blob: eac7977563bcf679df5d8df125ecb02d3fa61d2b [file] [log] [blame]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <windows.h>
#include "skia/ext/vector_platform_device_emf_win.h"
#include "skia/ext/bitmap_platform_device.h"
#include "skia/ext/skia_utils_win.h"
#include "third_party/skia/include/core/SkTemplates.h"
#include "third_party/skia/include/core/SkUtils.h"
#include "third_party/skia/include/ports/SkTypeface_win.h"
namespace skia {
//static
PlatformDevice* VectorPlatformDeviceEmf::CreateDevice(int width, int height,
bool is_opaque,
HANDLE shared_section) {
if (!is_opaque) {
// TODO(maruel): http://crbug.com/18382 When restoring a semi-transparent
// layer, i.e. merging it, we need to rasterize it because GDI doesn't
// support transparency except for AlphaBlend(). Right now, a
// BitmapPlatformDevice is created when VectorCanvas think a saveLayers()
// call is being done. The way to save a layer would be to create an
// EMF-based VectorDevice and have this device registers the drawing. When
// playing back the device into a bitmap, do it at the printer's dpi instead
// of the layout's dpi (which is much lower).
return BitmapPlatformDevice::create(width, height, is_opaque,
shared_section);
}
// TODO(maruel): http://crbug.com/18383 Look if it would be worth to
// increase the resolution by ~10x (any worthy factor) to increase the
// rendering precision (think about printing) while using a relatively
// low dpi. This happens because we receive float as input but the GDI
// functions works with integers. The idea is to premultiply the matrix
// with this factor and multiply each SkScalar that are passed to
// SkScalarRound(value) as SkScalarRound(value * 10). Safari is already
// doing the same for text rendering.
SkASSERT(shared_section);
PlatformDevice* device = VectorPlatformDeviceEmf::create(
reinterpret_cast<HDC>(shared_section), width, height);
return device;
}
static void FillBitmapInfoHeader(int width, int height, BITMAPINFOHEADER* hdr) {
hdr->biSize = sizeof(BITMAPINFOHEADER);
hdr->biWidth = width;
hdr->biHeight = -height; // Minus means top-down bitmap.
hdr->biPlanes = 1;
hdr->biBitCount = 32;
hdr->biCompression = BI_RGB; // no compression
hdr->biSizeImage = 0;
hdr->biXPelsPerMeter = 1;
hdr->biYPelsPerMeter = 1;
hdr->biClrUsed = 0;
hdr->biClrImportant = 0;
}
VectorPlatformDeviceEmf* VectorPlatformDeviceEmf::create(HDC dc,
int width,
int height) {
InitializeDC(dc);
// Link the SkBitmap to the current selected bitmap in the device context.
SkBitmap bitmap;
HGDIOBJ selected_bitmap = GetCurrentObject(dc, OBJ_BITMAP);
bool succeeded = false;
if (selected_bitmap != NULL) {
BITMAP bitmap_data;
if (GetObject(selected_bitmap, sizeof(BITMAP), &bitmap_data) ==
sizeof(BITMAP)) {
// The context has a bitmap attached. Attach our SkBitmap to it.
// Warning: If the bitmap gets unselected from the HDC,
// VectorPlatformDeviceEmf has no way to detect this, so the HBITMAP
// could be released while SkBitmap still has a reference to it. Be
// cautious.
if (width == bitmap_data.bmWidth &&
height == bitmap_data.bmHeight) {
bitmap.setConfig(SkBitmap::kARGB_8888_Config,
bitmap_data.bmWidth,
bitmap_data.bmHeight,
bitmap_data.bmWidthBytes);
bitmap.setPixels(bitmap_data.bmBits);
succeeded = true;
}
}
}
if (!succeeded)
bitmap.setConfig(SkBitmap::kARGB_8888_Config, width, height);
return new VectorPlatformDeviceEmf(dc, bitmap);
}
VectorPlatformDeviceEmf::VectorPlatformDeviceEmf(HDC dc, const SkBitmap& bitmap)
: PlatformDevice(bitmap),
hdc_(dc),
previous_brush_(NULL),
previous_pen_(NULL),
alpha_blend_used_(false) {
transform_.reset();
}
VectorPlatformDeviceEmf::~VectorPlatformDeviceEmf() {
SkASSERT(previous_brush_ == NULL);
SkASSERT(previous_pen_ == NULL);
}
HDC VectorPlatformDeviceEmf::BeginPlatformPaint() {
return hdc_;
}
uint32_t VectorPlatformDeviceEmf::getDeviceCapabilities() {
return SkDevice::getDeviceCapabilities() | kVector_Capability;
}
void VectorPlatformDeviceEmf::drawPaint(const SkDraw& draw,
const SkPaint& paint) {
// TODO(maruel): Bypass the current transformation matrix.
