::max<int>(maximumRowIndex, rowPositions.untranslatedEndLine());
} else {
// Grow the grid for items with a definite row span, getting the largest such span.
size_t spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*style(), *child, ForRows);
maximumRowIndex = std::max(maximumRowIndex, spanSize);
}
if (!columnPositions.isIndefinite()) {
m_smallestColumnStart = std::min(m_smallestColumnStart, columnPositions.untranslatedStartLine());
maximumColumnIndex = std::max<int>(maximumColumnIndex, columnPositions.untranslatedEndLine());
} else {
// Grow the grid for items with a definite column span, getting the largest such span.
size_t spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*style(), *child, ForColumns);
maximumColumnIndex = std::max(maximumColumnIndex, spanSize);
}
}
m_grid.grow(maximumRowIndex + abs(m_smallestRowStart));
for (auto& column : m_grid)
column.grow(maximumColumnIndex + abs(m_smallestColumnStart));
}
std::unique_ptr<GridArea> LayoutGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const LayoutBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const
{
GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns;
const size_t endOfCrossDirection = crossDirection == ForColumns ? gridColumnCount() : gridRowCount();
size_t crossDirectionSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*style(), gridItem, crossDirection);
GridSpan crossDirectionPositions = GridSpan::translatedDefiniteGridSpan(endOfCrossDirection, endOfCrossDirection + crossDirectionSpanSize);
return wrapUnique(new GridArea(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions));
}
void LayoutGrid::placeSpecifiedMajorAxisItemsOnGrid(const Vector<LayoutBox*>& autoGridItems)
{
bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns;
bool isGridAutoFlowDense = style()->isGridAutoFlowAlgorithmDense();
// Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on
// that track. This is needed to implement "sparse" packing for items locked to a given track.
// See http://dev.w3.org/csswg/css-grid/#auto-placement-algo
HashMap<unsigned, unsigned, DefaultHash<unsigned>::Hash, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> minorAxisCursors;
for (const auto& autoGridItem : autoGridItems) {
GridSpan majorAxisPositions = cachedGridSpan(*autoGridItem, autoPlacementMajorAxisDirection());
ASSERT(majorAxisPositions.isTranslatedDefinite());
ASSERT(!cachedGridSpan(*autoGridItem, autoPlacementMinorAxisDirection()).isTranslatedDefinite());
size_t minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*style(), *autoGridItem, autoPlacementMinorAxisDirection());
unsigned majorAxisInitialPosition = majorAxisPositions.startLine();
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions.startLine(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition));
std::unique_ptr<GridArea> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisSpanSize);
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(*autoGridItem, autoPlacementMajorAxisDirection(), majorAxisPositions);
m_gridItemArea.set(autoGridItem, *emptyGridArea);
insertItemIntoGrid(*autoGridItem, *emptyGridArea);
if (!isGridAutoFlowDense)
minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.startLine() : emptyGridArea->columns.startLine());
}
}
void LayoutGrid::placeAutoMajorAxisItemsOnGrid(const Vector<LayoutBox*>& autoGridItems)
{
std::pair<size_t, size_t> autoPlacementCursor = std::make_pair(0, 0);
bool isGridAutoFlowDense = style()->isGridAutoFlowAlgorithmDense();
for (const auto& autoGridItem : autoGridItems) {
placeAutoMajorAxisItemOnGrid(*autoGridItem, autoPlacementCursor);
// If grid-auto-flow is dense, reset auto-placement cursor.
if (isGridAutoFlowDense) {
autoPlacementCursor.first = 0;
autoPlacementCursor.second = 0;
}
}
}
void LayoutGrid::placeAutoMajorAxisItemOnGrid(LayoutBox& gridItem, std::pair<size_t, size_t>& autoPlacementCursor)
{
GridSpan minorAxisPositions = cachedGridSpan(gridItem, autoPlacementMinorAxisDirection());
ASSERT(!cachedGridSpan(gridItem, autoPlacementMajorAxisDirection()).isTranslatedDefinite());
size_t majorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*style(), gridItem, autoPlacementMajorAxisDirection());
const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
size_t majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first;
size_t minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second;
std::unique_ptr<GridArea> emptyGridArea;
if (minorAxisPositions.isTranslatedDefinite()) {
// Move to the next track in major axis if initial position in minor axis is before auto-placement cursor.
if (minorAxisPositions.startLine() < minorAxisAutoPlacementCursor)
majorAxisAutoPlacementCursor++;
if (majorAxisAutoPlacementCursor < endOfMajorAxis) {
GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisPositions.startLine(), majorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions.integerSpan(), majorAxisSpanSize);
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions);
} else {
size_t minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*style(), gridItem, autoPlacementMinorAxisDirection());
for (size_t majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(majorAxisSpanSize, minorAxisSpanSize);
if (emptyGridArea) {
// Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()).
size_t minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.endLine() : emptyGridArea->rows.endLine();
const size_t endOfMinorAxis = autoPlacementMinorAxisDirection() == ForColumns ? gridColumnCount() : gridRowCount();
if (minorAxisFinalPositionIndex <= endOfMinorAxis)
break;
// Discard empty grid area as it does not fit in the minor axis direction.
// We don't need to create a new empty grid area yet as we might find a valid one in the next iteration.
emptyGridArea = nullptr;
}
// As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis.
minorAxisAutoPlacementCursor = 0;
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), GridSpan::translatedDefiniteGridSpan(0, minorAxisSpanSize));
}
m_gridItemArea.set(&gridItem, *emptyGridArea);
insertItemIntoGrid(gridItem, *emptyGridArea);
// Move auto-placement cursor to the new position.
autoPlacementCursor.first = emptyGridArea->rows.startLine();
autoPlacementCursor.second = emptyGridArea->columns.startLine();
}
GridTrackSizingDirection LayoutGrid::autoPlacementMajorAxisDirection() const
{
return style()->isGridAutoFlowDirectionColumn() ? ForColumns : ForRows;
}
GridTrackSizingDirection LayoutGrid::autoPlacementMinorAxisDirection() const
{
return style()->isGridAutoFlowDirectionColumn() ? ForRows : ForColumns;
}
void LayoutGrid::dirtyGrid()
{
if (m_gridIsDirty)
return;
// Even if this could be redundant, it could be seen as a defensive strategy against
// style changes events happening during the layout phase or even while the painting process
// is still ongoing.
