blob: 8e633ef52155009fe15a6d1b09dabb5cdf58ff4b [file] [log] [blame]
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/scheduler/delay_based_time_source.h"
#include <algorithm>
#include <cmath>
#include <string>
#include "base/bind.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/single_thread_task_runner.h"
#include "base/trace_event/trace_event.h"
#include "base/trace_event/trace_event_argument.h"
namespace cc {
namespace {
// kDoubleTickDivisor prevents ticks from running within the specified
// fraction of an interval. This helps account for jitter in the timebase as
// well as quick timer reactivation.
static const int kDoubleTickDivisor = 2;
// kIntervalChangeThreshold is the fraction of the interval that will trigger an
// immediate interval change. kPhaseChangeThreshold is the fraction of the
// interval that will trigger an immediate phase change. If the changes are
// within the thresholds, the change will take place on the next tick. If
// either change is outside the thresholds, the next tick will be canceled and
// reissued immediately.
static const double kIntervalChangeThreshold = 0.25;
static const double kPhaseChangeThreshold = 0.25;
} // namespace
// The following methods correspond to the DelayBasedTimeSource that uses
// the base::TimeTicks::Now as the timebase.
DelayBasedTimeSource::DelayBasedTimeSource(
base::TimeDelta interval,
base::SingleThreadTaskRunner* task_runner)
: client_(nullptr),
active_(false),
timebase_(base::TimeTicks()),
interval_(interval),
last_tick_time_(base::TimeTicks() - interval),
next_tick_time_(base::TimeTicks()),
task_runner_(task_runner),
weak_factory_(this) {
DCHECK_GT(interval, base::TimeDelta());
}
DelayBasedTimeSource::~DelayBasedTimeSource() {}
base::TimeTicks DelayBasedTimeSource::SetActive(bool active) {
TRACE_EVENT1("cc", "DelayBasedTimeSource::SetActive", "active", active);
if (active == active_)
return base::TimeTicks();
active_ = active;
if (!active_) {
next_tick_time_ = base::TimeTicks();
tick_closure_.Cancel();
return base::TimeTicks();
}
ResetTickTask(Now());
// Determine if there was a tick that was missed while not active.
base::TimeTicks last_tick_time_if_always_active = next_tick_time_ - interval_;
base::TimeTicks last_tick_time_threshold =
last_tick_time_ + interval_ / kDoubleTickDivisor;
if (last_tick_time_if_always_active > last_tick_time_threshold) {
last_tick_time_ = last_tick_time_if_always_active;
return last_tick_time_;
}
return base::TimeTicks();
}
base::TimeDelta DelayBasedTimeSource::Interval() const {
return interval_;
}
bool DelayBasedTimeSource::Active() const { return active_; }
base::TimeTicks DelayBasedTimeSource::LastTickTime() const {
return last_tick_time_;
}
base::TimeTicks DelayBasedTimeSource::NextTickTime() const {
return next_tick_time_;
}
void DelayBasedTimeSource::OnTimerTick() {
DCHECK(active_);
last_tick_time_ = next_tick_time_;
PostNextTickTask(Now());
// Fire the tick.
if (client_)
client_->OnTimerTick();
}
void DelayBasedTimeSource::SetClient(DelayBasedTimeSourceClient* client) {
client_ = client;
}
void DelayBasedTimeSource::SetTimebaseAndInterval(base::TimeTicks timebase,
base::TimeDelta interval) {
DCHECK_GT(interval, base::TimeDelta());
// If the change in interval is larger than the change threshold,
// request an immediate reset.
double interval_delta = std::abs((interval - interval_).InSecondsF());
// Comparing with next_tick_time_ is the right thing to do because we want to
// know if we want to cancel the existing tick task and schedule a new one.
// Also next_tick_time_ = timebase_ mod interval_.
double timebase_delta = std::abs((timebase - next_tick_time_).InSecondsF());
interval_ = interval;
timebase_ = timebase;
// If we aren't active, there's no need to reset the timer.
if (!active_)
return;
double interval_change = interval_delta / interval.InSecondsF();
if (interval_change > kIntervalChangeThreshold) {
TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::IntervalChanged",
TRACE_EVENT_SCOPE_THREAD);
ResetTickTask(Now());
return;
}
// If the change in phase is greater than the change threshold in either
// direction, request an immediate reset. This logic might result in a false
// negative if there is a simultaneous small change in the interval and the
// fmod just happens to return something near zero. Assuming the timebase
// is very recent though, which it should be, we'll still be ok because the
// old clock and new clock just happen to line up.
double phase_change =
fmod(timebase_delta, interval.InSecondsF()) / interval.InSecondsF();
if (phase_change > kPhaseChangeThreshold &&
phase_change < (1.0 - kPhaseChangeThreshold)) {
TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::PhaseChanged",
TRACE_EVENT_SCOPE_THREAD);
ResetTickTask(Now());
return;
}
}
base::TimeTicks DelayBasedTimeSource::Now() const {
return base::TimeTicks::Now();
}
// This code tries to achieve an average tick rate as close to interval_ as
// possible. To do this, it has to deal with a few basic issues:
// 1. PostDelayedTask can delay only at a millisecond granularity. So, 16.666
// has to posted as 16 or 17.