SkRect rect;
rect.fLeft = 0;
rect.fTop = 0;
rect.fRight = SkIntToScalar(width() + 1);
rect.fBottom = SkIntToScalar(height() + 1);
drawRect(draw, rect, paint);
}
void VectorPlatformDeviceEmf::drawPoints(const SkDraw& draw,
SkCanvas::PointMode mode,
size_t count,
const SkPoint pts[],
const SkPaint& paint) {
if (!count)
return;
if (mode == SkCanvas::kPoints_PointMode) {
SkASSERT(false);
return;
}
SkPaint tmp_paint(paint);
tmp_paint.setStyle(SkPaint::kStroke_Style);
// Draw a path instead.
SkPath path;
switch (mode) {
case SkCanvas::kLines_PointMode:
if (count % 2) {
SkASSERT(false);
return;
}
for (size_t i = 0; i < count / 2; ++i) {
path.moveTo(pts[2 * i]);
path.lineTo(pts[2 * i + 1]);
}
break;
case SkCanvas::kPolygon_PointMode:
path.moveTo(pts[0]);
for (size_t i = 1; i < count; ++i) {
path.lineTo(pts[i]);
}
break;
default:
SkASSERT(false);
return;
}
// Draw the calculated path.
drawPath(draw, path, tmp_paint);
}
void VectorPlatformDeviceEmf::drawRect(const SkDraw& draw,
const SkRect& rect,
const SkPaint& paint) {
if (paint.getPathEffect()) {
// Draw a path instead.
SkPath path_orginal;
path_orginal.addRect(rect);
// Apply the path effect to the rect.
SkPath path_modified;
paint.getFillPath(path_orginal, &path_modified);
// Removes the path effect from the temporary SkPaint object.
SkPaint paint_no_effet(paint);
SkSafeUnref(paint_no_effet.setPathEffect(NULL));
// Draw the calculated path.
drawPath(draw, path_modified, paint_no_effet);
return;
}
if (!ApplyPaint(paint)) {
return;
}
HDC dc = BeginPlatformPaint();
if (!Rectangle(dc, SkScalarRound(rect.fLeft),
SkScalarRound(rect.fTop),
SkScalarRound(rect.fRight),
SkScalarRound(rect.fBottom))) {
SkASSERT(false);
}
EndPlatformPaint();
Cleanup();
}
void VectorPlatformDeviceEmf::drawPath(const SkDraw& draw,
const SkPath& path,
const SkPaint& paint,
const SkMatrix* prePathMatrix,
bool pathIsMutable) {
if (paint.getPathEffect()) {
// Apply the path effect forehand.
SkPath path_modified;
paint.getFillPath(path, &path_modified);
// Removes the path effect from the temporary SkPaint object.
SkPaint paint_no_effet(paint);
SkSafeUnref(paint_no_effet.setPathEffect(NULL));
// Draw the calculated path.
drawPath(draw, path_modified, paint_no_effet);
return;
}
if (!ApplyPaint(paint)) {
return;
}
HDC dc = BeginPlatformPaint();
if (PlatformDevice::LoadPathToDC(dc, path)) {
switch (paint.getStyle()) {
case SkPaint::kFill_Style: {
BOOL res = StrokeAndFillPath(dc);
SkASSERT(res != 0);
break;
}
case SkPaint::kStroke_Style: {
BOOL res = StrokePath(dc);
SkASSERT(res != 0);
break;
}
case SkPaint::kStrokeAndFill_Style: {
BOOL res = StrokeAndFillPath(dc);
SkASSERT(res != 0);
break;
}
default:
SkASSERT(false);
break;
}
}
EndPlatformPaint();
Cleanup();
}
void VectorPlatformDeviceEmf::drawBitmap(const SkDraw& draw,
const SkBitmap& bitmap,
const SkIRect* srcRectOrNull,
const SkMatrix& matrix,
const SkPaint& paint) {
// Load the temporary matrix. This is what will translate, rotate and resize
// the bitmap.
