blob: e4e5f54ee2ff571a2abfa4b3227839e8d3365e7c [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2008 David Levin <levin@chromium.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_HashTable_h
#define WTF_HashTable_h
#include "wtf/Alignment.h"
#include "wtf/Allocator.h"
#include "wtf/Assertions.h"
#include "wtf/ConditionalDestructor.h"
#include "wtf/HashTraits.h"
#include "wtf/PtrUtil.h"
#include "wtf/allocator/PartitionAllocator.h"
#include <memory>
#define DUMP_HASHTABLE_STATS 0
#define DUMP_HASHTABLE_STATS_PER_TABLE 0
#if DUMP_HASHTABLE_STATS
#include "wtf/Atomics.h"
#include "wtf/Threading.h"
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
#include "wtf/DataLog.h"
#endif
#if DUMP_HASHTABLE_STATS
#if DUMP_HASHTABLE_STATS_PER_TABLE
#define UPDATE_PROBE_COUNTS() \
++probeCount; \
HashTableStats::recordCollisionAtCount(probeCount); \
++perTableProbeCount; \
m_stats->recordCollisionAtCount(perTableProbeCount)
#define UPDATE_ACCESS_COUNTS() \
atomicIncrement(&HashTableStats::numAccesses); \
int probeCount = 0; \
++m_stats->numAccesses; \
int perTableProbeCount = 0
#else
#define UPDATE_PROBE_COUNTS() \
++probeCount; \
HashTableStats::recordCollisionAtCount(probeCount)
#define UPDATE_ACCESS_COUNTS() \
atomicIncrement(&HashTableStats::numAccesses); \
int probeCount = 0
#endif
#else
#if DUMP_HASHTABLE_STATS_PER_TABLE
#define UPDATE_PROBE_COUNTS() \
++perTableProbeCount; \
m_stats->recordCollisionAtCount(perTableProbeCount)
#define UPDATE_ACCESS_COUNTS() \
++m_stats->numAccesses; \
int perTableProbeCount = 0
#else
#define UPDATE_PROBE_COUNTS() do { } while (0)
#define UPDATE_ACCESS_COUNTS() do { } while (0)
#endif
#endif
namespace WTF {
#if DUMP_HASHTABLE_STATS
struct WTF_EXPORT HashTableStats {
STATIC_ONLY(HashTableStats);
// The following variables are all atomically incremented when modified.
static int numAccesses;
static int numRehashes;
static int numRemoves;
static int numReinserts;
// The following variables are only modified in the recordCollisionAtCount
// method within a mutex.
static int maxCollisions;
static int numCollisions;
static int collisionGraph[4096];
static void recordCollisionAtCount(int count);
static void dumpStats();
};
#endif
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTable;
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableIterator;
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableConstIterator;
template <typename Value, typename HashFunctions, typename HashTraits, typename Allocator>
class LinkedHashSet;
template <WeakHandlingFlag x, typename T, typename U, typename V, typename W, typename X, typename Y, typename Z>
struct WeakProcessingHashTableHelper;
typedef enum { HashItemKnownGood } HashItemKnownGoodTag;
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableConstIterator final {
DISALLOW_NEW();
private:
typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> HashTableType;
typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> iterator;
typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> const_iterator;
typedef Value ValueType;
typedef typename Traits::IteratorConstGetType GetType;
typedef const ValueType* PointerType;
friend class HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>;
friend class HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>;
void skipEmptyBuckets()
{
while (m_position != m_endPosition && HashTableType::isEmptyOrDeletedBucket(*m_position))
++m_position;
}
HashTableConstIterator(PointerType position, PointerType endPosition, const HashTableType* container)
: m_position(position)
, m_endPosition(endPosition)
#if ENABLE(ASSERT)
, m_container(container)
, m_containerModifications(container->modifications())
#endif
{
skipEmptyBuckets();
}
HashTableConstIterator(PointerType position, PointerType endPosition, const HashTableType* container, HashItemKnownGoodTag)
: m_position(position)
, m_endPosition(endPosition)
#if ENABLE(ASSERT)
, m_container(container)
, m_containerModifications(container->modifications())
#endif
{
ASSERT(m_containerModifications == m_container->modifications());
}
void checkModifications() const
{
// HashTable and collections that build on it do not support
// modifications while there is an iterator in use. The exception is
// ListHashSet, which has its own iterators that tolerate modification
// of the underlying set.