// Forcing a new layout for the Grid layout would cancel any ongoing painting and ensure
// the grid and its children are correctly laid out according to the new style rules.
setNeedsLayout(LayoutInvalidationReason::GridChanged);
m_grid.resize(0);
m_gridItemArea.clear();
m_gridItemsOverflowingGridArea.resize(0);
m_gridItemsIndexesMap.clear();
m_autoRepeatColumns = 0;
m_autoRepeatRows = 0;
m_gridIsDirty = true;
m_autoRepeatEmptyColumns = nullptr;
m_autoRepeatEmptyRows = nullptr;
}
Vector<LayoutUnit> LayoutGrid::trackSizesForComputedStyle(GridTrackSizingDirection direction) const
{
bool isRowAxis = direction == ForColumns;
auto& positions = isRowAxis ? m_columnPositions : m_rowPositions;
size_t numPositions = positions.size();
LayoutUnit offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows;
Vector<LayoutUnit> tracks;
if (numPositions < 2)
return tracks;
bool hasCollapsedTracks = hasAutoRepeatEmptyTracks(direction);
LayoutUnit gap = !hasCollapsedTracks ? gridGapForDirection(direction, TrackSizing) : LayoutUnit();
tracks.reserveCapacity(numPositions - 1);
for (size_t i = 0; i < numPositions - 2; ++i)
tracks.append(positions[i + 1] - positions[i] - offsetBetweenTracks - gap);
tracks.append(positions[numPositions - 1] - positions[numPositions - 2]);
if (!hasCollapsedTracks)
return tracks;
size_t remainingEmptyTracks = isRowAxis ? m_autoRepeatEmptyColumns->size() : m_autoRepeatEmptyRows->size();
size_t lastLine = tracks.size();
gap = gridGapForDirection(direction, TrackSizing);
for (size_t i = 1; i < lastLine; ++i) {
if (isEmptyAutoRepeatTrack(direction, i - 1)) {
--remainingEmptyTracks;
} else {
// Remove the gap between consecutive non empty tracks. Remove it also just once for an
// arbitrary number of empty tracks between two non empty ones.
bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i);
if (!allRemainingTracksAreEmpty || !isEmptyAutoRepeatTrack(direction, i))
tracks[i - 1] -= gap;
}
}
return tracks;
}
static const StyleContentAlignmentData& contentAlignmentNormalBehavior()
{
static const StyleContentAlignmentData normalBehavior = {ContentPositionNormal, ContentDistributionStretch};
return normalBehavior;
}
void LayoutGrid::applyStretchAlignmentToTracksIfNeeded(GridTrackSizingDirection direction, GridSizingData& sizingData)
{
LayoutUnit& availableSpace = sizingData.freeSpace(direction);
if (availableSpace <= 0
|| (direction == ForColumns && styleRef().resolvedJustifyContentDistribution(contentAlignmentNormalBehavior()) != ContentDistributionStretch)
|| (direction == ForRows && styleRef().resolvedAlignContentDistribution(contentAlignmentNormalBehavior()) != ContentDistributionStretch))
return;
// Spec defines auto-sized tracks as the ones with an 'auto' max-sizing function.
Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
Vector<unsigned> autoSizedTracksIndex;
for (unsigned i = 0; i < tracks.size(); ++i) {
const GridTrackSize& trackSize = gridTrackSize(direction, i);
if (trackSize.hasAutoMaxTrackBreadth())
autoSizedTracksIndex.append(i);
}
unsigned numberOfAutoSizedTracks = autoSizedTracksIndex.size();
if (numberOfAutoSizedTracks < 1)
return;
LayoutUnit sizeToIncrease = availableSpace / numberOfAutoSizedTracks;
for (const auto& trackIndex : autoSizedTracksIndex) {
GridTrack* track = tracks.data() + trackIndex;
LayoutUnit baseSize = track->baseSize() + sizeToIncrease;
track->setBaseSize(baseSize);
}
availableSpace = LayoutUnit();
}
void LayoutGrid::layoutGridItems(GridSizingData& sizingData)
{
populateGridPositionsForDirection(sizingData, ForColumns);
populateGridPositionsForDirection(sizingData, ForRows);
m_gridItemsOverflowingGridArea.resize(0);
for (LayoutBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (child->isOutOfFlowPositioned()) {
prepareChildForPositionedLayout(*child);
continue;
}
// Because the grid area cannot be styled, we don't need to adjust
// the grid breadth to account for 'box-sizing'.
LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForColumns, sizingData);
LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForRows, sizingData);
SubtreeLayoutScope layoutScope(*child);
if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || (oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight && child->hasRelativeLogicalHeight()))
layoutScope.setNeedsLayout(child, LayoutInvalidationReason::GridChanged);
child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
// Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded
// call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly
// determine the available space before stretching, are not set yet.
applyStretchAlignmentToChildIfNeeded(*child);
child->layoutIfNeeded();
// We need pending layouts to be done in order to compute auto-margins properly.
updateAutoMarginsInColumnAxisIfNeeded(*child);
updateAutoMarginsInRowAxisIfNeeded(*child);
#if ENABLE(ASSERT)
const GridArea& area = cachedGridArea(*child);
ASSERT(area.columns.startLine() < sizingData.columnTracks.size());
ASSERT(area.rows.startLine() < sizingData.rowTracks.size());
#endif
child->setLogicalLocation(findChildLogicalPosition(*child, sizingData));
// Keep track of children overflowing their grid area as we might need to paint them even if the grid-area is not visible.