SkMatrix actual_transform(transform_);
actual_transform.preConcat(matrix);
LoadTransformToDC(hdc_, actual_transform);
InternalDrawBitmap(bitmap, 0, 0, paint);
// Restore the original matrix.
LoadTransformToDC(hdc_, transform_);
}
void VectorPlatformDeviceEmf::drawSprite(const SkDraw& draw,
const SkBitmap& bitmap,
int x, int y,
const SkPaint& paint) {
SkMatrix identity;
identity.reset();
LoadTransformToDC(hdc_, identity);
InternalDrawBitmap(bitmap, x, y, paint);
// Restore the original matrix.
LoadTransformToDC(hdc_, transform_);
}
/////////////////////////////////////////////////////////////////////////
static bool gdiCanHandleText(const SkPaint& paint) {
return !paint.getShader() &&
!paint.getPathEffect() &&
(SkPaint::kFill_Style == paint.getStyle()) &&
(255 == paint.getAlpha());
}
class SkGDIFontSetup {
public:
SkGDIFontSetup() : fUseGDI(false) {
SkDEBUGCODE(fUseGDIHasBeenCalled = false;)
}
~SkGDIFontSetup();
// can only be called once
bool useGDI(HDC hdc, const SkPaint&);
private:
HDC fHDC;
HFONT fNewFont;
HFONT fSavedFont;
COLORREF fSavedTextColor;
bool fUseGDI;
SkDEBUGCODE(bool fUseGDIHasBeenCalled;)
};
bool SkGDIFontSetup::useGDI(HDC hdc, const SkPaint& paint) {
SkASSERT(!fUseGDIHasBeenCalled);
SkDEBUGCODE(fUseGDIHasBeenCalled = true;)
fUseGDI = gdiCanHandleText(paint);
if (fUseGDI) {
fSavedTextColor = GetTextColor(hdc);
SetTextColor(hdc, skia::SkColorToCOLORREF(paint.getColor()));
LOGFONT lf;
SkLOGFONTFromTypeface(paint.getTypeface(), &lf);
lf.lfHeight = -SkScalarRound(paint.getTextSize());
fNewFont = CreateFontIndirect(&lf);
fSavedFont = (HFONT)::SelectObject(hdc, fNewFont);
}
return fUseGDI;
}
SkGDIFontSetup::~SkGDIFontSetup() {
if (fUseGDI) {
::SelectObject(fHDC, fSavedFont);
::DeleteObject(fNewFont);
SetTextColor(fHDC, fSavedTextColor);
}
}
static SkScalar getAscent(const SkPaint& paint) {
SkPaint::FontMetrics fm;
paint.getFontMetrics(&fm);
return fm.fAscent;
}
// return the options int for ExtTextOut. Only valid if the paint's text encoding
// is not UTF8 (in which case ExtTextOut can't be used).