ASSERT(m_containerModifications == m_container->modifications());
ASSERT(!m_container->accessForbidden());
}
public:
HashTableConstIterator() {}
GetType get() const
{
checkModifications();
return m_position;
}
typename Traits::IteratorConstReferenceType operator*() const { return Traits::getToReferenceConstConversion(get()); }
GetType operator->() const { return get(); }
const_iterator& operator++()
{
ASSERT(m_position != m_endPosition);
checkModifications();
++m_position;
skipEmptyBuckets();
return *this;
}
// postfix ++ intentionally omitted
// Comparison.
bool operator==(const const_iterator& other) const
{
return m_position == other.m_position;
}
bool operator!=(const const_iterator& other) const
{
return m_position != other.m_position;
}
bool operator==(const iterator& other) const
{
return *this == static_cast<const_iterator>(other);
}
bool operator!=(const iterator& other) const
{
return *this != static_cast<const_iterator>(other);
}
std::ostream& printTo(std::ostream& stream) const
{
if (m_position == m_endPosition)
return stream << "iterator representing <end>";
// TODO(tkent): Change |m_position| to |*m_position| to show the
// pointed object. It requires a lot of new stream printer functions.
return stream << "iterator pointing to " << m_position;
}
private:
PointerType m_position;
PointerType m_endPosition;
#if ENABLE(ASSERT)
const HashTableType* m_container;
int64_t m_containerModifications;
#endif
};
template <typename Key, typename Value, typename Extractor, typename Hash, typename Traits, typename KeyTraits, typename Allocator>
std::ostream& operator<<(std::ostream& stream, const HashTableConstIterator<Key, Value, Extractor, Hash, Traits, KeyTraits, Allocator>& iterator)
{
return iterator.printTo(stream);
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTableIterator final {
DISALLOW_NEW();
private:
typedef HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> HashTableType;
typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> iterator;
typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> const_iterator;
typedef Value ValueType;
typedef typename Traits::IteratorGetType GetType;
typedef ValueType* PointerType;
friend class HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>;
HashTableIterator(PointerType pos, PointerType end, const HashTableType* container) : m_iterator(pos, end, container) {}
HashTableIterator(PointerType pos, PointerType end, const HashTableType* container, HashItemKnownGoodTag tag) : m_iterator(pos, end, container, tag) {}
public:
HashTableIterator() {}
// default copy, assignment and destructor are OK
GetType get() const { return const_cast<GetType>(m_iterator.get()); }
typename Traits::IteratorReferenceType operator*() const { return Traits::getToReferenceConversion(get()); }
GetType operator->() const { return get(); }
iterator& operator++() { ++m_iterator; return *this; }
// postfix ++ intentionally omitted
// Comparison.
bool operator==(const iterator& other) const { return m_iterator == other.m_iterator; }
bool operator!=(const iterator& other) const { return m_iterator != other.m_iterator; }
bool operator==(const const_iterator& other) const { return m_iterator == other; }
bool operator!=(const const_iterator& other) const { return m_iterator != other; }
operator const_iterator() const { return m_iterator; }
std::ostream& printTo(std::ostream& stream) const { return m_iterator.printTo(stream); }
private:
const_iterator m_iterator;
};
template <typename Key, typename Value, typename Extractor, typename Hash, typename Traits, typename KeyTraits, typename Allocator>
std::ostream& operator<<(std::ostream& stream, const HashTableIterator<Key, Value, Extractor, Hash, Traits, KeyTraits, Allocator>& iterator)
{
return iterator.printTo(stream);
}
using std::swap;
template <typename T, typename Allocator, bool enterGCForbiddenScope> struct Mover {
STATIC_ONLY(Mover);
static void move(T&& from, T& to)
{
to.~T();
new (NotNull, &to) T(std::move(from));
}
};
template <typename T, typename Allocator> struct Mover<T, Allocator, true> {
STATIC_ONLY(Mover);
static void move(T&& from, T& to)
{
to.~T();
Allocator::enterGCForbiddenScope();
new (NotNull, &to) T(std::move(from));
Allocator::leaveGCForbiddenScope();
}
};
template <typename HashFunctions> class IdentityHashTranslator {
STATIC_ONLY(IdentityHashTranslator);
public:
template <typename T> static unsigned hash(const T& key) { return HashFunctions::hash(key); }
template <typename T, typename U> static bool equal(const T& a, const U& b) { return HashFunctions::equal(a, b); }
template <typename T, typename U, typename V> static void translate(T& location, U&&, V&& value) { location = std::forward<V>(value); }
};
template <typename HashTableType, typename ValueType> struct HashTableAddResult final {
STACK_ALLOCATED();
HashTableAddResult(const HashTableType* container, ValueType* storedValue, bool isNewEntry)
: storedValue(storedValue)
, isNewEntry(isNewEntry)
#if ENABLE(SECURITY_ASSERT)
, m_container(container)
, m_containerModifications(container->modifications())
#endif
{
ALLOW_UNUSED_LOCAL(container);
DCHECK(container);
}
ValueType* storedValue;
bool isNewEntry;
#if ENABLE(SECURITY_ASSERT)
~HashTableAddResult()
{
// If rehash happened before accessing storedValue, it's
// use-after-free. Any modification may cause a rehash, so we check for
// modifications here.
// Rehash after accessing storedValue is harmless but will assert if the
// AddResult destructor takes place after a modification. You may need
// to limit the scope of the AddResult.
