|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | // Scopers help you manage ownership of a pointer, helping you easily manage a | 
|  | // pointer within a scope, and automatically destroying the pointer at the end | 
|  | // of a scope.  There are two main classes you will use, which correspond to the | 
|  | // operators new/delete and new[]/delete[]. | 
|  | // | 
|  | // Example usage (scoped_ptr<T>): | 
|  | //   { | 
|  | //     scoped_ptr<Foo> foo(new Foo("wee")); | 
|  | //   }  // foo goes out of scope, releasing the pointer with it. | 
|  | // | 
|  | //   { | 
|  | //     scoped_ptr<Foo> foo;          // No pointer managed. | 
|  | //     foo.reset(new Foo("wee"));    // Now a pointer is managed. | 
|  | //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed. | 
|  | //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed. | 
|  | //     foo->Method();                // Foo::Method() called. | 
|  | //     foo.get()->Method();          // Foo::Method() called. | 
|  | //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer | 
|  | //                                   // manages a pointer. | 
|  | //     foo.reset(new Foo("wee4"));   // foo manages a pointer again. | 
|  | //     foo.reset();                  // Foo("wee4") destroyed, foo no longer | 
|  | //                                   // manages a pointer. | 
|  | //   }  // foo wasn't managing a pointer, so nothing was destroyed. | 
|  | // | 
|  | // Example usage (scoped_ptr<T[]>): | 
|  | //   { | 
|  | //     scoped_ptr<Foo[]> foo(new Foo[100]); | 
|  | //     foo.get()->Method();  // Foo::Method on the 0th element. | 
|  | //     foo[10].Method();     // Foo::Method on the 10th element. | 
|  | //   } | 
|  | // | 
|  | // These scopers also implement part of the functionality of C++11 unique_ptr | 
|  | // in that they are "movable but not copyable."  You can use the scopers in | 
|  | // the parameter and return types of functions to signify ownership transfer | 
|  | // in to and out of a function.  When calling a function that has a scoper | 
|  | // as the argument type, it must be called with an rvalue of a scoper, which | 
|  | // can be created by using std::move(), or the result of another function that | 
|  | // generates a temporary; passing by copy will NOT work.  Here is an example | 
|  | // using scoped_ptr: | 
|  | // | 
|  | //   void TakesOwnership(scoped_ptr<Foo> arg) { | 
|  | //     // Do something with arg. | 
|  | //   } | 
|  | //   scoped_ptr<Foo> CreateFoo() { | 
|  | //     // No need for calling std::move() for returning a move-only value, or | 
|  | //     // when you already have an rvalue as we do here. | 
|  | //     return scoped_ptr<Foo>(new Foo("new")); | 
|  | //   } | 
|  | //   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) { | 
|  | //     return arg; | 
|  | //   } | 
|  | // | 
|  | //   { | 
|  | //     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay"). | 
|  | //     TakesOwnership(std::move(ptr));       // ptr no longer owns Foo("yay"). | 
|  | //     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo. | 
|  | //     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2. | 
|  | //         PassThru(std::move(ptr2));        // ptr2 is correspondingly nullptr. | 
|  | //   } | 
|  | // | 
|  | // Notice that if you do not call std::move() when returning from PassThru(), or | 
|  | // when invoking TakesOwnership(), the code will not compile because scopers | 
|  | // are not copyable; they only implement move semantics which require calling | 
|  | // the std::move() function to signify a destructive transfer of state. | 
|  | // CreateFoo() is different though because we are constructing a temporary on | 
|  | // the return line and thus can avoid needing to call std::move(). | 
|  | // | 
|  | // The conversion move-constructor properly handles upcast in initialization, | 
|  | // i.e. you can use a scoped_ptr<Child> to initialize a scoped_ptr<Parent>: | 
|  | // | 
|  | //   scoped_ptr<Foo> foo(new Foo()); | 
|  | //   scoped_ptr<FooParent> parent(std::move(foo)); | 
|  |  | 
|  | #ifndef BASE_MEMORY_SCOPED_PTR_H_ | 
|  | #define BASE_MEMORY_SCOPED_PTR_H_ | 
|  |  | 
|  | // This is an implementation designed to match the anticipated future TR2 | 