static UINT getTextOutOptions(const SkPaint& paint) {
if (SkPaint::kGlyphID_TextEncoding == paint.getTextEncoding()) {
return ETO_GLYPH_INDEX;
} else {
SkASSERT(SkPaint::kUTF16_TextEncoding == paint.getTextEncoding());
return 0;
}
}
void VectorPlatformDeviceEmf::drawText(const SkDraw& draw,
const void* text,
size_t byteLength,
SkScalar x,
SkScalar y,
const SkPaint& paint) {
SkGDIFontSetup setup;
if (SkPaint::kUTF8_TextEncoding != paint.getTextEncoding()
&& setup.useGDI(hdc_, paint)) {
UINT options = getTextOutOptions(paint);
UINT count = byteLength >> 1;
ExtTextOut(hdc_, SkScalarRound(x), SkScalarRound(y + getAscent(paint)),
options, 0, reinterpret_cast<const wchar_t*>(text), count, NULL);
} else {
SkPath path;
paint.getTextPath(text, byteLength, x, y, &path);
drawPath(draw, path, paint);
}
}
static size_t size_utf8(const char* text) {
return SkUTF8_CountUTF8Bytes(text);
}
static size_t size_utf16(const char* text) {
uint16_t c = *reinterpret_cast<const uint16_t*>(text);
return SkUTF16_IsHighSurrogate(c) ? 4 : 2;
}
static size_t size_glyphid(const char* text) {
return 2;
}
void VectorPlatformDeviceEmf::drawPosText(const SkDraw& draw,
const void* text,
size_t len,
const SkScalar pos[],
SkScalar constY,
int scalarsPerPos,
const SkPaint& paint) {
SkGDIFontSetup setup;
if (2 == scalarsPerPos
&& SkPaint::kUTF8_TextEncoding != paint.getTextEncoding()
&& setup.useGDI(hdc_, paint)) {
int startX = SkScalarRound(pos[0]);
int startY = SkScalarRound(pos[1] + getAscent(paint));
const int count = len >> 1;
SkAutoSTMalloc<64, INT> storage(count);
INT* advances = storage.get();
for (int i = 0; i < count - 1; ++i) {
advances[i] = SkScalarRound(pos[2] - pos[0]);
pos += 2;
}
ExtTextOut(hdc_, startX, startY, getTextOutOptions(paint), 0,
reinterpret_cast<const wchar_t*>(text), count, advances);
} else {
size_t (*bytesPerCodePoint)(const char*);
switch (paint.getTextEncoding()) {
case SkPaint::kUTF8_TextEncoding:
bytesPerCodePoint = size_utf8;
break;
case SkPaint::kUTF16_TextEncoding:
bytesPerCodePoint = size_utf16;
break;
default:
SkASSERT(SkPaint::kGlyphID_TextEncoding == paint.getTextEncoding());
bytesPerCodePoint = size_glyphid;
break;
}
const char* curr = reinterpret_cast<const char*>(text);
const char* stop = curr + len;
while (curr < stop) {
SkScalar y = (1 == scalarsPerPos) ? constY : pos[1];
size_t bytes = bytesPerCodePoint(curr);
drawText(draw, curr, bytes, pos[0], y, paint);
curr += bytes;
pos += scalarsPerPos;
}
}
}
void VectorPlatformDeviceEmf::drawTextOnPath(const SkDraw& draw,
const void* text,
size_t len,
const SkPath& path,
const SkMatrix* matrix,
const SkPaint& paint) {
// This function isn't used in the code. Verify this assumption.
SkASSERT(false);
}
void VectorPlatformDeviceEmf::drawVertices(const SkDraw& draw,
SkCanvas::VertexMode vmode,
int vertexCount,
const SkPoint vertices[],
const SkPoint texs[],
const SkColor colors[],
SkXfermode* xmode,
const uint16_t indices[],
int indexCount,
const SkPaint& paint) {
// This function isn't used in the code. Verify this assumption.
SkASSERT(false);
}
void VectorPlatformDeviceEmf::drawDevice(const SkDraw& draw,
SkDevice* device,
int x,
int y,
const SkPaint& paint) {
// TODO(maruel): http://b/1183870 Playback the EMF buffer at printer's dpi if
// it is a vectorial device.
drawSprite(draw, device->accessBitmap(false), x, y, paint);
}
bool VectorPlatformDeviceEmf::ApplyPaint(const SkPaint& paint) {
// Note: The goal here is to transfert the SkPaint's state to the HDC's state.
// This function does not execute the SkPaint drawing commands. These should
// be executed in drawPaint().