ASSERT_WITH_SECURITY_IMPLICATION(m_containerModifications == m_container->modifications());
}
private:
const HashTableType* m_container;
const int64_t m_containerModifications;
#endif
};
template <typename Value, typename Extractor, typename KeyTraits>
struct HashTableHelper {
STATIC_ONLY(HashTableHelper);
static bool isEmptyBucket(const Value& value) { return isHashTraitsEmptyValue<KeyTraits>(Extractor::extract(value)); }
static bool isDeletedBucket(const Value& value) { return KeyTraits::isDeletedValue(Extractor::extract(value)); }
static bool isEmptyOrDeletedBucket(const Value& value) { return isEmptyBucket(value) || isDeletedBucket(value); }
};
template <typename HashTranslator, typename KeyTraits, bool safeToCompareToEmptyOrDeleted>
struct HashTableKeyChecker {
STATIC_ONLY(HashTableKeyChecker);
// There's no simple generic way to make this check if
// safeToCompareToEmptyOrDeleted is false, so the check always passes.
template <typename T>
static bool checkKey(const T&) { return true; }
};
template <typename HashTranslator, typename KeyTraits>
struct HashTableKeyChecker<HashTranslator, KeyTraits, true> {
STATIC_ONLY(HashTableKeyChecker);
template <typename T>
static bool checkKey(const T& key)
{
// FIXME : Check also equality to the deleted value.
return !HashTranslator::equal(KeyTraits::emptyValue(), key);
}
};
// Note: empty or deleted key values are not allowed, using them may lead to
// undefined behavior. For pointer keys this means that null pointers are not
// allowed unless you supply custom key traits.
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
class HashTable final : public ConditionalDestructor<HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>, Allocator::isGarbageCollected> {
DISALLOW_NEW();
public:
typedef HashTableIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> iterator;
typedef HashTableConstIterator<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> const_iterator;
typedef Traits ValueTraits;
typedef Key KeyType;
typedef typename KeyTraits::PeekInType KeyPeekInType;
typedef Value ValueType;
typedef Extractor ExtractorType;
typedef KeyTraits KeyTraitsType;
typedef IdentityHashTranslator<HashFunctions> IdentityTranslatorType;
typedef HashTableAddResult<HashTable, ValueType> AddResult;
#if DUMP_HASHTABLE_STATS_PER_TABLE
struct Stats {
DISALLOW_NEW(Stats);
Stats()
: numAccesses(0)
, numRehashes(0)
, numRemoves(0)
, numReinserts(0)
, maxCollisions(0)
, numCollisions(0)
, collisionGraph()
{
}
int numAccesses;
int numRehashes;
int numRemoves;
int numReinserts;
int maxCollisions;
int numCollisions;
int collisionGraph[4096];
void recordCollisionAtCount(int count)
{
if (count > maxCollisions)
maxCollisions = count;
numCollisions++;
collisionGraph[count]++;
}
void dumpStats()
{
dataLogF("\nWTF::HashTable::Stats dump\n\n");
dataLogF("%d accesses\n", numAccesses);
dataLogF("%d total collisions, average %.2f probes per access\n", numCollisions, 1.0 * (numAccesses + numCollisions) / numAccesses);
dataLogF("longest collision chain: %d\n", maxCollisions);
for (int i = 1; i <= maxCollisions; i++) {
dataLogF(" %d lookups with exactly %d collisions (%.2f%% , %.2f%% with this many or more)\n", collisionGraph[i], i, 100.0 * (collisionGraph[i] - collisionGraph[i+1]) / numAccesses, 100.0 * collisionGraph[i] / numAccesses);
}
dataLogF("%d rehashes\n", numRehashes);
dataLogF("%d reinserts\n", numReinserts);
}
};
#endif
HashTable();
void finalize()
{
ASSERT(!Allocator::isGarbageCollected);
if (LIKELY(!m_table))
return;
ASSERT(!m_accessForbidden);
#if ENABLE(ASSERT)
m_accessForbidden = true;
#endif
deleteAllBucketsAndDeallocate(m_table, m_tableSize);
#if ENABLE(ASSERT)
m_accessForbidden = false;
#endif
m_table = nullptr;
}
HashTable(const HashTable&);
HashTable(HashTable&&);
void swap(HashTable&);
HashTable& operator=(const HashTable&);
HashTable& operator=(HashTable&&);
// When the hash table is empty, just return the same iterator for end as
// for begin. This is more efficient because we don't have to skip all the
// empty and deleted buckets, and iterating an empty table is a common case
// that's worth optimizing.
iterator begin() { return isEmpty() ? end() : makeIterator(m_table); }
iterator end() { return makeKnownGoodIterator(m_table + m_tableSize); }
const_iterator begin() const { return isEmpty() ? end() : makeConstIterator(m_table); }
const_iterator end() const { return makeKnownGoodConstIterator(m_table + m_tableSize); }
unsigned size() const
{
ASSERT(!m_accessForbidden);
return m_keyCount;
}
unsigned capacity() const
{
ASSERT(!m_accessForbidden);
return m_tableSize;
}
bool isEmpty() const
{
ASSERT(!m_accessForbidden);
return !m_keyCount;
}
void reserveCapacityForSize(unsigned size);
template <typename IncomingValueType>
AddResult add(IncomingValueType&& value)
{
return add<IdentityTranslatorType>(Extractor::extract(value), std::forward<IncomingValueType>(value));
}
// A special version of add() that finds the object by hashing and comparing
// with some other type, to avoid the cost of type conversion if the object
// is already in the table.
