|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "base/message_loop/message_pump_win.h" | 
|  |  | 
|  | #include <limits> | 
|  | #include <math.h> | 
|  |  | 
|  | #include "base/message_loop/message_loop.h" | 
|  | #include "base/metrics/histogram.h" | 
|  | #include "base/process/memory.h" | 
|  | #include "base/strings/stringprintf.h" | 
|  | #include "base/trace_event/trace_event.h" | 
|  | #include "base/win/wrapped_window_proc.h" | 
|  |  | 
|  | namespace base { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum MessageLoopProblems { | 
|  | MESSAGE_POST_ERROR, | 
|  | COMPLETION_POST_ERROR, | 
|  | SET_TIMER_ERROR, | 
|  | MESSAGE_LOOP_PROBLEM_MAX, | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p"; | 
|  |  | 
|  | // Message sent to get an additional time slice for pumping (processing) another | 
|  | // task (a series of such messages creates a continuous task pump). | 
|  | static const int kMsgHaveWork = WM_USER + 1; | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpWin public: | 
|  |  | 
|  | void MessagePumpWin::RunWithDispatcher( | 
|  | Delegate* delegate, MessagePumpDispatcher* dispatcher) { | 
|  | RunState s; | 
|  | s.delegate = delegate; | 
|  | s.dispatcher = dispatcher; | 
|  | s.should_quit = false; | 
|  | s.run_depth = state_ ? state_->run_depth + 1 : 1; | 
|  |  | 
|  | RunState* previous_state = state_; | 
|  | state_ = &s; | 
|  |  | 
|  | DoRunLoop(); | 
|  |  | 
|  | state_ = previous_state; | 
|  | } | 
|  |  | 
|  | void MessagePumpWin::Run(Delegate* delegate) { | 
|  | RunWithDispatcher(delegate, NULL); | 
|  | } | 
|  |  | 
|  | void MessagePumpWin::Quit() { | 
|  | DCHECK(state_); | 
|  | state_->should_quit = true; | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpWin protected: | 
|  |  | 
|  | int MessagePumpWin::GetCurrentDelay() const { | 
|  | if (delayed_work_time_.is_null()) | 
|  | return -1; | 
|  |  | 
|  | // Be careful here.  TimeDelta has a precision of microseconds, but we want a | 
|  | // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or | 
|  | // 6?  It should be 6 to avoid executing delayed work too early. | 
|  | double timeout = | 
|  | ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF()); | 
|  |  | 
|  | // Range check the |timeout| while converting to an integer.  If the |timeout| | 
|  | // is negative, then we need to run delayed work soon.  If the |timeout| is | 
|  | // "overflowingly" large, that means a delayed task was posted with a | 
|  | // super-long delay. | 
|  | return timeout < 0 ? 0 : | 
|  | (timeout > std::numeric_limits<int>::max() ? | 
|  | std::numeric_limits<int>::max() : static_cast<int>(timeout)); | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpForUI public: | 
|  |  | 
|  | MessagePumpForUI::MessagePumpForUI() | 
|  | : atom_(0) { | 
|  | InitMessageWnd(); | 
|  | } | 
|  |  | 
|  | MessagePumpForUI::~MessagePumpForUI() { | 
|  | DestroyWindow(message_hwnd_); | 
|  | UnregisterClass(MAKEINTATOM(atom_), | 
|  | GetModuleFromAddress(&WndProcThunk)); | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::ScheduleWork() { | 
|  | if (InterlockedExchange(&have_work_, 1)) | 
|  | return;  // Someone else continued the pumping. | 
|  |  | 
|  | // Make sure the MessagePump does some work for us. | 
|  | BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork, | 
|  | reinterpret_cast<WPARAM>(this), 0); | 
|  | if (ret) | 
|  | return;  // There was room in the Window Message queue. | 
|  |  | 
|  | // We have failed to insert a have-work message, so there is a chance that we | 
|  | // will starve tasks/timers while sitting in a nested message loop.  Nested | 
|  | // loops only look at Windows Message queues, and don't look at *our* task | 
|  | // queues, etc., so we might not get a time slice in such. :-( | 
|  | // We could abort here, but the fear is that this failure mode is plausibly | 
|  | // common (queue is full, of about 2000 messages), so we'll do a near-graceful | 
|  | // recovery.  Nested loops are pretty transient (we think), so this will | 
|  | // probably be recoverable. | 
|  | InterlockedExchange(&have_work_, 0);  // Clarify that we didn't really insert. | 
|  | UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR, | 
|  | MESSAGE_LOOP_PROBLEM_MAX); | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { | 