// Using physical dimensions for simplicity, so we can forget about orthogonalty.
// TODO (lajava): Child's margins should account when evaluating whether it overflows its grid area (http://crbug.com/628155).
LayoutUnit childGridAreaHeight = isHorizontalWritingMode() ? overrideContainingBlockContentLogicalHeight : overrideContainingBlockContentLogicalWidth;
LayoutUnit childGridAreaWidth = isHorizontalWritingMode() ? overrideContainingBlockContentLogicalWidth : overrideContainingBlockContentLogicalHeight;
if (child->size().height() > childGridAreaHeight || child->size().width() > childGridAreaWidth)
m_gridItemsOverflowingGridArea.append(child);
}
}
void LayoutGrid::prepareChildForPositionedLayout(LayoutBox& child)
{
ASSERT(child.isOutOfFlowPositioned());
child.containingBlock()->insertPositionedObject(&child);
PaintLayer* childLayer = child.layer();
childLayer->setStaticInlinePosition(borderAndPaddingStart());
childLayer->setStaticBlockPosition(borderAndPaddingBefore());
}
void LayoutGrid::layoutPositionedObjects(bool relayoutChildren, PositionedLayoutBehavior info)
{
TrackedLayoutBoxListHashSet* positionedDescendants = positionedObjects();
if (!positionedDescendants)
return;
for (auto* child : *positionedDescendants) {
if (isOrthogonalChild(*child)) {
// FIXME: Properly support orthogonal writing mode.
continue;
}
LayoutUnit columnOffset = LayoutUnit();
LayoutUnit columnBreadth = LayoutUnit();
offsetAndBreadthForPositionedChild(*child, ForColumns, columnOffset, columnBreadth);
LayoutUnit rowOffset = LayoutUnit();
LayoutUnit rowBreadth = LayoutUnit();
offsetAndBreadthForPositionedChild(*child, ForRows, rowOffset, rowBreadth);
child->setOverrideContainingBlockContentLogicalWidth(columnBreadth);
child->setOverrideContainingBlockContentLogicalHeight(rowBreadth);
child->setExtraInlineOffset(columnOffset);
child->setExtraBlockOffset(rowOffset);
if (child->parent() == this) {
PaintLayer* childLayer = child->layer();
childLayer->setStaticInlinePosition(borderStart() + columnOffset);
childLayer->setStaticBlockPosition(borderBefore() + rowOffset);
}
}
LayoutBlock::layoutPositionedObjects(relayoutChildren, info);
}
void LayoutGrid::offsetAndBreadthForPositionedChild(const LayoutBox& child, GridTrackSizingDirection direction, LayoutUnit& offset, LayoutUnit& breadth)
{
ASSERT(!isOrthogonalChild(child));
bool isForColumns = direction == ForColumns;
GridSpan positions = GridPositionsResolver::resolveGridPositionsFromStyle(*style(), child, direction, autoRepeatCountForDirection(direction));
if (positions.isIndefinite()) {
offset = LayoutUnit();
breadth = isForColumns ? clientLogicalWidth() : clientLogicalHeight();
return;
}
// For positioned items we cannot use GridSpan::translate(). Because we could end up with negative values, as the positioned items do not create implicit tracks per spec.
int smallestStart = abs(isForColumns ? m_smallestColumnStart : m_smallestRowStart);
int startLine = positions.untranslatedStartLine() + smallestStart;
int endLine = positions.untranslatedEndLine() + smallestStart;
GridPosition startPosition = isForColumns ? child.style()->gridColumnStart() : child.style()->gridRowStart();
GridPosition endPosition = isForColumns ? child.style()->gridColumnEnd() : child.style()->gridRowEnd();
int lastLine = isForColumns ? gridColumnCount() : gridRowCount();
bool startIsAuto = startPosition.isAuto()
|| (startPosition.isNamedGridArea() && !NamedLineCollection::isValidNamedLineOrArea(startPosition.namedGridLine(), styleRef(), GridPositionsResolver::initialPositionSide(direction)))
|| (startLine < 0)
|| (startLine > lastLine);
bool endIsAuto = endPosition.isAuto()
|| (endPosition.isNamedGridArea() && !NamedLineCollection::isValidNamedLineOrArea(endPosition.namedGridLine(), styleRef(), GridPositionsResolver::finalPositionSide(direction)))
|| (endLine < 0)
|| (endLine > lastLine);
LayoutUnit start;
if (!startIsAuto) {
if (isForColumns) {
if (styleRef().isLeftToRightDirection())
start = m_columnPositions[startLine] - borderLogicalLeft();
else
start = logicalWidth() - translateRTLCoordinate(m_columnPositions[startLine]) - borderLogicalRight();
} else {
start = m_rowPositions[startLine] - borderBefore();
}
}
LayoutUnit end = isForColumns ? clientLogicalWidth() : clientLogicalHeight();
if (!endIsAuto) {
if (isForColumns) {
if (styleRef().isLeftToRightDirection())
end = m_columnPositions[endLine] - borderLogicalLeft();
else
end = logicalWidth() - translateRTLCoordinate(m_columnPositions[endLine]) - borderLogicalRight();
} else {
end = m_rowPositions[endLine] - borderBefore();
}
// These vectors store line positions including gaps, but we shouldn't consider them for the edges of the grid.