|  | // implementation of the scoped_ptr class. | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <stddef.h> | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include <iosfwd> | 
|  | #include <memory> | 
|  | #include <type_traits> | 
|  | #include <utility> | 
|  |  | 
|  | #include "base/basictypes.h" | 
|  | #include "base/compiler_specific.h" | 
|  | #include "base/move.h" | 
|  | #include "base/template_util.h" | 
|  |  | 
|  | namespace base { | 
|  |  | 
|  | namespace subtle { | 
|  | class RefCountedBase; | 
|  | class RefCountedThreadSafeBase; | 
|  | }  // namespace subtle | 
|  |  | 
|  | // Function object which invokes 'free' on its parameter, which must be | 
|  | // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: | 
|  | // | 
|  | // scoped_ptr<int, base::FreeDeleter> foo_ptr( | 
|  | //     static_cast<int*>(malloc(sizeof(int)))); | 
|  | struct FreeDeleter { | 
|  | inline void operator()(void* ptr) const { | 
|  | free(ptr); | 
|  | } | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename T> struct IsNotRefCounted { | 
|  | enum { | 
|  | value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value && | 
|  | !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>:: | 
|  | value | 
|  | }; | 
|  | }; | 
|  |  | 
|  | // Minimal implementation of the core logic of scoped_ptr, suitable for | 
|  | // reuse in both scoped_ptr and its specializations. | 
|  | template <class T, class D> | 
|  | class scoped_ptr_impl { | 
|  | public: | 
|  | explicit scoped_ptr_impl(T* p) : data_(p) {} | 
|  |  | 
|  | // Initializer for deleters that have data parameters. | 
|  | scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} | 
|  |  | 
|  | // Templated constructor that destructively takes the value from another | 
|  | // scoped_ptr_impl. | 
|  | template <typename U, typename V> | 
|  | scoped_ptr_impl(scoped_ptr_impl<U, V>* other) | 
|  | : data_(other->release(), other->get_deleter()) { | 
|  | // We do not support move-only deleters.  We could modify our move | 
|  | // emulation to have base::subtle::move() and base::subtle::forward() | 
|  | // functions that are imperfect emulations of their C++11 equivalents, | 
|  | // but until there's a requirement, just assume deleters are copyable. | 
|  | } | 
|  |  | 
|  | template <typename U, typename V> | 
|  | void TakeState(scoped_ptr_impl<U, V>* other) { | 
|  | // See comment in templated constructor above regarding lack of support | 
|  | // for move-only deleters. | 
|  | reset(other->release()); | 
|  | get_deleter() = other->get_deleter(); | 
|  | } | 
|  |  | 
|  | ~scoped_ptr_impl() { | 
|  | // Match libc++, which calls reset() in its destructor. | 
|  | // Use nullptr as the new value for three reasons: | 
|  | // 1. libc++ does it. | 
|  | // 2. Avoids infinitely recursing into destructors if two classes are owned | 
|  | //    in a reference cycle (see ScopedPtrTest.ReferenceCycle). | 
|  | // 3. If |this| is accessed in the future, in a use-after-free bug, attempts | 
|  | //    to dereference |this|'s pointer should cause either a failure or a | 
|  | //    segfault closer to the problem. If |this| wasn't reset to nullptr, | 
|  | //    the access would cause the deleted memory to be read or written | 
|  | //    leading to other more subtle issues. | 
|  | reset(nullptr); | 
|  | } | 
|  |  | 
|  | void reset(T* p) { | 
|  | // Match C++11's definition of unique_ptr::reset(), which requires changing | 
|  | // the pointer before invoking the deleter on the old pointer. This prevents | 
|  | // |this| from being accessed after the deleter is run, which may destroy | 
|  | // |this|. | 
|  | T* old = data_.ptr; | 
|  | data_.ptr = p; | 
|  | if (old != nullptr) | 
|  | static_cast<D&>(data_)(old); | 
|  | } | 
|  |  | 
|  | T* get() const { return data_.ptr; } | 
|  |  | 
|  | D& get_deleter() { return data_; } | 
|  | const D& get_deleter() const { return data_; } | 
|  |  | 
|  | void swap(scoped_ptr_impl& p2) { | 
|  | // Standard swap idiom: 'using std::swap' ensures that std::swap is | 
|  | // present in the overload set, but we call swap unqualified so that | 
|  | // any more-specific overloads can be used, if available. | 
|  | using std::swap; | 
|  | swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); | 
