blob: f7073b08aee9107091a6b946aee692783f43373b [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "nacl_io/kernel_intercept.h"
#include <assert.h>
#include <errno.h>
#include <string.h>
#include "nacl_io/kernel_proxy.h"
#include "nacl_io/kernel_wrap.h"
#include "nacl_io/kernel_wrap_real.h"
#include "nacl_io/log.h"
#include "nacl_io/osmman.h"
#include "nacl_io/ossocket.h"
#include "nacl_io/ostime.h"
#include "nacl_io/pepper_interface.h"
#include "nacl_io/real_pepper_interface.h"
using namespace nacl_io;
#define ON_NOSYS_RETURN(x) \
if (!ki_is_initialized()) { \
errno = ENOSYS; \
return x; \
}
#define TRACE_KP_CALLS 0
#if TRACE_KP_CALLS
#define KP_TRACE nacl_io_log
#else
#define KP_TRACE(...)
#endif
#define KP_CALL(METHOD, ARGS) \
ON_NOSYS_RETURN(-1); \
int rtn = s_state.kp-> METHOD ARGS; \
KP_TRACE("ki_" #METHOD " -> %d\n", rtn); \
return rtn;
struct KernelInterceptState {
KernelProxy* kp;
PepperInterface* ppapi;
bool kp_owned;
};
static KernelInterceptState s_state;
// The the test code we want to be able to save the previous kernel
// proxy when intialising and restore it on uninit.
static KernelInterceptState s_saved_state;
int ki_push_state_for_testing() {
assert(s_saved_state.kp == NULL);
if (s_saved_state.kp != NULL)
return 1;
s_saved_state = s_state;
s_state.kp = NULL;
s_state.ppapi = NULL;
s_state.kp_owned = false;
return 0;
}
static void ki_pop_state() {
// Swap out the KernelProxy. This will normally reset the
// proxy to NULL, aside from in test code that has called
// ki_push_state_for_testing().
s_state = s_saved_state;
s_saved_state.kp = NULL;
s_saved_state.ppapi = NULL;
s_saved_state.kp_owned = false;
}
int ki_pop_state_for_testing() {
ki_pop_state();
return 0;
}
int ki_init(void* kp) {
LOG_TRACE("ki_init: %p", kp);
return ki_init_ppapi(kp, 0, NULL);
}
int ki_init_ppapi(void* kp,
PP_Instance instance,
PPB_GetInterface get_browser_interface) {
assert(!s_state.kp);
if (s_state.kp != NULL)
return 1;
PepperInterface* ppapi = NULL;
if (instance && get_browser_interface) {
ppapi = new RealPepperInterface(instance, get_browser_interface);
s_state.ppapi = ppapi;
}
int rtn = ki_init_interface(kp, ppapi);
return rtn;
}
int ki_init_interface(void* kp, void* pepper_interface) {
LOG_TRACE("ki_init_interface: %p %p", kp, pepper_interface);
assert(!s_state.kp);
if (s_state.kp != NULL)
return 1;
PepperInterface* ppapi = static_cast<PepperInterface*>(pepper_interface);
kernel_wrap_init();
if (kp == NULL) {
s_state.kp = new KernelProxy();
s_state.kp_owned = true;
} else {
s_state.kp = static_cast<KernelProxy*>(kp);
s_state.kp_owned = false;
}
if (s_state.kp->Init(ppapi) != 0)
return 1;
return 0;
}
int ki_is_initialized() {
return s_state.kp != NULL;
}
int ki_uninit() {
LOG_TRACE("ki_uninit");
assert(s_state.kp);
if (s_state.kp == NULL)
return 1;
if (s_saved_state.kp == NULL)
kernel_wrap_uninit();
// If we are going to delete the KernelProxy don't do it
// until we've swapped it out.