if (endLine > 0 && endLine < lastLine) {
end -= guttersSize(direction, endLine - 1, 2, TrackSizing);
end -= isForColumns ? m_offsetBetweenColumns : m_offsetBetweenRows;
}
}
breadth = std::max(end - start, LayoutUnit());
offset = start;
if (isForColumns && !styleRef().isLeftToRightDirection() && !child.styleRef().hasStaticInlinePosition(child.isHorizontalWritingMode())) {
// If the child doesn't have a static inline position (i.e. "left" and/or "right" aren't "auto",
// we need to calculate the offset from the left (even if we're in RTL).
if (endIsAuto) {
offset = LayoutUnit();
} else {
offset = translateRTLCoordinate(m_columnPositions[endLine]) - borderLogicalLeft();
if (endLine > 0 && endLine < lastLine) {
offset += guttersSize(direction, endLine - 1, 2, TrackSizing);
offset += isForColumns ? m_offsetBetweenColumns : m_offsetBetweenRows;
}
}
}
}
GridArea LayoutGrid::cachedGridArea(const LayoutBox& gridItem) const
{
ASSERT(m_gridItemArea.contains(&gridItem));
return m_gridItemArea.get(&gridItem);
}
GridSpan LayoutGrid::cachedGridSpan(const LayoutBox& gridItem, GridTrackSizingDirection direction) const
{
GridArea area = cachedGridArea(gridItem);
return direction == ForColumns ? area.columns : area.rows;
}
LayoutUnit LayoutGrid::assumedRowsSizeForOrthogonalChild(const LayoutBox& child, SizingOperation sizingOperation) const
{
DCHECK(isOrthogonalChild(child));
const GridSpan& span = cachedGridSpan(child, ForRows);
LayoutUnit gridAreaSize;
bool gridAreaIsIndefinite = false;
LayoutUnit containingBlockAvailableSize = containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding);
for (auto trackPosition : span) {
GridLength maxTrackSize = gridTrackSize(ForRows, trackPosition, sizingOperation).maxTrackBreadth();
if (maxTrackSize.isContentSized() || maxTrackSize.isFlex())
gridAreaIsIndefinite = true;
else
gridAreaSize += valueForLength(maxTrackSize.length(), containingBlockAvailableSize);
}
gridAreaSize += guttersSize(ForRows, span.startLine(), span.integerSpan(), sizingOperation);
return gridAreaIsIndefinite ? std::max(child.maxPreferredLogicalWidth(), gridAreaSize) : gridAreaSize;
}
LayoutUnit LayoutGrid::gridAreaBreadthForChild(const LayoutBox& child, GridTrackSizingDirection direction, const GridSizingData& sizingData) const
{
// To determine the column track's size based on an orthogonal grid item we need it's logical height, which
// may depend on the row track's size. It's possible that the row tracks sizing logic has not been performed yet,
// so we will need to do an estimation.
if (direction == ForRows && sizingData.sizingState == GridSizingData::ColumnSizingFirstIteration)
return assumedRowsSizeForOrthogonalChild(child, sizingData.sizingOperation);
const Vector<GridTrack>& tracks = direction == ForColumns ? sizingData.columnTracks : sizingData.rowTracks;
const GridSpan& span = cachedGridSpan(child, direction);
LayoutUnit gridAreaBreadth;
for (const auto& trackPosition : span)
gridAreaBreadth += tracks[trackPosition].baseSize();
gridAreaBreadth += guttersSize(direction, span.startLine(), span.integerSpan(), sizingData.sizingOperation);
return gridAreaBreadth;
}
LayoutUnit LayoutGrid::gridAreaBreadthForChildIncludingAlignmentOffsets(const LayoutBox& child, GridTrackSizingDirection direction, const GridSizingData& sizingData) const
{
// We need the cached value when available because Content Distribution alignment properties
// may have some influence in the final grid area breadth.
const Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
const GridSpan& span = cachedGridSpan(child, direction);
const Vector<LayoutUnit>& linePositions = (direction == ForColumns) ? m_columnPositions : m_rowPositions;
LayoutUnit initialTrackPosition = linePositions[span.startLine()];
LayoutUnit finalTrackPosition = linePositions[span.endLine() - 1];
// Track Positions vector stores the 'start' grid line of each track, so w have to add last track's baseSize.
return finalTrackPosition - initialTrackPosition + tracks[span.endLine() - 1].baseSize();
}
void LayoutGrid::populateGridPositionsForDirection(GridSizingData& sizingData, GridTrackSizingDirection direction)
{
// Since we add alignment offsets and track gutters, grid lines are not always adjacent. Hence we will have to
// assume from now on that we just store positions of the initial grid lines of each track,
// except the last one, which is the only one considered as a final grid line of a track.
// The grid container's frame elements (border, padding and <content-position> offset) are sensible to the
// inline-axis flow direction. However, column lines positions are 'direction' unaware. This simplification
// allows us to use the same indexes to identify the columns independently on the inline-axis direction.
bool isRowAxis = direction == ForColumns;
auto& tracks = isRowAxis ? sizingData.columnTracks : sizingData.rowTracks;
size_t numberOfTracks = tracks.size();
size_t numberOfLines = numberOfTracks + 1;
size_t lastLine = numberOfLines - 1;
ContentAlignmentData offset = computeContentPositionAndDistributionOffset(direction, sizingData.freeSpace(direction), numberOfTracks);
auto& positions = isRowAxis ? m_columnPositions : m_rowPositions;
positions.resize(numberOfLines);
auto borderAndPadding = isRowAxis ? borderAndPaddingLogicalLeft() : borderAndPaddingBefore();
positions[0] = borderAndPadding + offset.positionOffset;
if (numberOfLines > 1) {
// If we have collapsed tracks we just ignore gaps here and add them later as we might not
// compute the gap between two consecutive tracks without examining the surrounding ones.
