blob: ca4328939ef49c6e0426541beb2eb8ec69620abd [file] [log] [blame]
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file/namespace contains utility functions for enumerating, ending and
// computing statistics of processes.
#ifndef BASE_PROCESS_UTIL_H_
#define BASE_PROCESS_UTIL_H_
#pragma once
#include "base/basictypes.h"
#if defined(OS_WIN)
#include <windows.h>
#include <tlhelp32.h>
#elif defined(OS_MACOSX)
// kinfo_proc is defined in <sys/sysctl.h>, but this forward declaration
// is sufficient for the vector<kinfo_proc> below.
struct kinfo_proc;
// malloc_zone_t is defined in <malloc/malloc.h>, but this forward declaration
// is sufficient for GetPurgeableZone() below.
typedef struct _malloc_zone_t malloc_zone_t;
#include <mach/mach.h>
#elif defined(OS_POSIX)
#include <dirent.h>
#include <limits.h>
#include <sys/types.h>
#endif
#include <list>
#include <string>
#include <utility>
#include <vector>
#include "base/file_descriptor_shuffle.h"
#include "base/process.h"
class CommandLine;
class FilePath;
namespace base {
#if defined(OS_WIN)
struct ProcessEntry : public PROCESSENTRY32 {
ProcessId pid() const { return th32ProcessID; }
ProcessId parent_pid() const { return th32ParentProcessID; }
const wchar_t* exe_file() const { return szExeFile; }
};
struct IoCounters : public IO_COUNTERS {
};
// Process access masks. These constants provide platform-independent
// definitions for the standard Windows access masks.
// See http://msdn.microsoft.com/en-us/library/ms684880(VS.85).aspx for
// the specific semantics of each mask value.
const uint32 kProcessAccessTerminate = PROCESS_TERMINATE;
const uint32 kProcessAccessCreateThread = PROCESS_CREATE_THREAD;
const uint32 kProcessAccessSetSessionId = PROCESS_SET_SESSIONID;
const uint32 kProcessAccessVMOperation = PROCESS_VM_OPERATION;
const uint32 kProcessAccessVMRead = PROCESS_VM_READ;
const uint32 kProcessAccessVMWrite = PROCESS_VM_WRITE;
const uint32 kProcessAccessDuplicateHandle = PROCESS_DUP_HANDLE;
const uint32 kProcessAccessCreateProcess = PROCESS_CREATE_PROCESS;
const uint32 kProcessAccessSetQuota = PROCESS_SET_QUOTA;
const uint32 kProcessAccessSetInformation = PROCESS_SET_INFORMATION;
const uint32 kProcessAccessQueryInformation = PROCESS_QUERY_INFORMATION;
const uint32 kProcessAccessSuspendResume = PROCESS_SUSPEND_RESUME;
const uint32 kProcessAccessQueryLimitedInfomation =
PROCESS_QUERY_LIMITED_INFORMATION;
const uint32 kProcessAccessWaitForTermination = SYNCHRONIZE;
#elif defined(OS_POSIX)
struct ProcessEntry {
ProcessEntry();
~ProcessEntry();
ProcessId pid_;
ProcessId ppid_;
ProcessId gid_;
std::string exe_file_;
std::vector<std::string> cmd_line_args_;
ProcessId pid() const { return pid_; }
ProcessId parent_pid() const { return ppid_; }
ProcessId gid() const { return gid_; }
const char* exe_file() const { return exe_file_.c_str(); }
const std::vector<std::string>& cmd_line_args() const {
return cmd_line_args_;
}
};
struct IoCounters {
uint64_t ReadOperationCount;
uint64_t WriteOperationCount;
uint64_t OtherOperationCount;
uint64_t ReadTransferCount;
uint64_t WriteTransferCount;
uint64_t OtherTransferCount;
};
// Process access masks. They are not used on Posix because access checking
// does not happen during handle creation.
const uint32 kProcessAccessTerminate = 0;
const uint32 kProcessAccessCreateThread = 0;
const uint32 kProcessAccessSetSessionId = 0;
const uint32 kProcessAccessVMOperation = 0;
const uint32 kProcessAccessVMRead = 0;
const uint32 kProcessAccessVMWrite = 0;
const uint32 kProcessAccessDuplicateHandle = 0;
const uint32 kProcessAccessCreateProcess = 0;
const uint32 kProcessAccessSetQuota = 0;
const uint32 kProcessAccessSetInformation = 0;
const uint32 kProcessAccessQueryInformation = 0;
const uint32 kProcessAccessSuspendResume = 0;
const uint32 kProcessAccessQueryLimitedInfomation = 0;
const uint32 kProcessAccessWaitForTermination = 0;
#endif // defined(OS_POSIX)
// A minimalistic but hopefully cross-platform set of exit codes.