|  | delayed_work_time_ = delayed_work_time; | 
|  | RescheduleTimer(); | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpForUI private: | 
|  |  | 
|  | // static | 
|  | LRESULT CALLBACK MessagePumpForUI::WndProcThunk( | 
|  | HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { | 
|  | switch (message) { | 
|  | case kMsgHaveWork: | 
|  | reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage(); | 
|  | break; | 
|  | case WM_TIMER: | 
|  | reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage(); | 
|  | break; | 
|  | } | 
|  | return DefWindowProc(hwnd, message, wparam, lparam); | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::DoRunLoop() { | 
|  | // IF this was just a simple PeekMessage() loop (servicing all possible work | 
|  | // queues), then Windows would try to achieve the following order according | 
|  | // to MSDN documentation about PeekMessage with no filter): | 
|  | //    * Sent messages | 
|  | //    * Posted messages | 
|  | //    * Sent messages (again) | 
|  | //    * WM_PAINT messages | 
|  | //    * WM_TIMER messages | 
|  | // | 
|  | // Summary: none of the above classes is starved, and sent messages has twice | 
|  | // the chance of being processed (i.e., reduced service time). | 
|  |  | 
|  | for (;;) { | 
|  | // If we do any work, we may create more messages etc., and more work may | 
|  | // possibly be waiting in another task group.  When we (for example) | 
|  | // ProcessNextWindowsMessage(), there is a good chance there are still more | 
|  | // messages waiting.  On the other hand, when any of these methods return | 
|  | // having done no work, then it is pretty unlikely that calling them again | 
|  | // quickly will find any work to do.  Finally, if they all say they had no | 
|  | // work, then it is a good time to consider sleeping (waiting) for more | 
|  | // work. | 
|  |  | 
|  | bool more_work_is_plausible = ProcessNextWindowsMessage(); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | more_work_is_plausible |= state_->delegate->DoWork(); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | more_work_is_plausible |= | 
|  | state_->delegate->DoDelayedWork(&delayed_work_time_); | 
|  | // If we did not process any delayed work, then we can assume that our | 
|  | // existing WM_TIMER if any will fire when delayed work should run.  We | 
|  | // don't want to disturb that timer if it is already in flight.  However, | 
|  | // if we did do all remaining delayed work, then lets kill the WM_TIMER. | 
|  | if (more_work_is_plausible && delayed_work_time_.is_null()) | 
|  | KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | if (more_work_is_plausible) | 
|  | continue; | 
|  |  | 
|  | more_work_is_plausible = state_->delegate->DoIdleWork(); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | if (more_work_is_plausible) | 
|  | continue; | 
|  |  | 
|  | WaitForWork();  // Wait (sleep) until we have work to do again. | 
|  | } | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::InitMessageWnd() { | 
|  | // Generate a unique window class name. | 
|  | string16 class_name = StringPrintf(kWndClassFormat, this); | 
|  |  | 
|  | HINSTANCE instance = GetModuleFromAddress(&WndProcThunk); | 
|  | WNDCLASSEX wc = {0}; | 
|  | wc.cbSize = sizeof(wc); | 
|  | wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>; | 
|  | wc.hInstance = instance; | 
|  | wc.lpszClassName = class_name.c_str(); | 
|  | atom_ = RegisterClassEx(&wc); | 
|  | DCHECK(atom_); | 
|  |  | 
|  | message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0, | 
|  | HWND_MESSAGE, 0, instance, 0); | 
|  | DCHECK(message_hwnd_); | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::WaitForWork() { | 
|  | // Wait until a message is available, up to the time needed by the timer | 
|  | // manager to fire the next set of timers. | 
|  | int delay = GetCurrentDelay(); | 
|  | if (delay < 0)  // Negative value means no timers waiting. | 
|  | delay = INFINITE; | 
|  |  | 
|  | DWORD result; | 
|  | result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT, | 
|  | MWMO_INPUTAVAILABLE); | 
|  |  | 
|  | if (WAIT_OBJECT_0 == result) { | 
|  | // A WM_* message is available. | 
|  | // If a parent child relationship exists between windows across threads | 