template <typename HashTranslator, typename T, typename Extra> AddResult add(T&& key, Extra&&);
template <typename HashTranslator, typename T, typename Extra> AddResult addPassingHashCode(T&& key, Extra&&);
iterator find(KeyPeekInType key) { return find<IdentityTranslatorType>(key); }
const_iterator find(KeyPeekInType key) const { return find<IdentityTranslatorType>(key); }
bool contains(KeyPeekInType key) const { return contains<IdentityTranslatorType>(key); }
template <typename HashTranslator, typename T> iterator find(const T&);
template <typename HashTranslator, typename T> const_iterator find(const T&) const;
template <typename HashTranslator, typename T> bool contains(const T&) const;
void remove(KeyPeekInType);
void remove(iterator);
void remove(const_iterator);
void clear();
static bool isEmptyBucket(const ValueType& value) { return isHashTraitsEmptyValue<KeyTraits>(Extractor::extract(value)); }
static bool isDeletedBucket(const ValueType& value) { return KeyTraits::isDeletedValue(Extractor::extract(value)); }
static bool isEmptyOrDeletedBucket(const ValueType& value) { return HashTableHelper<ValueType, Extractor, KeyTraits>:: isEmptyOrDeletedBucket(value); }
ValueType* lookup(KeyPeekInType key) { return lookup<IdentityTranslatorType, KeyPeekInType>(key); }
template <typename HashTranslator, typename T> ValueType* lookup(const T&);
template <typename HashTranslator, typename T> const ValueType* lookup(const T&) const;
template <typename VisitorDispatcher> void trace(VisitorDispatcher);
#if ENABLE(ASSERT)
bool accessForbidden() const { return m_accessForbidden; }
int64_t modifications() const { return m_modifications; }
void registerModification() { m_modifications++; }
// HashTable and collections that build on it do not support modifications
// while there is an iterator in use. The exception is ListHashSet, which
// has its own iterators that tolerate modification of the underlying set.
void checkModifications(int64_t mods) const { ASSERT(mods == m_modifications); }
#else
int64_t modifications() const { return 0; }
void registerModification() {}
void checkModifications(int64_t mods) const {}
#endif
private:
static ValueType* allocateTable(unsigned size);
static void deleteAllBucketsAndDeallocate(ValueType* table, unsigned size);
typedef std::pair<ValueType*, bool> LookupType;
typedef std::pair<LookupType, unsigned> FullLookupType;
LookupType lookupForWriting(const Key& key) { return lookupForWriting<IdentityTranslatorType>(key); }
template <typename HashTranslator, typename T> FullLookupType fullLookupForWriting(const T&);
template <typename HashTranslator, typename T> LookupType lookupForWriting(const T&);
void remove(ValueType*);
bool shouldExpand() const { return (m_keyCount + m_deletedCount) * m_maxLoad >= m_tableSize; }
bool mustRehashInPlace() const { return m_keyCount * m_minLoad < m_tableSize * 2; }
bool shouldShrink() const
{
// isAllocationAllowed check should be at the last because it's
// expensive.