bool hasCollapsedTracks = hasAutoRepeatEmptyTracks(direction);
LayoutUnit gap = !hasCollapsedTracks ? gridGapForDirection(direction, sizingData.sizingOperation) : LayoutUnit();
size_t nextToLastLine = numberOfLines - 2;
for (size_t i = 0; i < nextToLastLine; ++i)
positions[i + 1] = positions[i] + offset.distributionOffset + tracks[i].baseSize() + gap;
positions[lastLine] = positions[nextToLastLine] + tracks[nextToLastLine].baseSize();
// Adjust collapsed gaps. Collapsed tracks cause the surrounding gutters to collapse (they
// coincide exactly) except on the edges of the grid where they become 0.
if (hasCollapsedTracks) {
gap = gridGapForDirection(direction, sizingData.sizingOperation);
size_t remainingEmptyTracks = isRowAxis ? m_autoRepeatEmptyColumns->size() : m_autoRepeatEmptyRows->size();
LayoutUnit gapAccumulator;
for (size_t i = 1; i < lastLine; ++i) {
if (isEmptyAutoRepeatTrack(direction, i - 1)) {
--remainingEmptyTracks;
} else {
// Add gap between consecutive non empty tracks. Add it also just once for an
// arbitrary number of empty tracks between two non empty ones.
bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i);
if (!allRemainingTracksAreEmpty || !isEmptyAutoRepeatTrack(direction, i))
gapAccumulator += gap;
}
positions[i] += gapAccumulator;
}
positions[lastLine] += gapAccumulator;
}
}
auto& offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows;
offsetBetweenTracks = offset.distributionOffset;
}
static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit trackSize, LayoutUnit childSize)
{
LayoutUnit offset = trackSize - childSize;
switch (overflow) {
case OverflowAlignmentSafe:
// If overflow is 'safe', we have to make sure we don't overflow the 'start'
// edge (potentially cause some data loss as the overflow is unreachable).
return offset.clampNegativeToZero();
case OverflowAlignmentUnsafe:
case OverflowAlignmentDefault:
// If we overflow our alignment container and overflow is 'true' (default), we
// ignore the overflow and just return the value regardless (which may cause data
// loss as we overflow the 'start' edge).
return offset;
}
ASSERT_NOT_REACHED();
return LayoutUnit();
}
// FIXME: This logic is shared by LayoutFlexibleBox, so it should be moved to LayoutBox.
LayoutUnit LayoutGrid::marginLogicalHeightForChild(const LayoutBox& child) const
{
return isHorizontalWritingMode() ? child.marginHeight() : child.marginWidth();
}
LayoutUnit LayoutGrid::computeMarginLogicalSizeForChild(MarginDirection forDirection, const LayoutBox& child) const
{
if (!child.styleRef().hasMargin())
return LayoutUnit();
bool isRowAxis = forDirection == InlineDirection;
LayoutUnit marginStart;
LayoutUnit marginEnd;
LayoutUnit logicalSize = isRowAxis ? child.logicalWidth() : child.logicalHeight();
Length marginStartLength = isRowAxis ? child.styleRef().marginStart() : child.styleRef().marginBeforeUsing(style());
Length marginEndLength = isRowAxis ? child.styleRef().marginEnd() : child.styleRef().marginAfterUsing(style());
child.computeMarginsForDirection(forDirection, this, child.containingBlockLogicalWidthForContent(), logicalSize,
marginStart, marginEnd, marginStartLength, marginEndLength);
return marginStart + marginEnd;
}
LayoutUnit LayoutGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const LayoutBox& child) const
{
// Because we want to avoid multiple layouts, stretching logic might be performed before
// children are laid out, so we can't use the child cached values. Hence, we need to
// compute margins in order to determine the available height before stretching.
return gridAreaBreadthForChild - (child.needsLayout() ? computeMarginLogicalSizeForChild(BlockDirection, child) : marginLogicalHeightForChild(child));
}
StyleSelfAlignmentData LayoutGrid::alignSelfForChild(const LayoutBox& child) const
{
if (!child.isAnonymous())
return child.styleRef().resolvedAlignSelf(selfAlignmentNormalBehavior());
// All the 'auto' values has been solved by the StyleAdjuster, but it's possible that
// some grid items generate Anonymous boxes, which need to be solved during layout.
return child.styleRef().resolvedAlignSelf(selfAlignmentNormalBehavior(), style());
}
StyleSelfAlignmentData LayoutGrid::justifySelfForChild(const LayoutBox& child) const
{
if (!child.isAnonymous())
return child.styleRef().resolvedJustifySelf(ItemPositionStretch);
// All the 'auto' values has been solved by the StyleAdjuster, but it's possible that
// some grid items generate Anonymous boxes, which need to be solved during layout.
return child.styleRef().resolvedJustifySelf(selfAlignmentNormalBehavior(), style());
}
// FIXME: This logic is shared by LayoutFlexibleBox, so it should be moved to LayoutBox.
void LayoutGrid::applyStretchAlignmentToChildIfNeeded(LayoutBox& child)
{
// We clear height override values because we will decide now whether it's allowed or
// not, evaluating the conditions which might have changed since the old values were set.
child.clearOverrideLogicalContentHeight();
GridTrackSizingDirection childBlockDirection = flowAwareDirectionForChild(child, ForRows);
bool blockFlowIsColumnAxis = childBlockDirection == ForRows;
bool allowedToStretchChildBlockSize = blockFlowIsColumnAxis ? allowedToStretchChildAlongColumnAxis(child) : allowedToStretchChildAlongRowAxis(child);
if (allowedToStretchChildBlockSize) {
LayoutUnit stretchedLogicalHeight = availableAlignmentSpaceForChildBeforeStretching(overrideContainingBlockContentSizeForChild(child, childBlockDirection), child);
LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, LayoutUnit(-1));
child.setOverrideLogicalContentHeight(desiredLogicalHeight - child.borderAndPaddingLogicalHeight());
if (desiredLogicalHeight != child.logicalHeight()) {
// TODO (lajava): Can avoid laying out here in some cases. See https://webkit.org/b/87905.