KernelInterceptState state_to_delete = s_state;
ki_pop_state();
if (state_to_delete.kp_owned)
delete state_to_delete.kp;
delete state_to_delete.ppapi;
return 0;
}
nacl_io::KernelProxy* ki_get_proxy() {
return s_state.kp;
}
void ki_exit(int status) {
KP_TRACE("ki_exit\n");
if (ki_is_initialized())
s_state.kp->exit(status);
_real_exit(status);
}
char* ki_getcwd(char* buf, size_t size) {
ON_NOSYS_RETURN(NULL);
KP_TRACE("ki_getcwd\n");
return s_state.kp->getcwd(buf, size);
}
char* ki_getwd(char* buf) {
ON_NOSYS_RETURN(NULL);
KP_TRACE("ki_getwd\n");
return s_state.kp->getwd(buf);
}
int ki_chdir(const char* path) {
KP_CALL(chdir, (path));
}
int ki_dup(int oldfd) {
KP_CALL(dup, (oldfd));
}
int ki_dup2(int oldfd, int newfd) {
KP_CALL(dup2, (oldfd, newfd));
}
int ki_chmod(const char* path, mode_t mode) {
KP_CALL(chmod, (path, mode));
}
int ki_fchdir(int fd) {
KP_CALL(fchdir, (fd));
}
int ki_fchmod(int fd, mode_t mode) {
KP_CALL(fchmod, (fd, mode));
}
int ki_stat(const char* path, struct stat* buf) {
KP_CALL(stat, (path, buf));
}
int ki_mkdir(const char* path, mode_t mode) {
KP_CALL(mkdir, (path, mode));
}
int ki_rmdir(const char* path) {
KP_CALL(rmdir, (path));
}
int ki_mount(const char* source,
const char* target,
const char* filesystemtype,
unsigned long mountflags,
const void* data) {
KP_CALL(mount, (source, target, filesystemtype, mountflags, data));
}
int ki_umount(const char* path) {
KP_CALL(umount, (path));
}
int ki_open(const char* path, int oflag, mode_t mode) {
KP_CALL(open, (path, oflag, mode));
}
int ki_pipe(int pipefds[2]) {
KP_CALL(pipe, (pipefds));
}
ssize_t ki_read(int fd, void* buf, size_t nbyte) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_read\n");
return s_state.kp->read(fd, buf, nbyte);
}
ssize_t ki_write(int fd, const void* buf, size_t nbyte) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_write\n");
return s_state.kp->write(fd, buf, nbyte);
}
int ki_fstat(int fd, struct stat* buf) {
KP_CALL(fstat, (fd, buf));
}
int ki_getdents(int fd, struct dirent* buf, unsigned int count) {
KP_CALL(getdents, (fd, buf, count));
}
int ki_ftruncate(int fd, off_t length) {
KP_CALL(ftruncate, (fd, length));
}
int ki_fsync(int fd) {
KP_CALL(fsync, (fd));
}
int ki_fdatasync(int fd) {
KP_CALL(fdatasync, (fd));
}
int ki_isatty(int fd) {
ON_NOSYS_RETURN(0);
KP_TRACE("ki_isatty\n");
return s_state.kp->isatty(fd);
}
int ki_close(int fd) {
KP_CALL(close, (fd));
}
off_t ki_lseek(int fd, off_t offset, int whence) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_lseek\n");
return s_state.kp->lseek(fd, offset, whence);
}
int ki_remove(const char* path) {
KP_CALL(remove, (path));
}
int ki_unlink(const char* path) {
KP_CALL(unlink, (path));
}
int ki_truncate(const char* path, off_t length) {
KP_CALL(truncate, (path, length));
}
int ki_lstat(const char* path, struct stat* buf) {
KP_CALL(lstat, (path, buf));
}
int ki_link(const char* oldpath, const char* newpath) {
KP_CALL(link, (oldpath, newpath));
}
int ki_rename(const char* path, const char* newpath) {
KP_CALL(rename, (path, newpath));
}
int ki_symlink(const char* oldpath, const char* newpath) {
KP_CALL(symlink, (oldpath, newpath));
}
int ki_access(const char* path, int amode) {
KP_CALL(access, (path, amode));
}
int ki_readlink(const char* path, char* buf, size_t count) {
KP_CALL(readlink, (path, buf, count));
}
int ki_utimes(const char* path, const struct timeval times[2]) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_utimes");
// Implement in terms of utimens.
if (!times) {
return s_state.kp->utimens(path, NULL);
}
struct timespec ts[2];
ts[0].tv_sec = times[0].tv_sec;
ts[0].tv_nsec = times[0].tv_usec * 1000;
ts[1].tv_sec = times[1].tv_sec;
ts[1].tv_nsec = times[1].tv_usec * 1000;
return s_state.kp->utimens(path, ts);
}
int ki_futimes(int fd, const struct timeval times[2]) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_futimes");
// Implement in terms of futimens.