// 2. A delayed task may come back a bit late (a few ms), or really late
// (frames later)
//
// The basic idea with this scheduler here is to keep track of where we *want*
// to run in tick_target_. We update this with the exact interval.
//
// Then, when we post our task, we take the floor of (tick_target_ and Now()).
// If we started at now=0, and 60FPs (all times in milliseconds):
// now=0 target=16.667 PostDelayedTask(16)
//
// When our callback runs, we figure out how far off we were from that goal.
// Because of the flooring operation, and assuming our timer runs exactly when
// it should, this yields:
// now=16 target=16.667
//
// Since we can't post a 0.667 ms task to get to now=16, we just treat this as a
// tick. Then, we update target to be 33.333. We now post another task based on
// the difference between our target and now:
// now=16 tick_target=16.667 new_target=33.333 -->
// PostDelayedTask(floor(33.333 - 16)) --> PostDelayedTask(17)
//
// Over time, with no late tasks, this leads to us posting tasks like this:
// now=0 tick_target=0 new_target=16.667 -->
// tick(), PostDelayedTask(16)
// now=16 tick_target=16.667 new_target=33.333 -->
// tick(), PostDelayedTask(17)
// now=33 tick_target=33.333 new_target=50.000 -->
// tick(), PostDelayedTask(17)
// now=50 tick_target=50.000 new_target=66.667 -->
// tick(), PostDelayedTask(16)
//
// We treat delays in tasks differently depending on the amount of delay we
// encounter. Suppose we posted a task with a target=16.667:
// Case 1: late but not unrecoverably-so
// now=18 tick_target=16.667
//
// Case 2: so late we obviously missed the tick
// now=25.0 tick_target=16.667
//
// We treat the first case as a tick anyway, and assume the delay was unusual.
// Thus, we compute the new_target based on the old timebase:
// now=18 tick_target=16.667 new_target=33.333 -->
// tick(), PostDelayedTask(floor(33.333-18)) --> PostDelayedTask(15)
// This brings us back to 18+15 = 33, which was where we would have been if the
// task hadn't been late.
//
// For the really late delay, we we move to the next logical tick. The timebase
// is not reset.
// now=37 tick_target=16.667 new_target=50.000 -->
// tick(), PostDelayedTask(floor(50.000-37)) --> PostDelayedTask(13)
base::TimeTicks DelayBasedTimeSource::NextTickTarget(
base::TimeTicks now) const {
base::TimeTicks next_tick_target =
now.SnappedToNextTick(timebase_, interval_);
DCHECK(now <= next_tick_target)
<< "now = " << now.ToInternalValue()
<< "; new_tick_target = " << next_tick_target.ToInternalValue()
<< "; new_interval = " << interval_.InMicroseconds()
<< "; new_timbase = " << timebase_.ToInternalValue();
// Avoid double ticks when:
// 1) Turning off the timer and turning it right back on.
// 2) Jittery data is passed to SetTimebaseAndInterval().
if (next_tick_target - last_tick_time_ <= interval_ / kDoubleTickDivisor)
next_tick_target += interval_;
return next_tick_target;
}
void DelayBasedTimeSource::PostNextTickTask(base::TimeTicks now) {
next_tick_time_ = NextTickTarget(now);
DCHECK(next_tick_time_ >= now);
// Post another task *before* the tick and update state
base::TimeDelta delay = next_tick_time_ - now;
task_runner_->PostDelayedTask(FROM_HERE, tick_closure_.callback(), delay);
}
void DelayBasedTimeSource::ResetTickTask(base::TimeTicks now) {
tick_closure_.Reset(base::Bind(&DelayBasedTimeSource::OnTimerTick,
weak_factory_.GetWeakPtr()));
PostNextTickTask(now);
}
std::string DelayBasedTimeSource::TypeString() const {
return "DelayBasedTimeSource";
}
void DelayBasedTimeSource::AsValueInto(
base::trace_event::TracedValue* state) const {
state->SetString("type", TypeString());
state->SetDouble("last_tick_time_us", LastTickTime().ToInternalValue());
state->SetDouble("next_tick_time_us", NextTickTime().ToInternalValue());
state->SetDouble("interval_us", interval_.InMicroseconds());
state->SetDouble("timebase_us", timebase_.ToInternalValue());
state->SetBoolean("active", active_);
}
} // namespace cc