// Do not change the enumeration values or you will break third-party
// installers.
enum {
PROCESS_END_NORMAL_TERMINATION = 0,
PROCESS_END_KILLED_BY_USER = 1,
PROCESS_END_PROCESS_WAS_HUNG = 2
};
// Returns the id of the current process.
ProcessId GetCurrentProcId();
// Returns the ProcessHandle of the current process.
ProcessHandle GetCurrentProcessHandle();
// Converts a PID to a process handle. This handle must be closed by
// CloseProcessHandle when you are done with it. Returns true on success.
bool OpenProcessHandle(ProcessId pid, ProcessHandle* handle);
// Converts a PID to a process handle. On Windows the handle is opened
// with more access rights and must only be used by trusted code.
// You have to close returned handle using CloseProcessHandle. Returns true
// on success.
// TODO(sanjeevr): Replace all calls to OpenPrivilegedProcessHandle with the
// more specific OpenProcessHandleWithAccess method and delete this.
bool OpenPrivilegedProcessHandle(ProcessId pid, ProcessHandle* handle);
// Converts a PID to a process handle using the desired access flags. Use a
// combination of the kProcessAccess* flags defined above for |access_flags|.
bool OpenProcessHandleWithAccess(ProcessId pid,
uint32 access_flags,
ProcessHandle* handle);
// Closes the process handle opened by OpenProcessHandle.
void CloseProcessHandle(ProcessHandle process);
// Returns the unique ID for the specified process. This is functionally the
// same as Windows' GetProcessId(), but works on versions of Windows before
// Win XP SP1 as well.
ProcessId GetProcId(ProcessHandle process);
#if defined(OS_LINUX)
// Returns the ID for the parent of the given process.
ProcessId GetParentProcessId(ProcessHandle process);
// Returns the path to the executable of the given process.
FilePath GetProcessExecutablePath(ProcessHandle process);
// Parse the data found in /proc/<pid>/stat and return the sum of the
// CPU-related ticks. Returns -1 on parse error.
// Exposed for testing.
int ParseProcStatCPU(const std::string& input);
static const char kAdjustOOMScoreSwitch[] = "--adjust-oom-score";
// This adjusts /proc/process/oom_adj so the Linux OOM killer will prefer
// certain process types over others. The range for the adjustment is
// [-17,15], with [0,15] being user accessible.
bool AdjustOOMScore(ProcessId process, int score);
#endif
#if defined(OS_POSIX)
// Close all file descriptors, expect those which are a destination in the
// given multimap. Only call this function in a child process where you know
// that there aren't any other threads.
void CloseSuperfluousFds(const InjectiveMultimap& saved_map);
#endif
#if defined(OS_WIN)
enum IntegrityLevel {
INTEGRITY_UNKNOWN,
LOW_INTEGRITY,
MEDIUM_INTEGRITY,
HIGH_INTEGRITY,
};
// Determine the integrity level of the specified process. Returns false
// if the system does not support integrity levels (pre-Vista) or in the case
// of an underlying system failure.
bool GetProcessIntegrityLevel(ProcessHandle process, IntegrityLevel *level);
// Runs the given application name with the given command line. Normally, the
// first command line argument should be the path to the process, and don't
// forget to quote it.
//
// If wait is true, it will block and wait for the other process to finish,
// otherwise, it will just continue asynchronously.
//
// Example (including literal quotes)
// cmdline = "c:\windows\explorer.exe" -foo "c:\bar\"
//
// If process_handle is non-NULL, the process handle of the launched app will be
// stored there on a successful launch.