if (!times) {
return s_state.kp->futimens(fd, NULL);
}
struct timespec ts[2];
ts[0].tv_sec = times[0].tv_sec;
ts[0].tv_nsec = times[0].tv_usec * 1000;
ts[1].tv_sec = times[1].tv_sec;
ts[1].tv_nsec = times[1].tv_usec * 1000;
return s_state.kp->futimens(fd, ts);
}
void* ki_mmap(void* addr,
size_t length,
int prot,
int flags,
int fd,
off_t offset) {
ON_NOSYS_RETURN(MAP_FAILED);
KP_TRACE("ki_mmap\n");
return s_state.kp->mmap(addr, length, prot, flags, fd, offset);
}
int ki_munmap(void* addr, size_t length) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_munmap\n");
return s_state.kp->munmap(addr, length);
}
int ki_open_resource(const char* file) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_open_resource\n");
return s_state.kp->open_resource(file);
}
int ki_fcntl(int d, int request, va_list args) {
KP_CALL(fcntl, (d, request, args));
}
int ki_ioctl(int d, int request, va_list args) {
KP_CALL(ioctl, (d, request, args));
}
int ki_chown(const char* path, uid_t owner, gid_t group) {
KP_CALL(chown, (path, owner, group));
}
int ki_fchown(int fd, uid_t owner, gid_t group) {
KP_CALL(fchown, (fd, owner, group));
}
int ki_lchown(const char* path, uid_t owner, gid_t group) {
KP_CALL(lchown, (path, owner, group));
}
int ki_utime(const char* filename, const struct utimbuf* times) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_utime\n");
// Implement in terms of utimens.
if (!times) {
return s_state.kp->utimens(filename, NULL);
}
struct timespec ts[2];
ts[0].tv_sec = times->actime;
ts[0].tv_nsec = 0;
ts[1].tv_sec = times->modtime;
ts[1].tv_nsec = 0;
return s_state.kp->utimens(filename, ts);
}
int ki_futimens(int fd, const struct timespec times[2]) {
KP_CALL(futimens, (fd, times));
}
mode_t ki_umask(mode_t mask) {
ON_NOSYS_RETURN(0);
KP_TRACE("ki_umask\n");
return s_state.kp->umask(mask);
}
int ki_poll(struct pollfd* fds, nfds_t nfds, int timeout) {
KP_CALL(poll, (fds, nfds, timeout));
}
int ki_select(int nfds,
fd_set* readfds,
fd_set* writefds,
fd_set* exceptfds,
struct timeval* timeout) {
KP_CALL(select, (nfds, readfds, writefds, exceptfds, timeout));
}
int ki_tcflush(int fd, int queue_selector) {
KP_CALL(tcflush, (fd, queue_selector));
}
int ki_tcgetattr(int fd, struct termios* termios_p) {
KP_CALL(tcgetattr, (fd, termios_p));
}
int ki_tcsetattr(int fd,
int optional_actions,
const struct termios* termios_p) {
KP_CALL(tcsetattr, (fd, optional_actions, termios_p));
}
int ki_kill(pid_t pid, int sig) {
KP_CALL(kill, (pid, sig));
}
int ki_killpg(pid_t pid, int sig) {
errno = ENOSYS;
return -1;
}
int ki_sigaction(int signum,
const struct sigaction* action,
struct sigaction* oaction) {
KP_CALL(sigaction, (signum, action, oaction));
}
int ki_sigpause(int sigmask) {
errno = ENOSYS;
return -1;
}
int ki_sigpending(sigset_t* set) {
errno = ENOSYS;
return -1;
}
int ki_sigsuspend(const sigset_t* set) {
errno = ENOSYS;
return -1;
}
sighandler_t ki_signal(int signum, sighandler_t handler) {
return ki_sigset(signum, handler);
}
sighandler_t ki_sigset(int signum, sighandler_t handler) {
ON_NOSYS_RETURN(SIG_ERR);
KP_TRACE("ki_sigset\n");
// Implement sigset(2) in terms of sigaction(2).
