|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include <windows.h> | 
|  | #include <mmsystem.h> | 
|  | #include <process.h> | 
|  |  | 
|  | #include <cmath> | 
|  | #include <limits> | 
|  | #include <vector> | 
|  |  | 
|  | #include "base/threading/platform_thread.h" | 
|  | #include "base/time/time.h" | 
|  | #include "base/win/registry.h" | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  |  | 
|  | namespace base { | 
|  | namespace { | 
|  |  | 
|  | class MockTimeTicks : public TimeTicks { | 
|  | public: | 
|  | static DWORD Ticker() { | 
|  | return static_cast<int>(InterlockedIncrement(&ticker_)); | 
|  | } | 
|  |  | 
|  | static void InstallTicker() { | 
|  | old_tick_function_ = SetMockTickFunction(&Ticker); | 
|  | ticker_ = -5; | 
|  | } | 
|  |  | 
|  | static void UninstallTicker() { | 
|  | SetMockTickFunction(old_tick_function_); | 
|  | } | 
|  |  | 
|  | private: | 
|  | static volatile LONG ticker_; | 
|  | static TickFunctionType old_tick_function_; | 
|  | }; | 
|  |  | 
|  | volatile LONG MockTimeTicks::ticker_; | 
|  | MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_; | 
|  |  | 
|  | HANDLE g_rollover_test_start; | 
|  |  | 
|  | unsigned __stdcall RolloverTestThreadMain(void* param) { | 
|  | int64 counter = reinterpret_cast<int64>(param); | 
|  | DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE); | 
|  | EXPECT_EQ(rv, WAIT_OBJECT_0); | 
|  |  | 
|  | TimeTicks last = TimeTicks::Now(); | 
|  | for (int index = 0; index < counter; index++) { | 
|  | TimeTicks now = TimeTicks::Now(); | 
|  | int64 milliseconds = (now - last).InMilliseconds(); | 
|  | // This is a tight loop; we could have looped faster than our | 
|  | // measurements, so the time might be 0 millis. | 
|  | EXPECT_GE(milliseconds, 0); | 
|  | EXPECT_LT(milliseconds, 250); | 
|  | last = now; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // This test spawns many threads, and can occasionally fail due to resource | 
|  | // exhaustion in the presence of ASan. | 
|  | #if defined(ADDRESS_SANITIZER) | 
|  | #define MAYBE_WinRollover DISABLED_WinRollover | 
|  | #else | 
|  | #define MAYBE_WinRollover WinRollover | 
|  | #endif | 
|  | TEST(TimeTicks, MAYBE_WinRollover) { | 
|  | // The internal counter rolls over at ~49days.  We'll use a mock | 
|  | // timer to test this case. | 
|  | // Basic test algorithm: | 
|  | //   1) Set clock to rollover - N | 
|  | //   2) Create N threads | 
|  | //   3) Start the threads | 
|  | //   4) Each thread loops through TimeTicks() N times | 
|  | //   5) Each thread verifies integrity of result. | 
|  |  | 
|  | const int kThreads = 8; | 
|  | // Use int64 so we can cast into a void* without a compiler warning. | 
|  | const int64 kChecks = 10; | 
|  |  | 
|  | // It takes a lot of iterations to reproduce the bug! | 
|  | // (See bug 1081395) | 
|  | for (int loop = 0; loop < 4096; loop++) { | 
|  | // Setup | 
|  | MockTimeTicks::InstallTicker(); | 
|  | g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0); | 
|  | HANDLE threads[kThreads]; | 
|  |  | 
|  | for (int index = 0; index < kThreads; index++) { | 
|  | void* argument = reinterpret_cast<void*>(kChecks); | 
|  | unsigned thread_id; | 
|  | threads[index] = reinterpret_cast<HANDLE>( | 
|  | _beginthreadex(NULL, 0, RolloverTestThreadMain, argument, 0, | 
|  | &thread_id)); | 
|  | EXPECT_NE((HANDLE)NULL, threads[index]); | 
|  | } | 
|  |  | 
|  | // Start! | 
|  | SetEvent(g_rollover_test_start); | 
|  |  | 
|  | // Wait for threads to finish | 
|  | for (int index = 0; index < kThreads; index++) { | 
|  | DWORD rv = WaitForSingleObject(threads[index], INFINITE); | 
|  | EXPECT_EQ(rv, WAIT_OBJECT_0); | 
|  | // Since using _beginthreadex() (as opposed to _beginthread), | 
|  | // an explicit CloseHandle() is supposed to be called. | 
|  | CloseHandle(threads[index]); | 