|  | swap(data_.ptr, p2.data_.ptr); | 
|  | } | 
|  |  | 
|  | T* release() { | 
|  | T* old_ptr = data_.ptr; | 
|  | data_.ptr = nullptr; | 
|  | return old_ptr; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Needed to allow type-converting constructor. | 
|  | template <typename U, typename V> friend class scoped_ptr_impl; | 
|  |  | 
|  | // Use the empty base class optimization to allow us to have a D | 
|  | // member, while avoiding any space overhead for it when D is an | 
|  | // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good | 
|  | // discussion of this technique. | 
|  | struct Data : public D { | 
|  | explicit Data(T* ptr_in) : ptr(ptr_in) {} | 
|  | Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} | 
|  | T* ptr; | 
|  | }; | 
|  |  | 
|  | Data data_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | }  // namespace base | 
|  |  | 
|  | // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> | 
|  | // automatically deletes the pointer it holds (if any). | 
|  | // That is, scoped_ptr<T> owns the T object that it points to. | 
|  | // Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T | 
|  | // object. Also like T*, scoped_ptr<T> is thread-compatible, and once you | 
|  | // dereference it, you get the thread safety guarantees of T. | 
|  | // | 
|  | // The size of scoped_ptr is small. On most compilers, when using the | 
|  | // std::default_delete, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters | 
|  | // will increase the size proportional to whatever state they need to have. See | 
|  | // comments inside scoped_ptr_impl<> for details. | 
|  | // | 
|  | // Current implementation targets having a strict subset of  C++11's | 
|  | // unique_ptr<> features. Known deficiencies include not supporting move-only | 
|  | // deleteres, function pointers as deleters, and deleters with reference | 
|  | // types. | 
|  | template <class T, class D = std::default_delete<T>> | 
|  | class scoped_ptr { | 
|  | DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr) | 
|  |  | 
|  | static_assert(base::internal::IsNotRefCounted<T>::value, | 
|  | "T is a refcounted type and needs a scoped_refptr"); | 
|  |  | 
|  | public: | 
|  | // The element and deleter types. | 
|  | using element_type = T; | 
|  | using deleter_type = D; | 
|  |  | 
|  | // Constructor.  Defaults to initializing with nullptr. | 
|  | scoped_ptr() : impl_(nullptr) {} | 
|  |  | 
|  | // Constructor.  Takes ownership of p. | 
|  | explicit scoped_ptr(element_type* p) : impl_(p) {} | 
|  |  | 
|  | // Constructor.  Allows initialization of a stateful deleter. | 
|  | scoped_ptr(element_type* p, const D& d) : impl_(p, d) {} | 
|  |  | 
|  | // Constructor.  Allows construction from a nullptr. | 
|  | scoped_ptr(std::nullptr_t) : impl_(nullptr) {} | 
|  |  | 
|  | // Move constructor. | 
|  | // | 
|  | // IMPLEMENTATION NOTE: Clang requires a move constructor to be defined (and | 
|  | // not just the conversion constructor) in order to warn on pessimizing moves. | 
|  | // The requirements for the move constructor are specified in C++11 | 
|  | // 20.7.1.2.1.15-17, which has some subtleties around reference deleters. As | 
|  | // we don't support reference (or move-only) deleters, the post conditions are | 
|  | // trivially true: we always copy construct the deleter from other's deleter. | 
|  | scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} | 
|  |  | 
|  | // Conversion constructor.  Allows construction from a scoped_ptr rvalue for a | 
|  | // convertible type and deleter. | 
|  | // | 
|  | // IMPLEMENTATION NOTE: C++ 20.7.1.2.1.19 requires this constructor to only | 
|  | // participate in overload resolution if all the following are true: | 
|  | // - U is implicitly convertible to T: this is important for 2 reasons: | 
|  | //     1. So type traits don't incorrectly return true, e.g. | 
|  | //          std::is_convertible<scoped_ptr<Base>, scoped_ptr<Derived>>::value | 
|  | //        should be false. | 
|  | //     2. To make sure code like this compiles: | 
|  | //        void F(scoped_ptr<int>); | 
|  | //        void F(scoped_ptr<Base>); | 
|  | //        // Ambiguous since both conversion constructors match. | 
|  | //        F(scoped_ptr<Derived>()); | 