|  | // then their thread inputs are implicitly attached. | 
|  | // This causes the MsgWaitForMultipleObjectsEx API to return indicating | 
|  | // that messages are ready for processing (Specifically, mouse messages | 
|  | // intended for the child window may appear if the child window has | 
|  | // capture). | 
|  | // The subsequent PeekMessages call may fail to return any messages thus | 
|  | // causing us to enter a tight loop at times. | 
|  | // The WaitMessage call below is a workaround to give the child window | 
|  | // some time to process its input messages. | 
|  | MSG msg = {0}; | 
|  | DWORD queue_status = GetQueueStatus(QS_MOUSE); | 
|  | if (HIWORD(queue_status) & QS_MOUSE && | 
|  | !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) { | 
|  | WaitMessage(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | DCHECK_NE(WAIT_FAILED, result) << GetLastError(); | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::HandleWorkMessage() { | 
|  | // If we are being called outside of the context of Run, then don't try to do | 
|  | // any work.  This could correspond to a MessageBox call or something of that | 
|  | // sort. | 
|  | if (!state_) { | 
|  | // Since we handled a kMsgHaveWork message, we must still update this flag. | 
|  | InterlockedExchange(&have_work_, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Let whatever would have run had we not been putting messages in the queue | 
|  | // run now.  This is an attempt to make our dummy message not starve other | 
|  | // messages that may be in the Windows message queue. | 
|  | ProcessPumpReplacementMessage(); | 
|  |  | 
|  | // Now give the delegate a chance to do some work.  He'll let us know if he | 
|  | // needs to do more work. | 
|  | if (state_->delegate->DoWork()) | 
|  | ScheduleWork(); | 
|  | state_->delegate->DoDelayedWork(&delayed_work_time_); | 
|  | RescheduleTimer(); | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::HandleTimerMessage() { | 
|  | KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); | 
|  |  | 
|  | // If we are being called outside of the context of Run, then don't do | 
|  | // anything.  This could correspond to a MessageBox call or something of | 
|  | // that sort. | 
|  | if (!state_) | 
|  | return; | 
|  |  | 
|  | state_->delegate->DoDelayedWork(&delayed_work_time_); | 
|  | RescheduleTimer(); | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::RescheduleTimer() { | 
|  | if (delayed_work_time_.is_null()) | 
|  | return; | 
|  | // | 
|  | // We would *like* to provide high resolution timers.  Windows timers using | 
|  | // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup | 
|  | // mechanism because the application can enter modal windows loops where it | 
|  | // is not running our MessageLoop; the only way to have our timers fire in | 
|  | // these cases is to post messages there. | 
|  | // | 
|  | // To provide sub-10ms timers, we process timers directly from our run loop. | 
|  | // For the common case, timers will be processed there as the run loop does | 
|  | // its normal work.  However, we *also* set the system timer so that WM_TIMER | 
|  | // events fire.  This mops up the case of timers not being able to work in | 
|  | // modal message loops.  It is possible for the SetTimer to pop and have no | 
|  | // pending timers, because they could have already been processed by the | 
|  | // run loop itself. | 
|  | // | 
|  | // We use a single SetTimer corresponding to the timer that will expire | 
|  | // soonest.  As new timers are created and destroyed, we update SetTimer. | 
|  | // Getting a spurious SetTimer event firing is benign, as we'll just be | 
|  | // processing an empty timer queue. | 
|  | // | 
|  | int delay_msec = GetCurrentDelay(); | 
|  | DCHECK_GE(delay_msec, 0); | 
|  | if (delay_msec == 0) { | 
|  | ScheduleWork(); | 
|  | } else { | 
|  | if (delay_msec < USER_TIMER_MINIMUM) | 
|  | delay_msec = USER_TIMER_MINIMUM; | 
|  |  | 
|  | // Create a WM_TIMER event that will wake us up to check for any pending | 
|  | // timers (in case we are running within a nested, external sub-pump). | 
|  | BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), | 
|  | delay_msec, NULL); | 
|  | if (ret) | 
|  | return; | 