child.setLogicalHeight(LayoutUnit());
child.setNeedsLayout(LayoutInvalidationReason::GridChanged);
}
}
}
// TODO(lajava): This logic is shared by LayoutFlexibleBox, so it should be moved to LayoutBox.
bool LayoutGrid::hasAutoMarginsInColumnAxis(const LayoutBox& child) const
{
if (isHorizontalWritingMode())
return child.styleRef().marginTop().isAuto() || child.styleRef().marginBottom().isAuto();
return child.styleRef().marginLeft().isAuto() || child.styleRef().marginRight().isAuto();
}
// TODO(lajava): This logic is shared by LayoutFlexibleBox, so it should be moved to LayoutBox.
bool LayoutGrid::hasAutoMarginsInRowAxis(const LayoutBox& child) const
{
if (isHorizontalWritingMode())
return child.styleRef().marginLeft().isAuto() || child.styleRef().marginRight().isAuto();
return child.styleRef().marginTop().isAuto() || child.styleRef().marginBottom().isAuto();
}
// TODO(lajava): This logic is shared by LayoutFlexibleBox, so it should be moved to LayoutBox.
void LayoutGrid::updateAutoMarginsInRowAxisIfNeeded(LayoutBox& child)
{
ASSERT(!child.isOutOfFlowPositioned());
LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalWidth() - child.logicalWidth() - child.marginLogicalWidth();
if (availableAlignmentSpace <= 0)
return;
Length marginStart = child.style()->marginStartUsing(style());
Length marginEnd = child.style()->marginEndUsing(style());
if (marginStart.isAuto() && marginEnd.isAuto()) {
child.setMarginStart(availableAlignmentSpace / 2, style());
child.setMarginEnd(availableAlignmentSpace / 2, style());
} else if (marginStart.isAuto()) {
child.setMarginStart(availableAlignmentSpace, style());
} else if (marginEnd.isAuto()) {
child.setMarginEnd(availableAlignmentSpace, style());
}
}
// TODO(lajava): This logic is shared by LayoutFlexibleBox, so it should be moved to LayoutBox.
void LayoutGrid::updateAutoMarginsInColumnAxisIfNeeded(LayoutBox& child)
{
ASSERT(!child.isOutOfFlowPositioned());
LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalHeight() - child.logicalHeight() - child.marginLogicalHeight();
if (availableAlignmentSpace <= 0)
return;
Length marginBefore = child.style()->marginBeforeUsing(style());
Length marginAfter = child.style()->marginAfterUsing(style());
if (marginBefore.isAuto() && marginAfter.isAuto()) {
child.setMarginBefore(availableAlignmentSpace / 2, style());
child.setMarginAfter(availableAlignmentSpace / 2, style());
} else if (marginBefore.isAuto()) {
child.setMarginBefore(availableAlignmentSpace, style());
} else if (marginAfter.isAuto()) {
child.setMarginAfter(availableAlignmentSpace, style());
}
}
GridAxisPosition LayoutGrid::columnAxisPositionForChild(const LayoutBox& child) const
{
bool hasSameWritingMode = child.styleRef().getWritingMode() == styleRef().getWritingMode();
bool childIsLTR = child.styleRef().isLeftToRightDirection();
switch (alignSelfForChild(child).position()) {
case ItemPositionSelfStart:
// TODO (lajava): Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'start' side in the column axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-start will be based on the child's inline-axis
// direction (inline-start), because it's the one parallel to the column axis.
if (styleRef().isFlippedBlocksWritingMode())
return childIsLTR ? GridAxisEnd : GridAxisStart;
return childIsLTR ? GridAxisStart : GridAxisEnd;
}
// self-start is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction.
return hasSameWritingMode ? GridAxisStart : GridAxisEnd;
case ItemPositionSelfEnd:
// TODO (lajava): Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'end' side in the column axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-end will be based on the child's inline-axis
// direction, (inline-end) because it's the one parallel to the column axis.
if (styleRef().isFlippedBlocksWritingMode())
return childIsLTR ? GridAxisStart : GridAxisEnd;
return childIsLTR ? GridAxisEnd : GridAxisStart;
}
// self-end is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction.
return hasSameWritingMode ? GridAxisEnd : GridAxisStart;
case ItemPositionLeft:
// Aligns the alignment subject to be flush with the alignment container's 'line-left' edge.
// The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'.
return GridAxisStart;
case ItemPositionRight:
// Aligns the alignment subject to be flush with the alignment container's 'line-right' edge.
// The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'.
return GridAxisStart;
case ItemPositionCenter:
return GridAxisCenter;
case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'.
// Aligns the alignment subject to be flush with the alignment container's 'start' edge (block-start) in the column axis.
case ItemPositionStart:
return GridAxisStart;
case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'.
// Aligns the alignment subject to be flush with the alignment container's 'end' edge (block-end) in the column axis.
case ItemPositionEnd:
return GridAxisEnd;
case ItemPositionStretch:
return GridAxisStart;
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: These two require implementing Baseline Alignment. For now, we always 'start' align the child.
// crbug.com/234191
return GridAxisStart;
case ItemPositionAuto:
case ItemPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return GridAxisStart;
}
GridAxisPosition LayoutGrid::rowAxisPositionForChild(const LayoutBox& child) const
{
bool hasSameDirection = child.styleRef().direction() == styleRef().direction();
bool gridIsLTR = styleRef().isLeftToRightDirection();
switch (justifySelfForChild(child).position()) {
case ItemPositionSelfStart:
// TODO (lajava): Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'start' side in the row axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-start will be based on the child's block-axis
// direction, because it's the one parallel to the row axis.
if (child.styleRef().isFlippedBlocksWritingMode())
return gridIsLTR ? GridAxisEnd : GridAxisStart;
return gridIsLTR ? GridAxisStart : GridAxisEnd;
}
// self-start is based on the child's inline-flow direction. That's why we need to check against the grid container's direction.
return hasSameDirection ? GridAxisStart : GridAxisEnd;
case ItemPositionSelfEnd:
// TODO (lajava): Should we implement this logic in a generic utility function ?