// NOTE: In this case, the caller is responsible for closing the handle so
// that it doesn't leak!
bool LaunchApp(const std::wstring& cmdline,
bool wait, bool start_hidden, ProcessHandle* process_handle);
// Same as LaunchApp, except allows the new process to inherit handles of the
// parent process.
bool LaunchAppWithHandleInheritance(const std::wstring& cmdline,
bool wait,
bool start_hidden,
ProcessHandle* process_handle);
// Runs the given application name with the given command line as if the user
// represented by |token| had launched it. The caveats about |cmdline| and
// |process_handle| explained for LaunchApp above apply as well.
//
// Whether the application is visible on the interactive desktop depends on
// the token belonging to an interactive logon session.
//
// To avoid hard to diagnose problems, this function internally loads the
// environment variables associated with the user and if this operation fails
// the entire call fails as well.
bool LaunchAppAsUser(UserTokenHandle token, const std::wstring& cmdline,
bool start_hidden, ProcessHandle* process_handle);
// Has the same behavior as LaunchAppAsUser, but offers the boolean option to
// use an empty string for the desktop name and a boolean for allowing the
// child process to inherit handles from its parent.
bool LaunchAppAsUser(UserTokenHandle token, const std::wstring& cmdline,
bool start_hidden, ProcessHandle* process_handle,
bool empty_desktop_name, bool inherit_handles);
#elif defined(OS_POSIX)
// Runs the application specified in argv[0] with the command line argv.
// Before launching all FDs open in the parent process will be marked as
// close-on-exec. |fds_to_remap| defines a mapping of src fd->dest fd to
// propagate FDs into the child process.
//
// As above, if wait is true, execute synchronously. The pid will be stored
// in process_handle if that pointer is non-null.
//
// Note that the first argument in argv must point to the executable filename.
// If the filename is not fully specified, PATH will be searched.
typedef std::vector<std::pair<int, int> > file_handle_mapping_vector;
bool LaunchApp(const std::vector<std::string>& argv,
const file_handle_mapping_vector& fds_to_remap,
bool wait, ProcessHandle* process_handle);
// Similar to the above, but also (un)set environment variables in child process
// through |environ|.
typedef std::vector<std::pair<std::string, std::string> > environment_vector;
bool LaunchApp(const std::vector<std::string>& argv,
const environment_vector& environ,
const file_handle_mapping_vector& fds_to_remap,
bool wait, ProcessHandle* process_handle);
// Similar to the above two methods, but starts the child process in a process
// group of its own, instead of allowing it to inherit the parent's process
// group. The pgid of the child process will be the same as its pid.
bool LaunchAppInNewProcessGroup(const std::vector<std::string>& argv,
const environment_vector& environ,
const file_handle_mapping_vector& fds_to_remap,
bool wait, ProcessHandle* process_handle);
// AlterEnvironment returns a modified environment vector, constructed from the
// given environment and the list of changes given in |changes|. Each key in
// the environment is matched against the first element of the pairs. In the
// event of a match, the value is replaced by the second of the pair, unless
// the second is empty, in which case the key-value is removed.
//
// The returned array is allocated using new[] and must be freed by the caller.
char** AlterEnvironment(const environment_vector& changes,
const char* const* const env);
#endif // defined(OS_POSIX)
// Executes the application specified by cl. This function delegates to one
// of the above two platform-specific functions.
bool LaunchApp(const CommandLine& cl,
bool wait, bool start_hidden, ProcessHandle* process_handle);
// Executes the application specified by |cl| and wait for it to exit. Stores
// the output (stdout) in |output|. Redirects stderr to /dev/null. Returns true
// on success (application launched and exited cleanly, with exit code
// indicating success).
bool GetAppOutput(const CommandLine& cl, std::string* output);
#if defined(OS_POSIX)
// A restricted version of |GetAppOutput()| which (a) clears the environment,
// and (b) stores at most |max_output| bytes; also, it doesn't search the path
// for the command.
bool GetAppOutputRestricted(const CommandLine& cl,
std::string* output, size_t max_output);
#endif
// Used to filter processes by process ID.
class ProcessFilter {
public:
// Returns true to indicate set-inclusion and false otherwise. This method
// should not have side-effects and should be idempotent.
virtual bool Includes(const ProcessEntry& entry) const = 0;
protected:
virtual ~ProcessFilter() {}
};
// Returns the number of processes on the machine that are running from the
// given executable name. If filter is non-null, then only processes selected
// by the filter will be counted.
int GetProcessCount(const std::wstring& executable_name,
const ProcessFilter* filter);
// Attempts to kill all the processes on the current machine that were launched
// from the given executable name, ending them with the given exit code. If
// filter is non-null, then only processes selected by the filter are killed.