|  | // If we can't set timers, we are in big trouble... but cross our fingers | 
|  | // for now. | 
|  | // TODO(jar): If we don't see this error, use a CHECK() here instead. | 
|  | UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR, | 
|  | MESSAGE_LOOP_PROBLEM_MAX); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MessagePumpForUI::ProcessNextWindowsMessage() { | 
|  | // If there are sent messages in the queue then PeekMessage internally | 
|  | // dispatches the message and returns false. We return true in this | 
|  | // case to ensure that the message loop peeks again instead of calling | 
|  | // MsgWaitForMultipleObjectsEx again. | 
|  | bool sent_messages_in_queue = false; | 
|  | DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE); | 
|  | if (HIWORD(queue_status) & QS_SENDMESSAGE) | 
|  | sent_messages_in_queue = true; | 
|  |  | 
|  | MSG msg; | 
|  | if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE) | 
|  | return ProcessMessageHelper(msg); | 
|  |  | 
|  | return sent_messages_in_queue; | 
|  | } | 
|  |  | 
|  | bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) { | 
|  | TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper", | 
|  | "message", msg.message); | 
|  | if (WM_QUIT == msg.message) { | 
|  | // Repost the QUIT message so that it will be retrieved by the primary | 
|  | // GetMessage() loop. | 
|  | state_->should_quit = true; | 
|  | PostQuitMessage(static_cast<int>(msg.wParam)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // While running our main message pump, we discard kMsgHaveWork messages. | 
|  | if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_) | 
|  | return ProcessPumpReplacementMessage(); | 
|  |  | 
|  | if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode)) | 
|  | return true; | 
|  |  | 
|  | uint32_t action = MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT; | 
|  | if (state_->dispatcher) | 
|  | action = state_->dispatcher->Dispatch(msg); | 
|  | if (action & MessagePumpDispatcher::POST_DISPATCH_QUIT_LOOP) | 
|  | state_->should_quit = true; | 
|  | if (action & MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT) { | 
|  | TranslateMessage(&msg); | 
|  | DispatchMessage(&msg); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MessagePumpForUI::ProcessPumpReplacementMessage() { | 
|  | // When we encounter a kMsgHaveWork message, this method is called to peek | 
|  | // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The | 
|  | // goal is to make the kMsgHaveWork as non-intrusive as possible, even though | 
|  | // a continuous stream of such messages are posted.  This method carefully | 
|  | // peeks a message while there is no chance for a kMsgHaveWork to be pending, | 
|  | // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to | 
|  | // possibly be posted), and finally dispatches that peeked replacement.  Note | 
|  | // that the re-post of kMsgHaveWork may be asynchronous to this thread!! | 
|  |  | 
|  | bool have_message = false; | 
|  | MSG msg; | 
|  | // We should not process all window messages if we are in the context of an | 
|  | // OS modal loop, i.e. in the context of a windows API call like MessageBox. | 
|  | // This is to ensure that these messages are peeked out by the OS modal loop. | 
|  | if (MessageLoop::current()->os_modal_loop()) { | 
|  | // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above. | 
|  | have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) || | 
|  | PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE); | 
|  | } else { | 
|  | have_message = PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE; | 
|  | } | 
|  |  | 
|  | DCHECK(!have_message || kMsgHaveWork != msg.message || | 
|  | msg.hwnd != message_hwnd_); | 
|  |  | 
|  | // Since we discarded a kMsgHaveWork message, we must update the flag. | 
|  | int old_have_work = InterlockedExchange(&have_work_, 0); | 
|  | DCHECK(old_have_work); | 
|  |  | 
|  | // We don't need a special time slice if we didn't have_message to process. | 
|  | if (!have_message) | 
|  | return false; | 
|  |  | 
|  | // Guarantee we'll get another time slice in the case where we go into native | 
|  | // windows code.   This ScheduleWork() may hurt performance a tiny bit when | 
|  | // tasks appear very infrequently, but when the event queue is busy, the | 