// Aligns the alignment subject to be flush with the edge of the alignment container
// corresponding to the alignment subject's 'end' side in the row axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-end will be based on the child's block-axis
// direction, because it's the one parallel to the row axis.
if (child.styleRef().isFlippedBlocksWritingMode())
return gridIsLTR ? GridAxisStart : GridAxisEnd;
return gridIsLTR ? GridAxisEnd : GridAxisStart;
}
// self-end is based on the child's inline-flow direction. That's why we need to check against the grid container's direction.
return hasSameDirection ? GridAxisEnd : GridAxisStart;
case ItemPositionLeft:
// Aligns the alignment subject to be flush with the alignment container's 'line-left' edge.
// We want the physical 'left' side, so we have to take account, container's inline-flow direction.
return gridIsLTR ? GridAxisStart : GridAxisEnd;
case ItemPositionRight:
// Aligns the alignment subject to be flush with the alignment container's 'line-right' edge.
// We want the physical 'right' side, so we have to take account, container's inline-flow direction.
return gridIsLTR ? GridAxisEnd : GridAxisStart;
case ItemPositionCenter:
return GridAxisCenter;
case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'.
// Aligns the alignment subject to be flush with the alignment container's 'start' edge (inline-start) in the row axis.
case ItemPositionStart:
return GridAxisStart;
case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'.
// Aligns the alignment subject to be flush with the alignment container's 'end' edge (inline-end) in the row axis.
case ItemPositionEnd:
return GridAxisEnd;
case ItemPositionStretch:
return GridAxisStart;
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: These two require implementing Baseline Alignment. For now, we always 'start' align the child.
// crbug.com/234191
return GridAxisStart;
case ItemPositionAuto:
case ItemPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return GridAxisStart;
}
LayoutUnit LayoutGrid::columnAxisOffsetForChild(const LayoutBox& child, GridSizingData& sizingData) const
{
const GridSpan& rowsSpan = cachedGridSpan(child, ForRows);
size_t childStartLine = rowsSpan.startLine();
LayoutUnit startOfRow = m_rowPositions[childStartLine];
LayoutUnit startPosition = startOfRow + marginBeforeForChild(child);
if (hasAutoMarginsInColumnAxis(child))
return startPosition;
GridAxisPosition axisPosition = columnAxisPositionForChild(child);
switch (axisPosition) {
case GridAxisStart:
return startPosition;
case GridAxisEnd:
case GridAxisCenter: {
size_t childEndLine = rowsSpan.endLine();
LayoutUnit endOfRow = m_rowPositions[childEndLine];
// m_rowPositions include distribution offset (because of content alignment) and gutters
// so we need to subtract them to get the actual end position for a given row
// (this does not have to be done for the last track as there are no more m_columnPositions after it).
LayoutUnit trackGap = gridGapForDirection(ForRows, sizingData.sizingOperation);
if (childEndLine < m_rowPositions.size() - 1) {
endOfRow -= trackGap;
endOfRow -= m_offsetBetweenRows;
}
LayoutUnit columnAxisChildSize = isOrthogonalChild(child) ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight();
OverflowAlignment overflow = alignSelfForChild(child).overflow();
LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfRow - startOfRow, columnAxisChildSize);
return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2);
}
}
ASSERT_NOT_REACHED();
return LayoutUnit();
}
LayoutUnit LayoutGrid::rowAxisOffsetForChild(const LayoutBox& child, GridSizingData& sizingData) const
{
const GridSpan& columnsSpan = cachedGridSpan(child, ForColumns);
size_t childStartLine = columnsSpan.startLine();
LayoutUnit startOfColumn = m_columnPositions[childStartLine];
LayoutUnit startPosition = startOfColumn + marginStartForChild(child);
if (hasAutoMarginsInRowAxis(child))
return startPosition;
GridAxisPosition axisPosition = rowAxisPositionForChild(child);
switch (axisPosition) {
case GridAxisStart:
return startPosition;
case GridAxisEnd:
case GridAxisCenter: {
size_t childEndLine = columnsSpan.endLine();
LayoutUnit endOfColumn = m_columnPositions[childEndLine];
// m_columnPositions include distribution offset (because of content alignment) and gutters
// so we need to subtract them to get the actual end position for a given column
// (this does not have to be done for the last track as there are no more m_columnPositions after it).