SkPaint::Style style = paint.getStyle();
if (!paint.getAlpha())
style = SkPaint::kStyleCount;
switch (style) {
case SkPaint::kFill_Style:
if (!CreateBrush(true, paint) ||
!CreatePen(false, paint))
return false;
break;
case SkPaint::kStroke_Style:
if (!CreateBrush(false, paint) ||
!CreatePen(true, paint))
return false;
break;
case SkPaint::kStrokeAndFill_Style:
if (!CreateBrush(true, paint) ||
!CreatePen(true, paint))
return false;
break;
default:
if (!CreateBrush(false, paint) ||
!CreatePen(false, paint))
return false;
break;
}
/*
getFlags();
isAntiAlias();
isDither()
isLinearText()
isSubpixelText()
isUnderlineText()
isStrikeThruText()
isFakeBoldText()
isDevKernText()
isFilterBitmap()
// Skia's text is not used. This should be fixed.
getTextAlign()
getTextScaleX()
getTextSkewX()
getTextEncoding()
getFontMetrics()
getFontSpacing()
*/
// BUG 1094907: Implement shaders. Shaders currently in use:
// SkShader::CreateBitmapShader
// SkGradientShader::CreateRadial
// SkGradientShader::CreateLinear
// SkASSERT(!paint.getShader());
// http://b/1106647 Implement loopers and mask filter. Looper currently in
// use:
// SkBlurDrawLooper is used for shadows.
// SkASSERT(!paint.getLooper());
// SkASSERT(!paint.getMaskFilter());
// http://b/1165900 Implement xfermode.
// SkASSERT(!paint.getXfermode());
// The path effect should be processed before arriving here.
SkASSERT(!paint.getPathEffect());
// This isn't used in the code. Verify this assumption.
SkASSERT(!paint.getRasterizer());
// Reuse code to load Win32 Fonts.
return true;
}
void VectorPlatformDeviceEmf::setMatrixClip(const SkMatrix& transform,
const SkRegion& region,
const SkClipStack&) {
transform_ = transform;
LoadTransformToDC(hdc_, transform_);
clip_region_ = region;
if (!clip_region_.isEmpty())
LoadClipRegion();
}
void VectorPlatformDeviceEmf::DrawToNativeContext(HDC dc, int x, int y,
const RECT* src_rect) {
SkASSERT(false);
}
void VectorPlatformDeviceEmf::LoadClipRegion() {
SkMatrix t;
t.reset();
LoadClippingRegionToDC(hdc_, clip_region_, t);
}
SkDevice* VectorPlatformDeviceEmf::onCreateCompatibleDevice(
SkBitmap::Config config, int width, int height, bool isOpaque,
Usage /*usage*/) {
SkASSERT(config == SkBitmap::kARGB_8888_Config);
return VectorPlatformDeviceEmf::CreateDevice(width, height, isOpaque, NULL);
}
bool VectorPlatformDeviceEmf::CreateBrush(bool use_brush, COLORREF color) {
SkASSERT(previous_brush_ == NULL);
// We can't use SetDCBrushColor() or DC_BRUSH when drawing to a EMF buffer.
// SetDCBrushColor() calls are not recorded at all and DC_BRUSH will use
// WHITE_BRUSH instead.
if (!use_brush) {
// Set the transparency.
if (0 == SetBkMode(hdc_, TRANSPARENT)) {
SkASSERT(false);
return false;
}
// Select the NULL brush.
previous_brush_ = SelectObject(GetStockObject(NULL_BRUSH));
return previous_brush_ != NULL;
}
// Set the opacity.
if (0 == SetBkMode(hdc_, OPAQUE)) {
SkASSERT(false);
return false;
}
// Create and select the brush.
previous_brush_ = SelectObject(CreateSolidBrush(color));
return previous_brush_ != NULL;
}
bool VectorPlatformDeviceEmf::CreatePen(bool use_pen,
COLORREF color,
int stroke_width,
float stroke_miter,
DWORD pen_style) {
SkASSERT(previous_pen_ == NULL);
// We can't use SetDCPenColor() or DC_PEN when drawing to a EMF buffer.
// SetDCPenColor() calls are not recorded at all and DC_PEN will use BLACK_PEN
// instead.
// No pen case
if (!use_pen) {
previous_pen_ = SelectObject(GetStockObject(NULL_PEN));
return previous_pen_ != NULL;
}
// Use the stock pen if the stroke width is 0.
if (stroke_width == 0) {
// Create a pen with the right color.
previous_pen_ = SelectObject(::CreatePen(PS_SOLID, 0, color));
return previous_pen_ != NULL;
}
// Load a custom pen.