|  | } | 
|  |  | 
|  | CloseHandle(g_rollover_test_start); | 
|  |  | 
|  | // Teardown | 
|  | MockTimeTicks::UninstallTicker(); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(TimeTicks, SubMillisecondTimers) { | 
|  | // IsHighResolution() is false on some systems.  Since the product still works | 
|  | // even if it's false, it makes this entire test questionable. | 
|  | if (!TimeTicks::IsHighResolution()) | 
|  | return; | 
|  |  | 
|  | const int kRetries = 1000; | 
|  | bool saw_submillisecond_timer = false; | 
|  |  | 
|  | // Run kRetries attempts to see a sub-millisecond timer. | 
|  | for (int index = 0; index < kRetries; index++) { | 
|  | TimeTicks last_time = TimeTicks::Now(); | 
|  | TimeDelta delta; | 
|  | // Spin until the clock has detected a change. | 
|  | do { | 
|  | delta = TimeTicks::Now() - last_time; | 
|  | } while (delta.InMicroseconds() == 0); | 
|  | if (delta.InMicroseconds() < 1000) { | 
|  | saw_submillisecond_timer = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPECT_TRUE(saw_submillisecond_timer); | 
|  | } | 
|  |  | 
|  | TEST(TimeTicks, TimeGetTimeCaps) { | 
|  | // Test some basic assumptions that we expect about how timeGetDevCaps works. | 
|  |  | 
|  | TIMECAPS caps; | 
|  | MMRESULT status = timeGetDevCaps(&caps, sizeof(caps)); | 
|  | EXPECT_EQ(TIMERR_NOERROR, status); | 
|  | if (status != TIMERR_NOERROR) { | 
|  | printf("Could not get timeGetDevCaps\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1); | 
|  | EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1); | 
|  | EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1); | 
|  | EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1); | 
|  | printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin, | 
|  | caps.wPeriodMax); | 
|  | } | 
|  |  | 
|  | TEST(TimeTicks, QueryPerformanceFrequency) { | 
|  | // Test some basic assumptions that we expect about QPC. | 
|  |  | 
|  | LARGE_INTEGER frequency; | 
|  | BOOL rv = QueryPerformanceFrequency(&frequency); | 
|  | EXPECT_EQ(TRUE, rv); | 
|  | EXPECT_GT(frequency.QuadPart, 1000000);  // Expect at least 1MHz | 
|  | printf("QueryPerformanceFrequency is %5.2fMHz\n", | 
|  | frequency.QuadPart / 1000000.0); | 
|  | } | 
|  |  | 
|  | TEST(TimeTicks, TimerPerformance) { | 
|  | // Verify that various timer mechanisms can always complete quickly. | 
|  | // Note:  This is a somewhat arbitrary test. | 
|  | const int kLoops = 10000; | 
|  |  | 
|  | typedef TimeTicks (*TestFunc)(); | 
|  | struct TestCase { | 
|  | TestFunc func; | 
|  | const char *description; | 
|  | }; | 
|  | // Cheating a bit here:  assumes sizeof(TimeTicks) == sizeof(Time) | 
|  | // in order to create a single test case list. | 
|  | static_assert(sizeof(TimeTicks) == sizeof(Time), | 
|  | "TimeTicks and Time must be the same size"); | 
|  | std::vector<TestCase> cases; | 
|  | cases.push_back({reinterpret_cast<TestFunc>(&Time::Now), "Time::Now"}); | 
|  | cases.push_back({&TimeTicks::Now, "TimeTicks::Now"}); | 
|  |  | 
|  | if (ThreadTicks::IsSupported()) { | 
|  | ThreadTicks::WaitUntilInitialized(); | 
|  | cases.push_back( | 
|  | {reinterpret_cast<TestFunc>(&ThreadTicks::Now), "ThreadTicks::Now"}); | 
|  | } | 
|  |  | 
|  | for (const auto& test_case : cases) { | 
|  | TimeTicks start = TimeTicks::Now(); | 
|  | for (int index = 0; index < kLoops; index++) | 
|  | test_case.func(); | 
|  | TimeTicks stop = TimeTicks::Now(); | 
|  | // Turning off the check for acceptible delays.  Without this check, | 
|  | // the test really doesn't do much other than measure.  But the | 
|  | // measurements are still useful for testing timers on various platforms. | 
|  | // The reason to remove the check is because the tests run on many | 
|  | // buildbots, some of which are VMs.  These machines can run horribly | 