|  | // - U is not an array type: to prevent conversions from scoped_ptr<T[]> to | 
|  | //   scoped_ptr<T>. | 
|  | // - D is a reference type and E is the same type, or D is not a reference | 
|  | //   type and E is implicitly convertible to D: again, we don't support | 
|  | //   reference deleters, so we only worry about the latter requirement. | 
|  | template <typename U, | 
|  | typename E, | 
|  | typename std::enable_if<!std::is_array<U>::value && | 
|  | std::is_convertible<U*, T*>::value && | 
|  | std::is_convertible<E, D>::value>::type* = | 
|  | nullptr> | 
|  | scoped_ptr(scoped_ptr<U, E>&& other) | 
|  | : impl_(&other.impl_) {} | 
|  |  | 
|  | // operator=. | 
|  | // | 
|  | // IMPLEMENTATION NOTE: Unlike the move constructor, Clang does not appear to | 
|  | // require a move assignment operator to trigger the pessimizing move warning: | 
|  | // in this case, the warning triggers when moving a temporary. For consistency | 
|  | // with the move constructor, we define it anyway. C++11 20.7.1.2.3.1-3 | 
|  | // defines several requirements around this: like the move constructor, the | 
|  | // requirements are simplified by the fact that we don't support move-only or | 
|  | // reference deleters. | 
|  | scoped_ptr& operator=(scoped_ptr&& rhs) { | 
|  | impl_.TakeState(&rhs.impl_); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible | 
|  | // type and deleter. | 
|  | // | 
|  | // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from | 
|  | // the normal move assignment operator. C++11 20.7.1.2.3.4-7 contains the | 
|  | // requirement for this operator, but like the conversion constructor, the | 
|  | // requirements are greatly simplified by not supporting move-only or | 
|  | // reference deleters. | 
|  | template <typename U, | 
|  | typename E, | 
|  | typename std::enable_if<!std::is_array<U>::value && | 
|  | std::is_convertible<U*, T*>::value && | 
|  | // Note that this really should be | 
|  | // std::is_assignable, but <type_traits> | 
|  | // appears to be missing this on some | 
|  | // platforms. This is close enough (though | 
|  | // it's not the same). | 
|  | std::is_convertible<D, E>::value>::type* = | 
|  | nullptr> | 
|  | scoped_ptr& operator=(scoped_ptr<U, E>&& rhs) { | 
|  | impl_.TakeState(&rhs.impl_); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // operator=.  Allows assignment from a nullptr. Deletes the currently owned | 
|  | // object, if any. | 
|  | scoped_ptr& operator=(std::nullptr_t) { | 
|  | reset(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Reset.  Deletes the currently owned object, if any. | 
|  | // Then takes ownership of a new object, if given. | 
|  | void reset(element_type* p = nullptr) { impl_.reset(p); } | 
|  |  | 
|  | // Accessors to get the owned object. | 
|  | // operator* and operator-> will assert() if there is no current object. | 
|  | element_type& operator*() const { | 
|  | assert(impl_.get() != nullptr); | 
|  | return *impl_.get(); | 
|  | } | 
|  | element_type* operator->() const  { | 
|  | assert(impl_.get() != nullptr); | 
|  | return impl_.get(); | 
|  | } | 
|  | element_type* get() const { return impl_.get(); } | 
|  |  | 
|  | // Access to the deleter. | 
|  | deleter_type& get_deleter() { return impl_.get_deleter(); } | 
|  | const deleter_type& get_deleter() const { return impl_.get_deleter(); } | 
|  |  | 
|  | // Allow scoped_ptr<element_type> to be used in boolean expressions, but not | 
|  | // implicitly convertible to a real bool (which is dangerous). | 
|  | // | 
|  | // Note that this trick is only safe when the == and != operators | 
|  | // are declared explicitly, as otherwise "scoped_ptr1 == | 
|  | // scoped_ptr2" will compile but do the wrong thing (i.e., convert | 
|  | // to Testable and then do the comparison). | 
|  | private: | 
|  | typedef base::internal::scoped_ptr_impl<element_type, deleter_type> | 
|  | scoped_ptr::*Testable; | 
|  |  | 
|  | public: | 
|  | operator Testable() const { | 
|  | return impl_.get() ? &scoped_ptr::impl_ : nullptr; | 
|  | } | 
|  |  | 
|  | // Swap two scoped pointers. | 
|  | void swap(scoped_ptr& p2) { | 
|  | impl_.swap(p2.impl_); | 
|  | } | 
|  |  | 
|  | // Release a pointer. | 