LOGBRUSH brush;
brush.lbStyle = BS_SOLID;
brush.lbColor = color;
brush.lbHatch = 0;
HPEN pen = ExtCreatePen(pen_style, stroke_width, &brush, 0, NULL);
SkASSERT(pen != NULL);
previous_pen_ = SelectObject(pen);
if (previous_pen_ == NULL)
return false;
if (!SetMiterLimit(hdc_, stroke_miter, NULL)) {
SkASSERT(false);
return false;
}
return true;
}
void VectorPlatformDeviceEmf::Cleanup() {
if (previous_brush_) {
HGDIOBJ result = SelectObject(previous_brush_);
previous_brush_ = NULL;
if (result) {
BOOL res = DeleteObject(result);
SkASSERT(res != 0);
}
}
if (previous_pen_) {
HGDIOBJ result = SelectObject(previous_pen_);
previous_pen_ = NULL;
if (result) {
BOOL res = DeleteObject(result);
SkASSERT(res != 0);
}
}
// Remove any loaded path from the context.
AbortPath(hdc_);
}
HGDIOBJ VectorPlatformDeviceEmf::SelectObject(HGDIOBJ object) {
HGDIOBJ result = ::SelectObject(hdc_, object);
SkASSERT(result != HGDI_ERROR);
if (result == HGDI_ERROR)
return NULL;
return result;
}
bool VectorPlatformDeviceEmf::CreateBrush(bool use_brush,
const SkPaint& paint) {
// Make sure that for transparent color, no brush is used.
if (paint.getAlpha() == 0) {
use_brush = false;
}
return CreateBrush(use_brush, SkColorToCOLORREF(paint.getColor()));
}
bool VectorPlatformDeviceEmf::CreatePen(bool use_pen, const SkPaint& paint) {
// Make sure that for transparent color, no pen is used.
if (paint.getAlpha() == 0) {
use_pen = false;
}
DWORD pen_style = PS_GEOMETRIC | PS_SOLID;
switch (paint.getStrokeJoin()) {
case SkPaint::kMiter_Join:
// Connects path segments with a sharp join.
pen_style |= PS_JOIN_MITER;
break;
case SkPaint::kRound_Join:
// Connects path segments with a round join.
pen_style |= PS_JOIN_ROUND;
break;
case SkPaint::kBevel_Join:
// Connects path segments with a flat bevel join.
pen_style |= PS_JOIN_BEVEL;
break;
default:
SkASSERT(false);
break;
}
switch (paint.getStrokeCap()) {
case SkPaint::kButt_Cap:
// Begin/end contours with no extension.
pen_style |= PS_ENDCAP_FLAT;
break;
case SkPaint::kRound_Cap:
// Begin/end contours with a semi-circle extension.
pen_style |= PS_ENDCAP_ROUND;
break;
case SkPaint::kSquare_Cap:
// Begin/end contours with a half square extension.
pen_style |= PS_ENDCAP_SQUARE;
break;
default:
SkASSERT(false);
break;
}
return CreatePen(use_pen,
SkColorToCOLORREF(paint.getColor()),
SkScalarRound(paint.getStrokeWidth()),
paint.getStrokeMiter(),
pen_style);
}
void VectorPlatformDeviceEmf::InternalDrawBitmap(const SkBitmap& bitmap,
int x, int y,
const SkPaint& paint) {
unsigned char alpha = paint.getAlpha();
if (alpha == 0)
return;
bool is_translucent;
if (alpha != 255) {
// ApplyPaint expect an opaque color.
SkPaint tmp_paint(paint);
tmp_paint.setAlpha(255);
if (!ApplyPaint(tmp_paint))
return;
is_translucent = true;
} else {
if (!ApplyPaint(paint))
return;
is_translucent = false;
}
int src_size_x = bitmap.width();
int src_size_y = bitmap.height();
if (!src_size_x || !src_size_y)
return;
// Create a BMP v4 header that we can serialize. We use the shared "V3"
// fillter to fill the stardard items, then add in the "V4" stuff we want.