// Returns true if all processes were able to be killed off, false if at least
// one couldn't be killed.
bool KillProcesses(const std::wstring& executable_name, int exit_code,
const ProcessFilter* filter);
// Attempts to kill the process identified by the given process
// entry structure, giving it the specified exit code. If |wait| is true, wait
// for the process to be actually terminated before returning.
// Returns true if this is successful, false otherwise.
bool KillProcess(ProcessHandle process, int exit_code, bool wait);
#if defined(OS_POSIX)
// Attempts to kill the process group identified by |process_group_id|. Returns
// true on success.
bool KillProcessGroup(ProcessHandle process_group_id);
#endif
#if defined(OS_WIN)
bool KillProcessById(ProcessId process_id, int exit_code, bool wait);
#endif
// Get the termination status (exit code) of the process and return true if the
// status indicates the process crashed. |child_exited| is set to true iff the
// child process has terminated. (|child_exited| may be NULL.)
bool DidProcessCrash(bool* child_exited, ProcessHandle handle);
// Waits for process to exit. In POSIX systems, if the process hasn't been
// signaled then puts the exit code in |exit_code|; otherwise it's considered
// a failure. On Windows |exit_code| is always filled. Returns true on success,
// and closes |handle| in any case.
bool WaitForExitCode(ProcessHandle handle, int* exit_code);
// Waits for process to exit. If it did exit within |timeout_milliseconds|,
// then puts the exit code in |exit_code|, closes |handle|, and returns true.
// In POSIX systems, if the process has been signaled then |exit_code| is set
// to -1. Returns false on failure (the caller is then responsible for closing
// |handle|).
bool WaitForExitCodeWithTimeout(ProcessHandle handle, int* exit_code,
int64 timeout_milliseconds);
// Wait for all the processes based on the named executable to exit. If filter
// is non-null, then only processes selected by the filter are waited on.
// Returns after all processes have exited or wait_milliseconds have expired.
// Returns true if all the processes exited, false otherwise.
bool WaitForProcessesToExit(const std::wstring& executable_name,
int64 wait_milliseconds,
const ProcessFilter* filter);
// Wait for a single process to exit. Return true if it exited cleanly within
// the given time limit.
bool WaitForSingleProcess(ProcessHandle handle,
int64 wait_milliseconds);
// Returns true when |wait_milliseconds| have elapsed and the process
// is still running.
bool CrashAwareSleep(ProcessHandle handle, int64 wait_milliseconds);
// Waits a certain amount of time (can be 0) for all the processes with a given
// executable name to exit, then kills off any of them that are still around.
// If filter is non-null, then only processes selected by the filter are waited
// on. Killed processes are ended with the given exit code. Returns false if
// any processes needed to be killed, true if they all exited cleanly within
// the wait_milliseconds delay.
bool CleanupProcesses(const std::wstring& executable_name,
int64 wait_milliseconds,
int exit_code,
const ProcessFilter* filter);
// This class provides a way to iterate through a list of processes on the
// current machine with a specified filter.
// To use, create an instance and then call NextProcessEntry() until it returns
// false.
class ProcessIterator {
public:
typedef std::list<ProcessEntry> ProcessEntries;
explicit ProcessIterator(const ProcessFilter* filter);
virtual ~ProcessIterator();
// If there's another process that matches the given executable name,
// returns a const pointer to the corresponding PROCESSENTRY32.
// If there are no more matching processes, returns NULL.
// The returned pointer will remain valid until NextProcessEntry()
// is called again or this NamedProcessIterator goes out of scope.
const ProcessEntry* NextProcessEntry();
// Takes a snapshot of all the ProcessEntry found.