|  | // The return value is the current pointer held by this object. If this object | 
|  | // holds a nullptr, the return value is nullptr. After this operation, this | 
|  | // object will hold a nullptr, and will not own the object any more. | 
|  | element_type* release() WARN_UNUSED_RESULT { | 
|  | return impl_.release(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Needed to reach into |impl_| in the constructor. | 
|  | template <typename U, typename V> friend class scoped_ptr; | 
|  | base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; | 
|  |  | 
|  | // Forbidden for API compatibility with std::unique_ptr. | 
|  | explicit scoped_ptr(int disallow_construction_from_null); | 
|  | }; | 
|  |  | 
|  | template <class T, class D> | 
|  | class scoped_ptr<T[], D> { | 
|  | DISALLOW_COPY_AND_ASSIGN_WITH_MOVE_FOR_BIND(scoped_ptr) | 
|  |  | 
|  | public: | 
|  | // The element and deleter types. | 
|  | using element_type = T; | 
|  | using deleter_type = D; | 
|  |  | 
|  | // Constructor.  Defaults to initializing with nullptr. | 
|  | scoped_ptr() : impl_(nullptr) {} | 
|  |  | 
|  | // Constructor. Stores the given array. Note that the argument's type | 
|  | // must exactly match T*. In particular: | 
|  | // - it cannot be a pointer to a type derived from T, because it is | 
|  | //   inherently unsafe in the general case to access an array through a | 
|  | //   pointer whose dynamic type does not match its static type (eg., if | 
|  | //   T and the derived types had different sizes access would be | 
|  | //   incorrectly calculated). Deletion is also always undefined | 
|  | //   (C++98 [expr.delete]p3). If you're doing this, fix your code. | 
|  | // - it cannot be const-qualified differently from T per unique_ptr spec | 
|  | //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting | 
|  | //   to work around this may use const_cast<const T*>(). | 
|  | explicit scoped_ptr(element_type* array) : impl_(array) {} | 
|  |  | 
|  | // Constructor.  Allows construction from a nullptr. | 
|  | scoped_ptr(std::nullptr_t) : impl_(nullptr) {} | 
|  |  | 
|  | // Constructor.  Allows construction from a scoped_ptr rvalue. | 
|  | scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} | 
|  |  | 
|  | // operator=.  Allows assignment from a scoped_ptr rvalue. | 
|  | scoped_ptr& operator=(scoped_ptr&& rhs) { | 
|  | impl_.TakeState(&rhs.impl_); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // operator=.  Allows assignment from a nullptr. Deletes the currently owned | 
|  | // array, if any. | 
|  | scoped_ptr& operator=(std::nullptr_t) { | 
|  | reset(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Reset.  Deletes the currently owned array, if any. | 
|  | // Then takes ownership of a new object, if given. | 
|  | void reset(element_type* array = nullptr) { impl_.reset(array); } | 
|  |  | 
|  | // Accessors to get the owned array. | 
|  | element_type& operator[](size_t i) const { | 
|  | assert(impl_.get() != nullptr); | 
|  | return impl_.get()[i]; | 
|  | } | 
|  | element_type* get() const { return impl_.get(); } | 
|  |  | 
|  | // Access to the deleter. | 
|  | deleter_type& get_deleter() { return impl_.get_deleter(); } | 
|  | const deleter_type& get_deleter() const { return impl_.get_deleter(); } | 
|  |  | 
|  | // Allow scoped_ptr<element_type> to be used in boolean expressions, but not | 
|  | // implicitly convertible to a real bool (which is dangerous). | 
|  | private: | 
|  | typedef base::internal::scoped_ptr_impl<element_type, deleter_type> | 
|  | scoped_ptr::*Testable; | 
|  |  | 
|  | public: | 
|  | operator Testable() const { | 
|  | return impl_.get() ? &scoped_ptr::impl_ : nullptr; | 
|  | } | 
|  |  | 
|  | // Swap two scoped pointers. | 
|  | void swap(scoped_ptr& p2) { | 
|  | impl_.swap(p2.impl_); | 
|  | } | 
|  |  | 
|  | // Release a pointer. | 
|  | // The return value is the current pointer held by this object. If this object | 
|  | // holds a nullptr, the return value is nullptr. After this operation, this | 
|  | // object will hold a nullptr, and will not own the object any more. | 
|  | element_type* release() WARN_UNUSED_RESULT { | 
|  | return impl_.release(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Force element_type to be a complete type. | 