BITMAPV4HEADER bitmap_header;
memset(&bitmap_header, 0, sizeof(BITMAPV4HEADER));
FillBitmapInfoHeader(src_size_x, src_size_y,
reinterpret_cast<BITMAPINFOHEADER*>(&bitmap_header));
bitmap_header.bV4Size = sizeof(BITMAPV4HEADER);
bitmap_header.bV4RedMask = 0x00ff0000;
bitmap_header.bV4GreenMask = 0x0000ff00;
bitmap_header.bV4BlueMask = 0x000000ff;
bitmap_header.bV4AlphaMask = 0xff000000;
SkAutoLockPixels lock(bitmap);
SkASSERT(bitmap.getConfig() == SkBitmap::kARGB_8888_Config);
const uint32_t* pixels = static_cast<const uint32_t*>(bitmap.getPixels());
if (pixels == NULL) {
SkASSERT(false);
return;
}
if (!is_translucent) {
int row_length = bitmap.rowBytesAsPixels();
// There is no quick way to determine if an image is opaque.
for (int y2 = 0; y2 < src_size_y; ++y2) {
for (int x2 = 0; x2 < src_size_x; ++x2) {
if (SkColorGetA(pixels[(y2 * row_length) + x2]) != 255) {
is_translucent = true;
y2 = src_size_y;
break;
}
}
}
}
HDC dc = BeginPlatformPaint();
BITMAPINFOHEADER hdr;
FillBitmapInfoHeader(src_size_x, src_size_y, &hdr);
if (is_translucent) {
// The image must be loaded as a bitmap inside a device context.
HDC bitmap_dc = ::CreateCompatibleDC(dc);
void* bits = NULL;
HBITMAP hbitmap = ::CreateDIBSection(
bitmap_dc, reinterpret_cast<const BITMAPINFO*>(&hdr),
DIB_RGB_COLORS, &bits, NULL, 0);
// static cast to a char so we can do byte ptr arithmatic to
// get the offset.
unsigned char* dest_buffer = static_cast<unsigned char *>(bits);
// We will copy row by row to avoid having to worry about
// the row strides being different.
const int dest_row_size = hdr.biBitCount / 8 * hdr.biWidth;
for (int row = 0; row < bitmap.height(); ++row) {
int dest_offset = row * dest_row_size;
// pixels_offset in terms of pixel count.
int src_offset = row * bitmap.rowBytesAsPixels();
memcpy(dest_buffer + dest_offset, pixels + src_offset, dest_row_size);
}
SkASSERT(hbitmap);
HGDIOBJ old_bitmap = ::SelectObject(bitmap_dc, hbitmap);
// After some analysis of IE7's behavior, this is the thing to do. I was
// sure IE7 was doing so kind of bitmasking due to the way translucent image
// where renderered but after some windbg tracing, it is being done by the
// printer driver after all (mostly HP printers). IE7 always use AlphaBlend
// for bitmasked images. The trick seems to switch the stretching mode in
// what the driver expects.
DWORD previous_mode = GetStretchBltMode(dc);
BOOL result = SetStretchBltMode(dc, COLORONCOLOR);
SkASSERT(result);
// Note that this function expect premultiplied colors (!)
BLENDFUNCTION blend_function = {AC_SRC_OVER, 0, alpha, AC_SRC_ALPHA};
result = GdiAlphaBlend(dc,
x, y, // Destination origin.
src_size_x, src_size_y, // Destination size.
bitmap_dc,
0, 0, // Source origin.
src_size_x, src_size_y, // Source size.
blend_function);
SkASSERT(result);
result = SetStretchBltMode(dc, previous_mode);
SkASSERT(result);
alpha_blend_used_ = true;
::SelectObject(bitmap_dc, static_cast<HBITMAP>(old_bitmap));
DeleteObject(hbitmap);
DeleteDC(bitmap_dc);
} else {
int nCopied = StretchDIBits(dc,
x, y, // Destination origin.
src_size_x, src_size_y,
0, 0, // Source origin.
src_size_x, src_size_y, // Source size.
pixels,
reinterpret_cast<const BITMAPINFO*>(&hdr),
DIB_RGB_COLORS,
SRCCOPY);
}
EndPlatformPaint();
Cleanup();
}
} // namespace skia