ProcessEntries Snapshot();
protected:
virtual bool IncludeEntry();
const ProcessEntry& entry() { return entry_; }
private:
// Determines whether there's another process (regardless of executable)
// left in the list of all processes. Returns true and sets entry_ to
// that process's info if there is one, false otherwise.
bool CheckForNextProcess();
// Initializes a PROCESSENTRY32 data structure so that it's ready for
// use with Process32First/Process32Next.
void InitProcessEntry(ProcessEntry* entry);
#if defined(OS_WIN)
HANDLE snapshot_;
bool started_iteration_;
#elif defined(OS_MACOSX)
std::vector<kinfo_proc> kinfo_procs_;
size_t index_of_kinfo_proc_;
#elif defined(OS_POSIX)
DIR *procfs_dir_;
#endif
ProcessEntry entry_;
const ProcessFilter* filter_;
DISALLOW_COPY_AND_ASSIGN(ProcessIterator);
};
// This class provides a way to iterate through the list of processes
// on the current machine that were started from the given executable
// name. To use, create an instance and then call NextProcessEntry()
// until it returns false.
class NamedProcessIterator : public ProcessIterator {
public:
NamedProcessIterator(const std::wstring& executable_name,
const ProcessFilter* filter);
virtual ~NamedProcessIterator();
protected:
virtual bool IncludeEntry();
private:
std::wstring executable_name_;
DISALLOW_COPY_AND_ASSIGN(NamedProcessIterator);
};
// Working Set (resident) memory usage broken down by
//
// On Windows:
// priv (private): These pages (kbytes) cannot be shared with any other process.
// shareable: These pages (kbytes) can be shared with other processes under
// the right circumstances.
// shared : These pages (kbytes) are currently shared with at least one
// other process.
//
// On Linux:
// priv: Pages mapped only by this process
// shared: PSS or 0 if the kernel doesn't support this
// shareable: 0
//
// On OS X: TODO(thakis): Revise.
// priv: Memory.
// shared: 0
// shareable: 0
struct WorkingSetKBytes {
WorkingSetKBytes() : priv(0), shareable(0), shared(0) {}
size_t priv;
size_t shareable;
size_t shared;
};
// Committed (resident + paged) memory usage broken down by
// private: These pages cannot be shared with any other process.
// mapped: These pages are mapped into the view of a section (backed by
// pagefile.sys)
// image: These pages are mapped into the view of an image section (backed by
// file system)
struct CommittedKBytes {
CommittedKBytes() : priv(0), mapped(0), image(0) {}
size_t priv;
size_t mapped;
size_t image;
};
// Free memory (Megabytes marked as free) in the 2G process address space.
// total : total amount in megabytes marked as free. Maximum value is 2048.
// largest : size of the largest contiguous amount of memory found. It is
// always smaller or equal to FreeMBytes::total.
// largest_ptr: starting address of the largest memory block.
struct FreeMBytes {
size_t total;
size_t largest;
void* largest_ptr;
};
// Convert a POSIX timeval to microseconds.
int64 TimeValToMicroseconds(const struct timeval& tv);
// Provides performance metrics for a specified process (CPU usage, memory and
// IO counters). To use it, invoke CreateProcessMetrics() to get an instance
// for a specific process, then access the information with the different get
// methods.
class ProcessMetrics {
public:
// Creates a ProcessMetrics for the specified process.
// The caller owns the returned object.
#if !defined(OS_MACOSX)
static ProcessMetrics* CreateProcessMetrics(ProcessHandle process);
#else
class PortProvider {
public:
// Should return the mach task for |process| if possible, or else
// |MACH_PORT_NULL|. Only processes that this returns tasks for will have
// metrics on OS X (except for the current process, which always gets
// metrics).
virtual mach_port_t TaskForPid(ProcessHandle process) const = 0;
};
// The port provider needs to outlive the ProcessMetrics object returned by
// this function. If NULL is passed as provider, the returned object
// only returns valid metrics if |process| is the current process.
static ProcessMetrics* CreateProcessMetrics(ProcessHandle process,
PortProvider* port_provider);
#endif // !defined(OS_MACOSX)
~ProcessMetrics();
// Returns the current space allocated for the pagefile, in bytes (these pages
// may or may not be in memory). On Linux, this returns the total virtual
// memory size.
size_t GetPagefileUsage() const;
// Returns the peak space allocated for the pagefile, in bytes.
size_t GetPeakPagefileUsage() const;
// Returns the current working set size, in bytes. On Linux, this returns
// the resident set size.
size_t GetWorkingSetSize() const;
// Returns the peak working set size, in bytes.