|  | // kMsgHaveWork events get (percentage wise) rarer and rarer. | 
|  | ScheduleWork(); | 
|  | return ProcessMessageHelper(msg); | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpForIO public: | 
|  |  | 
|  | MessagePumpForIO::MessagePumpForIO() { | 
|  | port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1)); | 
|  | DCHECK(port_.IsValid()); | 
|  | } | 
|  |  | 
|  | MessagePumpForIO::~MessagePumpForIO() { | 
|  | } | 
|  |  | 
|  | void MessagePumpForIO::ScheduleWork() { | 
|  | if (InterlockedExchange(&have_work_, 1)) | 
|  | return;  // Someone else continued the pumping. | 
|  |  | 
|  | // Make sure the MessagePump does some work for us. | 
|  | BOOL ret = PostQueuedCompletionStatus(port_.Get(), 0, | 
|  | reinterpret_cast<ULONG_PTR>(this), | 
|  | reinterpret_cast<OVERLAPPED*>(this)); | 
|  | if (ret) | 
|  | return;  // Post worked perfectly. | 
|  |  | 
|  | // See comment in MessagePumpForUI::ScheduleWork() for this error recovery. | 
|  | InterlockedExchange(&have_work_, 0);  // Clarify that we didn't succeed. | 
|  | UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR, | 
|  | MESSAGE_LOOP_PROBLEM_MAX); | 
|  | } | 
|  |  | 
|  | void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { | 
|  | // We know that we can't be blocked right now since this method can only be | 
|  | // called on the same thread as Run, so we only need to update our record of | 
|  | // how long to sleep when we do sleep. | 
|  | delayed_work_time_ = delayed_work_time; | 
|  | } | 
|  |  | 
|  | void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle, | 
|  | IOHandler* handler) { | 
|  | ULONG_PTR key = HandlerToKey(handler, true); | 
|  | HANDLE port = CreateIoCompletionPort(file_handle, port_.Get(), key, 1); | 
|  | DPCHECK(port); | 
|  | } | 
|  |  | 
|  | bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle, | 
|  | IOHandler* handler) { | 
|  | // Job object notifications use the OVERLAPPED pointer to carry the message | 
|  | // data. Mark the completion key correspondingly, so we will not try to | 
|  | // convert OVERLAPPED* to IOContext*. | 
|  | ULONG_PTR key = HandlerToKey(handler, false); | 
|  | JOBOBJECT_ASSOCIATE_COMPLETION_PORT info; | 
|  | info.CompletionKey = reinterpret_cast<void*>(key); | 
|  | info.CompletionPort = port_.Get(); | 
|  | return SetInformationJobObject(job_handle, | 
|  | JobObjectAssociateCompletionPortInformation, | 
|  | &info, | 
|  | sizeof(info)) != FALSE; | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpForIO private: | 
|  |  | 
|  | void MessagePumpForIO::DoRunLoop() { | 
|  | for (;;) { | 
|  | // If we do any work, we may create more messages etc., and more work may | 
|  | // possibly be waiting in another task group.  When we (for example) | 
|  | // WaitForIOCompletion(), there is a good chance there are still more | 
|  | // messages waiting.  On the other hand, when any of these methods return | 
|  | // having done no work, then it is pretty unlikely that calling them | 
|  | // again quickly will find any work to do.  Finally, if they all say they | 
|  | // had no work, then it is a good time to consider sleeping (waiting) for | 
|  | // more work. | 
|  |  | 
|  | bool more_work_is_plausible = state_->delegate->DoWork(); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | more_work_is_plausible |= WaitForIOCompletion(0, NULL); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | more_work_is_plausible |= | 
|  | state_->delegate->DoDelayedWork(&delayed_work_time_); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | if (more_work_is_plausible) | 
|  | continue; | 
|  |  | 
|  | more_work_is_plausible = state_->delegate->DoIdleWork(); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | if (more_work_is_plausible) | 
|  | continue; | 
|  |  | 
|  | WaitForWork();  // Wait (sleep) until we have work to do again. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Wait until IO completes, up to the time needed by the timer manager to fire | 
|  | // the next set of timers. | 
|  | void MessagePumpForIO::WaitForWork() { | 
|  | // We do not support nested IO message loops. This is to avoid messy | 
|  | // recursion problems. | 
|  | DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!"; | 
|  |  | 
|  | int timeout = GetCurrentDelay(); | 