return m_keyCount * m_minLoad < m_tableSize
&& m_tableSize > KeyTraits::minimumTableSize
&& Allocator::isAllocationAllowed();
}
ValueType* expand(ValueType* entry = 0);
void shrink() { rehash(m_tableSize / 2, 0); }
ValueType* expandBuffer(unsigned newTableSize, ValueType* entry, bool&);
ValueType* rehashTo(ValueType* newTable, unsigned newTableSize, ValueType* entry);
ValueType* rehash(unsigned newTableSize, ValueType* entry);
ValueType* reinsert(ValueType&&);
static void initializeBucket(ValueType& bucket);
static void deleteBucket(ValueType& bucket)
{
bucket.~ValueType();
Traits::constructDeletedValue(bucket, Allocator::isGarbageCollected);
}
FullLookupType makeLookupResult(ValueType* position, bool found, unsigned hash)
{ return FullLookupType(LookupType(position, found), hash); }
iterator makeIterator(ValueType* pos) { return iterator(pos, m_table + m_tableSize, this); }
const_iterator makeConstIterator(ValueType* pos) const { return const_iterator(pos, m_table + m_tableSize, this); }
iterator makeKnownGoodIterator(ValueType* pos) { return iterator(pos, m_table + m_tableSize, this, HashItemKnownGood); }
const_iterator makeKnownGoodConstIterator(ValueType* pos) const { return const_iterator(pos, m_table + m_tableSize, this, HashItemKnownGood); }
static const unsigned m_maxLoad = 2;
static const unsigned m_minLoad = 6;
unsigned tableSizeMask() const
{
size_t mask = m_tableSize - 1;
ASSERT((mask & m_tableSize) == 0);
return mask;
}
void setEnqueued() { m_queueFlag = true; }
void clearEnqueued() { m_queueFlag = false; }
bool enqueued() { return m_queueFlag; }
ValueType* m_table;
unsigned m_tableSize;
unsigned m_keyCount;
#if ENABLE(ASSERT)
unsigned m_deletedCount:30;
unsigned m_queueFlag:1;
unsigned m_accessForbidden:1;
unsigned m_modifications;
#else
unsigned m_deletedCount:31;
unsigned m_queueFlag:1;
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
public:
mutable std::unique_ptr<Stats> m_stats;
#endif
template <WeakHandlingFlag x, typename T, typename U, typename V, typename W, typename X, typename Y, typename Z> friend struct WeakProcessingHashTableHelper;
template <typename T, typename U, typename V, typename W> friend class LinkedHashSet;
};
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::HashTable()
: m_table(nullptr)
, m_tableSize(0)
, m_keyCount(0)
, m_deletedCount(0)
, m_queueFlag(false)
#if ENABLE(ASSERT)
, m_accessForbidden(false)
, m_modifications(0)
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
, m_stats(wrapUnique(new Stats))
#endif
{
static_assert(Allocator::isGarbageCollected || (!IsPointerToGarbageCollectedType<Key>::value && !IsPointerToGarbageCollectedType<Value>::value), "Cannot put raw pointers to garbage-collected classes into an off-heap collection.");
}
inline unsigned doubleHash(unsigned key)
{
key = ~key + (key >> 23);
key ^= (key << 12);
key ^= (key >> 7);
key ^= (key << 2);
key ^= (key >> 20);
return key;
}
inline unsigned calculateCapacity(unsigned size)
{
for (unsigned mask = size; mask; mask >>= 1)
size |= mask; // 00110101010 -> 00111111111
return (size + 1) * 2; // 00111111111 -> 10000000000
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::reserveCapacityForSize(unsigned newSize)
{
unsigned newCapacity = calculateCapacity(newSize);
if (newCapacity < KeyTraits::minimumTableSize)
newCapacity = KeyTraits::minimumTableSize;
if (newCapacity > capacity()) {
RELEASE_ASSERT(!static_cast<int>(newCapacity >> 31)); // HashTable capacity should not overflow 32bit int.
rehash(newCapacity, 0);
}
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::lookup(const T& key)
{
return const_cast<Value*>(const_cast<const HashTable*>(this)->lookup<HashTranslator>(key));
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline const Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::lookup(const T& key) const
{
ASSERT(!m_accessForbidden);
ASSERT((HashTableKeyChecker<HashTranslator, KeyTraits, HashFunctions::safeToCompareToEmptyOrDeleted>::checkKey(key)));
const ValueType* table = m_table;
if (!table)
return nullptr;
size_t k = 0;
size_t sizeMask = tableSizeMask();
unsigned h = HashTranslator::hash(key);
size_t i = h & sizeMask;
UPDATE_ACCESS_COUNTS();
while (1) {
const ValueType* entry = table + i;
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (HashTranslator::equal(Extractor::extract(*entry), key))
return entry;
if (isEmptyBucket(*entry))
return nullptr;
} else {
if (isEmptyBucket(*entry))
return nullptr;
if (!isDeletedBucket(*entry) && HashTranslator::equal(Extractor::extract(*entry), key))
return entry;
}
UPDATE_PROBE_COUNTS();
if (!k)
k = 1 | doubleHash(h);
i = (i + k) & sizeMask;
}
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::LookupType HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::lookupForWriting(const T& key)
{
ASSERT(!m_accessForbidden);
ASSERT(m_table);
registerModification();