LayoutUnit trackGap = gridGapForDirection(ForColumns, sizingData.sizingOperation);
if (childEndLine < m_columnPositions.size() - 1) {
endOfColumn -= trackGap;
endOfColumn -= m_offsetBetweenColumns;
}
LayoutUnit rowAxisChildSize = isOrthogonalChild(child) ? child.logicalHeight() + child.marginLogicalHeight() : child.logicalWidth() + child.marginLogicalWidth();
OverflowAlignment overflow = justifySelfForChild(child).overflow();
LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfColumn - startOfColumn, rowAxisChildSize);
return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2);
}
}
ASSERT_NOT_REACHED();
return LayoutUnit();
}
ContentPosition static resolveContentDistributionFallback(ContentDistributionType distribution)
{
switch (distribution) {
case ContentDistributionSpaceBetween:
return ContentPositionStart;
case ContentDistributionSpaceAround:
return ContentPositionCenter;
case ContentDistributionSpaceEvenly:
return ContentPositionCenter;
case ContentDistributionStretch:
return ContentPositionStart;
case ContentDistributionDefault:
return ContentPositionNormal;
}
ASSERT_NOT_REACHED();
return ContentPositionNormal;
}
static ContentAlignmentData contentDistributionOffset(const LayoutUnit& availableFreeSpace, ContentPosition& fallbackPosition, ContentDistributionType distribution, unsigned numberOfGridTracks)
{
if (distribution != ContentDistributionDefault && fallbackPosition == ContentPositionNormal)
fallbackPosition = resolveContentDistributionFallback(distribution);
if (availableFreeSpace <= 0)
return {};
LayoutUnit distributionOffset;
switch (distribution) {
case ContentDistributionSpaceBetween:
if (numberOfGridTracks < 2)
return {};
return {LayoutUnit(), availableFreeSpace / (numberOfGridTracks - 1)};
case ContentDistributionSpaceAround:
if (numberOfGridTracks < 1)
return {};
distributionOffset = availableFreeSpace / numberOfGridTracks;
return {distributionOffset / 2, distributionOffset};
case ContentDistributionSpaceEvenly:
distributionOffset = availableFreeSpace / (numberOfGridTracks + 1);
return {distributionOffset, distributionOffset};
case ContentDistributionStretch:
case ContentDistributionDefault:
return {};
}
ASSERT_NOT_REACHED();
return {};
}
ContentAlignmentData LayoutGrid::computeContentPositionAndDistributionOffset(GridTrackSizingDirection direction, const LayoutUnit& availableFreeSpace, unsigned numberOfGridTracks) const
{
bool isRowAxis = direction == ForColumns;
ContentPosition position = isRowAxis ? styleRef().resolvedJustifyContentPosition(contentAlignmentNormalBehavior()) : styleRef().resolvedAlignContentPosition(contentAlignmentNormalBehavior());
ContentDistributionType distribution = isRowAxis ? styleRef().resolvedJustifyContentDistribution(contentAlignmentNormalBehavior()) : styleRef().resolvedAlignContentDistribution(contentAlignmentNormalBehavior());
// If <content-distribution> value can't be applied, 'position' will become the associated
// <content-position> fallback value.
ContentAlignmentData contentAlignment = contentDistributionOffset(availableFreeSpace, position, distribution, numberOfGridTracks);
if (contentAlignment.isValid())
return contentAlignment;
OverflowAlignment overflow = isRowAxis ? styleRef().justifyContentOverflowAlignment() : styleRef().alignContentOverflowAlignment();
if (availableFreeSpace <= 0 && overflow == OverflowAlignmentSafe)
return {LayoutUnit(), LayoutUnit()};
switch (position) {
case ContentPositionLeft:
// The align-content's axis is always orthogonal to the inline-axis.
return {LayoutUnit(), LayoutUnit()};
case ContentPositionRight:
if (isRowAxis)
return {availableFreeSpace, LayoutUnit()};
// The align-content's axis is always orthogonal to the inline-axis.
return {LayoutUnit(), LayoutUnit()};
case ContentPositionCenter:
return {availableFreeSpace / 2, LayoutUnit()};
case ContentPositionFlexEnd: // Only used in flex layout, for other layout, it's equivalent to 'End'.
case ContentPositionEnd:
if (isRowAxis)
return {styleRef().isLeftToRightDirection() ? availableFreeSpace : LayoutUnit(), LayoutUnit()};
return {availableFreeSpace, LayoutUnit()};
case ContentPositionFlexStart: // Only used in flex layout, for other layout, it's equivalent to 'Start'.
case ContentPositionStart:
if (isRowAxis)
return {styleRef().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()};
return {LayoutUnit(), LayoutUnit()};
case ContentPositionBaseline:
case ContentPositionLastBaseline:
// FIXME: These two require implementing Baseline Alignment. For now, we always 'start' align the child.
// crbug.com/234191
if (isRowAxis)
return {styleRef().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()};
return {LayoutUnit(), LayoutUnit()};
case ContentPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return {LayoutUnit(), LayoutUnit()};
}
LayoutUnit LayoutGrid::translateRTLCoordinate(LayoutUnit coordinate) const
{
ASSERT(!styleRef().isLeftToRightDirection());
LayoutUnit alignmentOffset = m_columnPositions[0];
LayoutUnit rightGridEdgePosition = m_columnPositions[m_columnPositions.size() - 1];
return rightGridEdgePosition + alignmentOffset - coordinate;
}
LayoutPoint LayoutGrid::findChildLogicalPosition(const LayoutBox& child, GridSizingData& sizingData) const
{
LayoutUnit columnAxisOffset = columnAxisOffsetForChild(child, sizingData);
LayoutUnit rowAxisOffset = rowAxisOffsetForChild(child, sizingData);
// We stored m_columnPosition's data ignoring the direction, hence we might need now
// to translate positions from RTL to LTR, as it's more convenient for painting.
if (!style()->isLeftToRightDirection())
rowAxisOffset = translateRTLCoordinate(rowAxisOffset) - (isOrthogonalChild(child) ? child.logicalHeight() : child.logicalWidth());
// "In the positioning phase [...] calculations are performed according to the writing mode
// of the containing block of the box establishing the orthogonal flow." However, the
// resulting LayoutPoint will be used in 'setLogicalPosition' in order to set the child's
// logical position, which will only take into account the child's writing-mode.
LayoutPoint childLocation(rowAxisOffset, columnAxisOffset);
return isOrthogonalChild(child) ? childLocation.transposedPoint() : childLocation;
}
void LayoutGrid::paintChildren(const PaintInfo& paintInfo, const LayoutPoint& paintOffset) const
{
if (!m_gridItemArea.isEmpty())
GridPainter(*this).paintChildren(paintInfo, paintOffset);
}
} // namespace blink