blob: 23e040d02df8f0906029d0b7c8558c1334b34c53 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/variations/entropy_provider.h"
#include <algorithm>
#include <limits>
#include <vector>
#include "base/hash/sha1.h"
#include "base/logging.h"
#include "base/rand_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/sys_byteorder.h"
#include "components/variations/hashing.h"
#include "components/variations/variations_murmur_hash.h"
namespace variations {
SHA1EntropyProvider::SHA1EntropyProvider(const std::string& entropy_source)
: entropy_source_(entropy_source) {
}
SHA1EntropyProvider::~SHA1EntropyProvider() {
}
double SHA1EntropyProvider::GetEntropyForTrial(
const std::string& trial_name,
uint32_t randomization_seed) const {
// Given enough input entropy, SHA-1 will produce a uniformly random spread
// in its output space. In this case, the input entropy that is used is the
// combination of the original |entropy_source_| and the |trial_name|.
//
// Note: If |entropy_source_| has very low entropy, such as 13 bits or less,
// it has been observed that this method does not result in a uniform
// distribution given the same |trial_name|. When using such a low entropy
// source, NormalizedMurmurHashEntropyProvider should be used instead.
std::string input(entropy_source_);
input.append(randomization_seed == 0
? trial_name
: base::NumberToString(randomization_seed));
unsigned char sha1_hash[base::kSHA1Length];
base::SHA1HashBytes(reinterpret_cast<const unsigned char*>(input.c_str()),
input.size(),
sha1_hash);
uint64_t bits;
static_assert(sizeof(bits) < sizeof(sha1_hash), "more data required");
memcpy(&bits, sha1_hash, sizeof(bits));
bits = base::ByteSwapToLE64(bits);
return base::BitsToOpenEndedUnitInterval(bits);
}
NormalizedMurmurHashEntropyProvider::NormalizedMurmurHashEntropyProvider(
uint16_t low_entropy_source,
size_t low_entropy_source_max)
: low_entropy_source_(low_entropy_source),
low_entropy_source_max_(low_entropy_source_max) {
DCHECK_LT(low_entropy_source, low_entropy_source_max);
DCHECK_LE(low_entropy_source_max, std::numeric_limits<uint16_t>::max());
}
NormalizedMurmurHashEntropyProvider::~NormalizedMurmurHashEntropyProvider() {}
double NormalizedMurmurHashEntropyProvider::GetEntropyForTrial(
const std::string& trial_name,
uint32_t randomization_seed) const {
if (randomization_seed == 0) {
randomization_seed = internal::VariationsMurmurHash::Hash(
internal::VariationsMurmurHash::StringToLE32(trial_name),
trial_name.length());
}
uint32_t x = internal::VariationsMurmurHash::Hash16(randomization_seed,
low_entropy_source_);
int x_ordinal = 0;
for (uint32_t i = 0; i < low_entropy_source_max_; i++) {
uint32_t y = internal::VariationsMurmurHash::Hash16(randomization_seed, i);
x_ordinal += (y < x);
}
DCHECK_GE(x_ordinal, 0);
// There must have been at least one iteration where |x| == |y|, because
// |i| == |low_entropy_source_|, and |x_ordinal| was not incremented in that
// iteration, so |x_ordinal| < |low_entropy_source_max_|.
DCHECK_LT(static_cast<size_t>(x_ordinal), low_entropy_source_max_);
return static_cast<double>(x_ordinal) / low_entropy_source_max_;
}
} // namespace variations