|  | if (timeout < 0)  // Negative value means no timers waiting. | 
|  | timeout = INFINITE; | 
|  |  | 
|  | WaitForIOCompletion(timeout, NULL); | 
|  | } | 
|  |  | 
|  | bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { | 
|  | IOItem item; | 
|  | if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) { | 
|  | // We have to ask the system for another IO completion. | 
|  | if (!GetIOItem(timeout, &item)) | 
|  | return false; | 
|  |  | 
|  | if (ProcessInternalIOItem(item)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If |item.has_valid_io_context| is false then |item.context| does not point | 
|  | // to a context structure, and so should not be dereferenced, although it may | 
|  | // still hold valid non-pointer data. | 
|  | if (!item.has_valid_io_context || item.context->handler) { | 
|  | if (filter && item.handler != filter) { | 
|  | // Save this item for later | 
|  | completed_io_.push_back(item); | 
|  | } else { | 
|  | DCHECK(!item.has_valid_io_context || | 
|  | (item.context->handler == item.handler)); | 
|  | WillProcessIOEvent(); | 
|  | item.handler->OnIOCompleted(item.context, item.bytes_transfered, | 
|  | item.error); | 
|  | DidProcessIOEvent(); | 
|  | } | 
|  | } else { | 
|  | // The handler must be gone by now, just cleanup the mess. | 
|  | delete item.context; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Asks the OS for another IO completion result. | 
|  | bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) { | 
|  | memset(item, 0, sizeof(*item)); | 
|  | ULONG_PTR key = NULL; | 
|  | OVERLAPPED* overlapped = NULL; | 
|  | if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key, | 
|  | &overlapped, timeout)) { | 
|  | if (!overlapped) | 
|  | return false;  // Nothing in the queue. | 
|  | item->error = GetLastError(); | 
|  | item->bytes_transfered = 0; | 
|  | } | 
|  |  | 
|  | item->handler = KeyToHandler(key, &item->has_valid_io_context); | 
|  | item->context = reinterpret_cast<IOContext*>(overlapped); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) { | 
|  | if (reinterpret_cast<void*>(this) == reinterpret_cast<void*>(item.context) && | 
|  | reinterpret_cast<void*>(this) == reinterpret_cast<void*>(item.handler)) { | 
|  | // This is our internal completion. | 
|  | DCHECK(!item.bytes_transfered); | 
|  | InterlockedExchange(&have_work_, 0); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns a completion item that was previously received. | 
|  | bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) { | 
|  | DCHECK(!completed_io_.empty()); | 
|  | for (std::list<IOItem>::iterator it = completed_io_.begin(); | 
|  | it != completed_io_.end(); ++it) { | 
|  | if (!filter || it->handler == filter) { | 
|  | *item = *it; | 
|  | completed_io_.erase(it); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void MessagePumpForIO::AddIOObserver(IOObserver *obs) { | 
|  | io_observers_.AddObserver(obs); | 
|  | } | 
|  |  | 
|  | void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) { | 
|  | io_observers_.RemoveObserver(obs); | 
|  | } | 
|  |  | 
|  | void MessagePumpForIO::WillProcessIOEvent() { | 
|  | FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent()); | 
|  | } | 
|  |  | 
|  | void MessagePumpForIO::DidProcessIOEvent() { | 
|  | FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent()); | 
|  | } | 
|  |  | 
|  | // static | 
|  | ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler, | 
|  | bool has_valid_io_context) { | 
|  | ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler); | 
|  |  | 
|  | // |IOHandler| is at least pointer-size aligned, so the lowest two bits are | 
|  | // always cleared. We use the lowest bit to distinguish completion keys with | 
|  | // and without the associated |IOContext|. | 
|  | DCHECK_EQ(key & 1, 0u); | 
|  |  | 
|  | // Mark the completion key as context-less. | 
|  | if (!has_valid_io_context) | 
|  | key = key | 1; | 
|  | return key; | 
|  | } | 
|  |  | 
|  | // static | 
|  | MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler( | 
|  | ULONG_PTR key, | 
|  | bool* has_valid_io_context) { | 
|  | *has_valid_io_context = ((key & 1) == 0); | 
|  | return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1)); | 
|  | } | 
|  |  | 
|  | }  // namespace base |