size_t GetPeakWorkingSetSize() const;
// Returns private and sharedusage, in bytes. Private bytes is the amount of
// memory currently allocated to a process that cannot be shared. Returns
// false on platform specific error conditions. Note: |private_bytes|
// returns 0 on unsupported OSes: prior to XP SP2.
bool GetMemoryBytes(size_t* private_bytes,
size_t* shared_bytes);
// Fills a CommittedKBytes with both resident and paged
// memory usage as per definition of CommittedBytes.
void GetCommittedKBytes(CommittedKBytes* usage) const;
// Fills a WorkingSetKBytes containing resident private and shared memory
// usage in bytes, as per definition of WorkingSetBytes.
bool GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const;
// Computes the current process available memory for allocation.
// It does a linear scan of the address space querying each memory region
// for its free (unallocated) status. It is useful for estimating the memory
// load and fragmentation.
bool CalculateFreeMemory(FreeMBytes* free) const;
// Returns the CPU usage in percent since the last time this method was
// called. The first time this method is called it returns 0 and will return
// the actual CPU info on subsequent calls.
// On Windows, the CPU usage value is for all CPUs. So if you have 2 CPUs and
// your process is using all the cycles of 1 CPU and not the other CPU, this
// method returns 50.
double GetCPUUsage();
// Retrieves accounting information for all I/O operations performed by the
// process.
// If IO information is retrieved successfully, the function returns true
// and fills in the IO_COUNTERS passed in. The function returns false
// otherwise.
bool GetIOCounters(IoCounters* io_counters) const;
private:
#if !defined(OS_MACOSX)
explicit ProcessMetrics(ProcessHandle process);
#else
ProcessMetrics(ProcessHandle process, PortProvider* port_provider);
#endif // !defined(OS_MACOSX)
ProcessHandle process_;
int processor_count_;
// Used to store the previous times and CPU usage counts so we can
// compute the CPU usage between calls.
int64 last_time_;
int64 last_system_time_;
#if defined(OS_MACOSX)
// Queries the port provider if it's set.
mach_port_t TaskForPid(ProcessHandle process) const;
PortProvider* port_provider_;
#elif defined(OS_POSIX)
// Jiffie count at the last_time_ we updated.
int last_cpu_;
#endif // defined(OS_MACOSX)
DISALLOW_COPY_AND_ASSIGN(ProcessMetrics);
};
// Returns the memory commited by the system in KBytes.
// Returns 0 if it can't compute the commit charge.
size_t GetSystemCommitCharge();
// Enables low fragmentation heap (LFH) for every heaps of this process. This
// won't have any effect on heaps created after this function call. It will not
// modify data allocated in the heaps before calling this function. So it is
// better to call this function early in initialization and again before
// entering the main loop.
// Note: Returns true on Windows 2000 without doing anything.
bool EnableLowFragmentationHeap();
// Enables 'terminate on heap corruption' flag. Helps protect against heap
// overflow. Has no effect if the OS doesn't provide the necessary facility.
void EnableTerminationOnHeapCorruption();
#if !defined(OS_WIN)
// Turns on process termination if memory runs out. This is handled on Windows
// inside RegisterInvalidParamHandler().
void EnableTerminationOnOutOfMemory();
#if defined(OS_MACOSX)
// Exposed for testing.
malloc_zone_t* GetPurgeableZone();
#endif
#endif
#if defined(UNIT_TEST)
// Enables stack dump to console output on exception and signals.
// When enabled, the process will quit immediately. This is meant to be used in
// unit_tests only!
bool EnableInProcessStackDumping();
#endif // defined(UNIT_TEST)
// If supported on the platform, and the user has sufficent rights, increase
// the current process's scheduling priority to a high priority.
void RaiseProcessToHighPriority();
#if defined(OS_MACOSX)
// Restore the default exception handler, setting it to Apple Crash Reporter
// (ReportCrash). When forking and execing a new process, the child will
// inherit the parent's exception ports, which may be set to the Breakpad
// instance running inside the parent. The parent's Breakpad instance should
// not handle the child's exceptions. Calling RestoreDefaultExceptionHandler
// in the child after forking will restore the standard exception handler.
// See http://crbug.com/20371/ for more details.
void RestoreDefaultExceptionHandler();
#endif // defined(OS_MACOSX)
} // namespace base
#endif // BASE_PROCESS_UTIL_H_