|  | enum { type_must_be_complete = sizeof(element_type) }; | 
|  |  | 
|  | // Actually hold the data. | 
|  | base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; | 
|  |  | 
|  | // Disable initialization from any type other than element_type*, by | 
|  | // providing a constructor that matches such an initialization, but is | 
|  | // private and has no definition. This is disabled because it is not safe to | 
|  | // call delete[] on an array whose static type does not match its dynamic | 
|  | // type. | 
|  | template <typename U> explicit scoped_ptr(U* array); | 
|  | explicit scoped_ptr(int disallow_construction_from_null); | 
|  |  | 
|  | // Disable reset() from any type other than element_type*, for the same | 
|  | // reasons as the constructor above. | 
|  | template <typename U> void reset(U* array); | 
|  | void reset(int disallow_reset_from_null); | 
|  | }; | 
|  |  | 
|  | // Free functions | 
|  | template <class T, class D> | 
|  | void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) { | 
|  | p1.swap(p2); | 
|  | } | 
|  |  | 
|  | template <class T1, class D1, class T2, class D2> | 
|  | bool operator==(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { | 
|  | return p1.get() == p2.get(); | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator==(const scoped_ptr<T, D>& p, std::nullptr_t) { | 
|  | return p.get() == nullptr; | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator==(std::nullptr_t, const scoped_ptr<T, D>& p) { | 
|  | return p.get() == nullptr; | 
|  | } | 
|  |  | 
|  | template <class T1, class D1, class T2, class D2> | 
|  | bool operator!=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { | 
|  | return !(p1 == p2); | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator!=(const scoped_ptr<T, D>& p, std::nullptr_t) { | 
|  | return !(p == nullptr); | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator!=(std::nullptr_t, const scoped_ptr<T, D>& p) { | 
|  | return !(p == nullptr); | 
|  | } | 
|  |  | 
|  | template <class T1, class D1, class T2, class D2> | 
|  | bool operator<(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { | 
|  | return p1.get() < p2.get(); | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator<(const scoped_ptr<T, D>& p, std::nullptr_t) { | 
|  | return p.get() < nullptr; | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator<(std::nullptr_t, const scoped_ptr<T, D>& p) { | 
|  | return nullptr < p.get(); | 
|  | } | 
|  |  | 
|  | template <class T1, class D1, class T2, class D2> | 
|  | bool operator>(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { | 
|  | return p2 < p1; | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator>(const scoped_ptr<T, D>& p, std::nullptr_t) { | 
|  | return nullptr < p; | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator>(std::nullptr_t, const scoped_ptr<T, D>& p) { | 
|  | return p < nullptr; | 
|  | } | 
|  |  | 
|  | template <class T1, class D1, class T2, class D2> | 
|  | bool operator<=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { | 
|  | return !(p1 > p2); | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator<=(const scoped_ptr<T, D>& p, std::nullptr_t) { | 
|  | return !(p > nullptr); | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator<=(std::nullptr_t, const scoped_ptr<T, D>& p) { | 
|  | return !(nullptr > p); | 
|  | } | 
|  |  | 
|  | template <class T1, class D1, class T2, class D2> | 
|  | bool operator>=(const scoped_ptr<T1, D1>& p1, const scoped_ptr<T2, D2>& p2) { | 
|  | return !(p1 < p2); | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator>=(const scoped_ptr<T, D>& p, std::nullptr_t) { | 
|  | return !(p < nullptr); | 
|  | } | 
|  | template <class T, class D> | 
|  | bool operator>=(std::nullptr_t, const scoped_ptr<T, D>& p) { | 
|  | return !(nullptr < p); | 
|  | } | 
|  |  | 
|  | // A function to convert T* into scoped_ptr<T> | 
|  | // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation | 
|  | // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) | 
|  | template <typename T> | 
|  | scoped_ptr<T> make_scoped_ptr(T* ptr) { | 
|  | return scoped_ptr<T>(ptr); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) { | 
|  | return out << p.get(); | 
|  | } | 
|  |  | 
|  | #endif  // BASE_MEMORY_SCOPED_PTR_H_ |