ValueType* table = m_table;
size_t k = 0;
size_t sizeMask = tableSizeMask();
unsigned h = HashTranslator::hash(key);
size_t i = h & sizeMask;
UPDATE_ACCESS_COUNTS();
ValueType* deletedEntry = nullptr;
while (1) {
ValueType* entry = table + i;
if (isEmptyBucket(*entry))
return LookupType(deletedEntry ? deletedEntry : entry, false);
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (HashTranslator::equal(Extractor::extract(*entry), key))
return LookupType(entry, true);
if (isDeletedBucket(*entry))
deletedEntry = entry;
} else {
if (isDeletedBucket(*entry))
deletedEntry = entry;
else if (HashTranslator::equal(Extractor::extract(*entry), key))
return LookupType(entry, true);
}
UPDATE_PROBE_COUNTS();
if (!k)
k = 1 | doubleHash(h);
i = (i + k) & sizeMask;
}
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::FullLookupType HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::fullLookupForWriting(const T& key)
{
ASSERT(!m_accessForbidden);
ASSERT(m_table);
registerModification();
ValueType* table = m_table;
size_t k = 0;
size_t sizeMask = tableSizeMask();
unsigned h = HashTranslator::hash(key);
size_t i = h & sizeMask;
UPDATE_ACCESS_COUNTS();
ValueType* deletedEntry = nullptr;
while (1) {
ValueType* entry = table + i;
if (isEmptyBucket(*entry))
return makeLookupResult(deletedEntry ? deletedEntry : entry, false, h);
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (HashTranslator::equal(Extractor::extract(*entry), key))
return makeLookupResult(entry, true, h);
if (isDeletedBucket(*entry))
deletedEntry = entry;
} else {
if (isDeletedBucket(*entry))
deletedEntry = entry;
else if (HashTranslator::equal(Extractor::extract(*entry), key))
return makeLookupResult(entry, true, h);
}
UPDATE_PROBE_COUNTS();
if (!k)
k = 1 | doubleHash(h);
i = (i + k) & sizeMask;
}
}
template <bool emptyValueIsZero> struct HashTableBucketInitializer;
template <> struct HashTableBucketInitializer<false> {
STATIC_ONLY(HashTableBucketInitializer);
template <typename Traits, typename Value> static void initialize(Value& bucket)
{
new (NotNull, &bucket) Value(Traits::emptyValue());
}
};
template <> struct HashTableBucketInitializer<true> {
STATIC_ONLY(HashTableBucketInitializer);
template <typename Traits, typename Value> static void initialize(Value& bucket)
{
// This initializes the bucket without copying the empty value. That
// makes it possible to use this with types that don't support copying.
// The memset to 0 looks like a slow operation but is optimized by the
// compilers.
memset(&bucket, 0, sizeof(bucket));
}
};
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::initializeBucket(ValueType& bucket)
{
HashTableBucketInitializer<Traits::emptyValueIsZero>::template initialize<Traits>(bucket);
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T, typename Extra>
typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::AddResult HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::add(T&& key, Extra&& extra)
{
ASSERT(!m_accessForbidden);
ASSERT(Allocator::isAllocationAllowed());
if (!m_table)
expand();
ASSERT(m_table);
ValueType* table = m_table;
size_t k = 0;
size_t sizeMask = tableSizeMask();
unsigned h = HashTranslator::hash(key);
size_t i = h & sizeMask;
UPDATE_ACCESS_COUNTS();
ValueType* deletedEntry = nullptr;
ValueType* entry;
while (1) {
entry = table + i;
if (isEmptyBucket(*entry))
break;
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (HashTranslator::equal(Extractor::extract(*entry), key))
return AddResult(this, entry, false);
if (isDeletedBucket(*entry))
deletedEntry = entry;
} else {
if (isDeletedBucket(*entry))
deletedEntry = entry;
else if (HashTranslator::equal(Extractor::extract(*entry), key))
return AddResult(this, entry, false);
}
UPDATE_PROBE_COUNTS();
if (!k)
k = 1 | doubleHash(h);
i = (i + k) & sizeMask;
}
registerModification();
if (deletedEntry) {
// Overwrite any data left over from last use, using placement new or
// memset.
initializeBucket(*deletedEntry);
entry = deletedEntry;
--m_deletedCount;
}
HashTranslator::translate(*entry, std::forward<T>(key), std::forward<Extra>(extra));
ASSERT(!isEmptyOrDeletedBucket(*entry));
++m_keyCount;
if (shouldExpand()) {
entry = expand(entry);
} else if (Traits::weakHandlingFlag == WeakHandlingInCollections && shouldShrink()) {
// When weak hash tables are processed by the garbage collector,
// elements with no other strong references to them will have their
// table entries cleared. But no shrinking of the backing store is
// allowed at that time, as allocations are prohibited during that
// GC phase.
//
// With that weak processing taking care of removals, explicit
// remove()s of elements is rarely done. Which implies that the
// weak hash table will never be checked if it can be shrunk.
//
// To prevent weak hash tables with very low load factors from
// developing, we perform it when adding elements instead.