struct sigaction action;
struct sigaction oaction;
memset(&action, 0, sizeof(action));
memset(&oaction, 0, sizeof(oaction));
action.sa_handler = handler;
int rtn = s_state.kp->sigaction(signum, &action, &oaction);
if (rtn)
return SIG_ERR;
return oaction.sa_handler;
}
#ifdef PROVIDES_SOCKET_API
// Socket Functions
int ki_accept(int fd, struct sockaddr* addr, socklen_t* len) {
KP_CALL(accept, (fd, addr, len));
}
int ki_bind(int fd, const struct sockaddr* addr, socklen_t len) {
KP_CALL(bind, (fd, addr, len));
}
int ki_connect(int fd, const struct sockaddr* addr, socklen_t len) {
KP_CALL(connect, (fd, addr, len));
}
struct hostent* ki_gethostbyname(const char* name) {
ON_NOSYS_RETURN(NULL);
return s_state.kp->gethostbyname(name);
}
int ki_getnameinfo(const struct sockaddr *sa,
socklen_t salen,
char *host,
size_t hostlen,
char *serv,
size_t servlen,
unsigned int flags) {
ON_NOSYS_RETURN(EAI_SYSTEM);
KP_TRACE("ki_getnameinfo\n");
return s_state.kp->getnameinfo(sa, salen, host, hostlen, serv, servlen,
flags);
}
int ki_getaddrinfo(const char* node,
const char* service,
const struct addrinfo* hints,
struct addrinfo** res) {
ON_NOSYS_RETURN(EAI_SYSTEM);
KP_TRACE("ki_getaddrinfo\n");
return s_state.kp->getaddrinfo(node, service, hints, res);
}
void ki_freeaddrinfo(struct addrinfo* res) {
KP_TRACE("ki_freeaddrinfo\n");
s_state.kp->freeaddrinfo(res);
}
int ki_getpeername(int fd, struct sockaddr* addr, socklen_t* len) {
KP_CALL(getpeername, (fd, addr, len));
}
int ki_getsockname(int fd, struct sockaddr* addr, socklen_t* len) {
KP_CALL(getsockname, (fd, addr, len));
}
int ki_getsockopt(int fd, int lvl, int optname, void* optval, socklen_t* len) {
KP_CALL(getsockopt, (fd, lvl, optname, optval, len));
}
int ki_listen(int fd, int backlog) {
KP_CALL(listen, (fd, backlog));
}
ssize_t ki_recv(int fd, void* buf, size_t len, int flags) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_recv\n");
return s_state.kp->recv(fd, buf, len, flags);
}
ssize_t ki_recvfrom(int fd,
void* buf,
size_t len,
int flags,
struct sockaddr* addr,
socklen_t* addrlen) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_recvfrom\n");
return s_state.kp->recvfrom(fd, buf, len, flags, addr, addrlen);
}
ssize_t ki_recvmsg(int fd, struct msghdr* msg, int flags) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_recvmsg\n");
return s_state.kp->recvmsg(fd, msg, flags);
}
ssize_t ki_send(int fd, const void* buf, size_t len, int flags) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_send\n");
return s_state.kp->send(fd, buf, len, flags);
}
ssize_t ki_sendto(int fd,
const void* buf,
size_t len,
int flags,
const struct sockaddr* addr,
socklen_t addrlen) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_sendto\n");
return s_state.kp->sendto(fd, buf, len, flags, addr, addrlen);
}
ssize_t ki_sendmsg(int fd, const struct msghdr* msg, int flags) {
ON_NOSYS_RETURN(-1);
KP_TRACE("ki_sendmsg\n");
return s_state.kp->sendmsg(fd, msg, flags);
}
int ki_setsockopt(int fd,
int lvl,
int optname,
const void* optval,
socklen_t len) {
KP_CALL(setsockopt, (fd, lvl, optname, optval, len));
}
int ki_shutdown(int fd, int how) {
KP_CALL(shutdown, (fd, how));
}
int ki_socket(int domain, int type, int protocol) {
KP_CALL(socket, (domain, type, protocol));
}
int ki_socketpair(int domain, int type, int protocol, int* sv) {
KP_CALL(socketpair, (domain, type, protocol, sv));
}
#endif // PROVIDES_SOCKET_API