|  | // slow, and there is really no value for checking against a max timer. | 
|  | //const int kMaxTime = 35;  // Maximum acceptible milliseconds for test. | 
|  | //EXPECT_LT((stop - start).InMilliseconds(), kMaxTime); | 
|  | printf("%s: %1.2fus per call\n", test_case.description, | 
|  | (stop - start).InMillisecondsF() * 1000 / kLoops); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(TimeTicks, TSCTicksPerSecond) { | 
|  | if (ThreadTicks::IsSupported()) { | 
|  | ThreadTicks::WaitUntilInitialized(); | 
|  |  | 
|  | // Read the CPU frequency from the registry. | 
|  | base::win::RegKey processor_key( | 
|  | HKEY_LOCAL_MACHINE, | 
|  | L"Hardware\\Description\\System\\CentralProcessor\\0", KEY_QUERY_VALUE); | 
|  | ASSERT_TRUE(processor_key.Valid()); | 
|  | DWORD processor_mhz_from_registry; | 
|  | ASSERT_EQ(ERROR_SUCCESS, | 
|  | processor_key.ReadValueDW(L"~MHz", &processor_mhz_from_registry)); | 
|  |  | 
|  | // Expect the measured TSC frequency to be similar to the processor | 
|  | // frequency from the registry (0.5% error). | 
|  | double tsc_mhz_measured = ThreadTicks::TSCTicksPerSecond() / 1e6; | 
|  | EXPECT_NEAR(tsc_mhz_measured, processor_mhz_from_registry, | 
|  | 0.005 * processor_mhz_from_registry); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(TimeTicks, FromQPCValue) { | 
|  | if (!TimeTicks::IsHighResolution()) | 
|  | return; | 
|  |  | 
|  | LARGE_INTEGER frequency; | 
|  | ASSERT_TRUE(QueryPerformanceFrequency(&frequency)); | 
|  | const int64 ticks_per_second = frequency.QuadPart; | 
|  | ASSERT_GT(ticks_per_second, 0); | 
|  |  | 
|  | // Generate the tick values to convert, advancing the tick count by varying | 
|  | // amounts.  These values will ensure that both the fast and overflow-safe | 
|  | // conversion logic in FromQPCValue() is tested, and across the entire range | 
|  | // of possible QPC tick values. | 
|  | std::vector<int64> test_cases; | 
|  | test_cases.push_back(0); | 
|  | const int kNumAdvancements = 100; | 
|  | int64 ticks = 0; | 
|  | int64 ticks_increment = 10; | 
|  | for (int i = 0; i < kNumAdvancements; ++i) { | 
|  | test_cases.push_back(ticks); | 
|  | ticks += ticks_increment; | 
|  | ticks_increment = ticks_increment * 6 / 5; | 
|  | } | 
|  | test_cases.push_back(Time::kQPCOverflowThreshold - 1); | 
|  | test_cases.push_back(Time::kQPCOverflowThreshold); | 
|  | test_cases.push_back(Time::kQPCOverflowThreshold + 1); | 
|  | ticks = Time::kQPCOverflowThreshold + 10; | 
|  | ticks_increment = 10; | 
|  | for (int i = 0; i < kNumAdvancements; ++i) { | 
|  | test_cases.push_back(ticks); | 
|  | ticks += ticks_increment; | 
|  | ticks_increment = ticks_increment * 6 / 5; | 
|  | } | 
|  | test_cases.push_back(std::numeric_limits<int64>::max()); | 
|  |  | 
|  | // Test that the conversions using FromQPCValue() match those computed here | 
|  | // using simple floating-point arithmetic.  The floating-point math provides | 
|  | // enough precision to confirm the implementation is correct to the | 
|  | // microsecond for all |test_cases| (though it would be insufficient to | 
|  | // confirm many "very large" tick values which are not being tested here). | 
|  | for (int64 ticks : test_cases) { | 
|  | const double expected_microseconds_since_origin = | 
|  | (static_cast<double>(ticks) * Time::kMicrosecondsPerSecond) / | 
|  | ticks_per_second; | 
|  | const TimeTicks converted_value = TimeTicks::FromQPCValue(ticks); | 
|  | const double converted_microseconds_since_origin = | 
|  | static_cast<double>((converted_value - TimeTicks()).InMicroseconds()); | 
|  | EXPECT_NEAR(expected_microseconds_since_origin, | 
|  | converted_microseconds_since_origin, | 
|  | 1.0) | 
|  | << "ticks=" << ticks << ", to be converted via logic path: " | 
|  | << (ticks < Time::kQPCOverflowThreshold ? "FAST" : "SAFE"); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace base |