entry = rehash(m_tableSize / 2, entry);
}
return AddResult(this, entry, true);
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T, typename Extra>
typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::AddResult HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::addPassingHashCode(T&& key, Extra&& extra)
{
ASSERT(!m_accessForbidden);
ASSERT(Allocator::isAllocationAllowed());
if (!m_table)
expand();
FullLookupType lookupResult = fullLookupForWriting<HashTranslator>(key);
ValueType* entry = lookupResult.first.first;
bool found = lookupResult.first.second;
unsigned h = lookupResult.second;
if (found)
return AddResult(this, entry, false);
registerModification();
if (isDeletedBucket(*entry)) {
initializeBucket(*entry);
--m_deletedCount;
}
HashTranslator::translate(*entry, std::forward<T>(key), std::forward<Extra>(extra), h);
ASSERT(!isEmptyOrDeletedBucket(*entry));
++m_keyCount;
if (shouldExpand())
entry = expand(entry);
return AddResult(this, entry, true);
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::reinsert(ValueType&& entry)
{
ASSERT(m_table);
registerModification();
ASSERT(!lookupForWriting(Extractor::extract(entry)).second);
ASSERT(!isDeletedBucket(*(lookupForWriting(Extractor::extract(entry)).first)));
#if DUMP_HASHTABLE_STATS
atomicIncrement(&HashTableStats::numReinserts);
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
++m_stats->numReinserts;
#endif
Value* newEntry = lookupForWriting(Extractor::extract(entry)).first;
Mover<ValueType, Allocator, Traits::template NeedsToForbidGCOnMove<>::value>::move(std::move(entry), *newEntry);
return newEntry;
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::iterator HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::find(const T& key)
{
ValueType* entry = lookup<HashTranslator>(key);
if (!entry)
return end();
return makeKnownGoodIterator(entry);
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
inline typename HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::const_iterator HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::find(const T& key) const
{
ValueType* entry = const_cast<HashTable*>(this)->lookup<HashTranslator>(key);
if (!entry)
return end();
return makeKnownGoodConstIterator(entry);
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename HashTranslator, typename T>
bool HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::contains(const T& key) const
{
return const_cast<HashTable*>(this)->lookup<HashTranslator>(key);
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(ValueType* pos)
{
registerModification();
#if DUMP_HASHTABLE_STATS
atomicIncrement(&HashTableStats::numRemoves);
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
++m_stats->numRemoves;
#endif
ASSERT(!m_accessForbidden);
#if ENABLE(ASSERT)
m_accessForbidden = true;
#endif
deleteBucket(*pos);
#if ENABLE(ASSERT)
m_accessForbidden = false;
#endif
++m_deletedCount;
--m_keyCount;
if (shouldShrink())
shrink();
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(iterator it)
{
if (it == end())
return;
remove(const_cast<ValueType*>(it.m_iterator.m_position));
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(const_iterator it)
{
if (it == end())
return;
remove(const_cast<ValueType*>(it.m_position));
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
inline void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::remove(KeyPeekInType key)
{
remove(find(key));
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::allocateTable(unsigned size)
{
size_t allocSize = size * sizeof(ValueType);
ValueType* result;
// Assert that we will not use memset on things with a vtable entry. The
// compiler will also check this on some platforms. We would like to check
// this on the whole value (key-value pair), but std::is_polymorphic will return
// false for a pair of two types, even if one of the components is
// polymorphic.
static_assert(!Traits::emptyValueIsZero || !std::is_polymorphic<KeyType>::value, "empty value cannot be zero for things with a vtable");
static_assert(Allocator::isGarbageCollected
|| ((!AllowsOnlyPlacementNew<KeyType>::value || !IsTraceable<KeyType>::value)
&& (!AllowsOnlyPlacementNew<ValueType>::value || !IsTraceable<ValueType>::value))
, "Cannot put DISALLOW_NEW_EXCEPT_PLACEMENT_NEW objects that have trace methods into an off-heap HashTable");
if (Traits::emptyValueIsZero) {
result = Allocator::template allocateZeroedHashTableBacking<ValueType, HashTable>(allocSize);
} else {
result = Allocator::template allocateHashTableBacking<ValueType, HashTable>(allocSize);
for (unsigned i = 0; i < size; i++)
initializeBucket(result[i]);
}
return result;
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::deleteAllBucketsAndDeallocate(ValueType* table, unsigned size)
{
if (!IsTriviallyDestructible<ValueType>::value) {
for (unsigned i = 0; i < size; ++i) {
// This code is called when the hash table is cleared or resized. We
// have allocated a new backing store and we need to run the
// destructors on the old backing store, as it is being freed. If we
// are GCing we need to both call the destructor and mark the bucket
// as deleted, otherwise the destructor gets called again when the
// GC finds the backing store. With the default allocator it's
// enough to call the destructor, since we will free the memory
// explicitly and we won't see the memory with the bucket again.
if (Allocator::isGarbageCollected) {
if (!isEmptyOrDeletedBucket(table[i]))
deleteBucket(table[i]);
} else {
if (!isDeletedBucket(table[i]))
table[i].~ValueType();
}
}
}
Allocator::freeHashTableBacking(table);
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::expand(Value* entry)
{
unsigned newSize;
if (!m_tableSize) {
newSize = KeyTraits::minimumTableSize;
} else if (mustRehashInPlace()) {
newSize = m_tableSize;
} else {
newSize = m_tableSize * 2;
RELEASE_ASSERT(newSize > m_tableSize);
}
return rehash(newSize, entry);
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::expandBuffer(unsigned newTableSize, Value* entry, bool& success)
{
success = false;
ASSERT(m_tableSize < newTableSize);
if (!Allocator::expandHashTableBacking(m_table, newTableSize * sizeof(ValueType)))
return nullptr;
success = true;
Value* newEntry = nullptr;
unsigned oldTableSize = m_tableSize;
ValueType* originalTable = m_table;
ValueType* temporaryTable = allocateTable(oldTableSize);
for (unsigned i = 0; i < oldTableSize; i++) {
if (&m_table[i] == entry)
newEntry = &temporaryTable[i];
if (isEmptyOrDeletedBucket(m_table[i])) {
ASSERT(&m_table[i] != entry);
if (Traits::emptyValueIsZero) {
memset(&temporaryTable[i], 0, sizeof(ValueType));
} else {
initializeBucket(temporaryTable[i]);
}
} else {
Mover<ValueType, Allocator, Traits::template NeedsToForbidGCOnMove<>::value>::move(std::move(m_table[i]), temporaryTable[i]);
}
}
m_table = temporaryTable;
if (Traits::emptyValueIsZero) {
memset(originalTable, 0, newTableSize * sizeof(ValueType));
} else {
for (unsigned i = 0; i < newTableSize; i++)
initializeBucket(originalTable[i]);
}
newEntry = rehashTo(originalTable, newTableSize, newEntry);
ASSERT(!m_accessForbidden);
#if ENABLE(ASSERT)
m_accessForbidden = true;
#endif
deleteAllBucketsAndDeallocate(temporaryTable, oldTableSize);
#if ENABLE(ASSERT)
m_accessForbidden = false;
#endif
return newEntry;
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::rehashTo(ValueType* newTable, unsigned newTableSize, Value* entry)
{
unsigned oldTableSize = m_tableSize;
ValueType* oldTable = m_table;
#if DUMP_HASHTABLE_STATS
if (oldTableSize != 0)
atomicIncrement(&HashTableStats::numRehashes);
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
if (oldTableSize != 0)
++m_stats->numRehashes;
#endif
m_table = newTable;
m_tableSize = newTableSize;
Value* newEntry = nullptr;
for (unsigned i = 0; i != oldTableSize; ++i) {
if (isEmptyOrDeletedBucket(oldTable[i])) {
ASSERT(&oldTable[i] != entry);
continue;
}
Value* reinsertedEntry = reinsert(std::move(oldTable[i]));
if (&oldTable[i] == entry) {
ASSERT(!newEntry);
newEntry = reinsertedEntry;
}
}
m_deletedCount = 0;
return newEntry;
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
Value* HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::rehash(unsigned newTableSize, Value* entry)
{
unsigned oldTableSize = m_tableSize;
ValueType* oldTable = m_table;
#if DUMP_HASHTABLE_STATS
if (oldTableSize != 0)
atomicIncrement(&HashTableStats::numRehashes);
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
if (oldTableSize != 0)
++m_stats->numRehashes;
#endif
// The Allocator::isGarbageCollected check is not needed. The check is just
// a static hint for a compiler to indicate that Base::expandBuffer returns
// false if Allocator is a PartitionAllocator.
if (Allocator::isGarbageCollected && newTableSize > oldTableSize) {
bool success;
Value* newEntry = expandBuffer(newTableSize, entry, success);
if (success)
return newEntry;
}
ValueType* newTable = allocateTable(newTableSize);
Value* newEntry = rehashTo(newTable, newTableSize, entry);
ASSERT(!m_accessForbidden);
#if ENABLE(ASSERT)
m_accessForbidden = true;
#endif
deleteAllBucketsAndDeallocate(oldTable, oldTableSize);
#if ENABLE(ASSERT)
m_accessForbidden = false;
#endif
return newEntry;
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::clear()
{
registerModification();
if (!m_table)
return;
ASSERT(!m_accessForbidden);
#if ENABLE(ASSERT)
m_accessForbidden = true;
#endif
deleteAllBucketsAndDeallocate(m_table, m_tableSize);
#if ENABLE(ASSERT)
m_accessForbidden = false;
#endif
m_table = nullptr;
m_tableSize = 0;
m_keyCount = 0;
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::HashTable(const HashTable& other)
: m_table(nullptr)
, m_tableSize(0)
, m_keyCount(0)
, m_deletedCount(0)
, m_queueFlag(false)
#if ENABLE(ASSERT)
, m_accessForbidden(false)
, m_modifications(0)
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
, m_stats(wrapUnique(new Stats(*other.m_stats)))
#endif
{
// Copy the hash table the dumb way, by adding each element to the new
// table. It might be more efficient to copy the table slots, but it's not
// clear that efficiency is needed.
const_iterator end = other.end();
for (const_iterator it = other.begin(); it != end; ++it)
add(*it);
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::HashTable(HashTable&& other)
: m_table(nullptr)
, m_tableSize(0)
, m_keyCount(0)
, m_deletedCount(0)
, m_queueFlag(false)
#if ENABLE(ASSERT)
, m_accessForbidden(false)
, m_modifications(0)
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
, m_stats(wrapUnique(new Stats(*other.m_stats)))
#endif
{
swap(other);
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::swap(HashTable& other)
{
ASSERT(!m_accessForbidden);
std::swap(m_table, other.m_table);
std::swap(m_tableSize, other.m_tableSize);
std::swap(m_keyCount, other.m_keyCount);
// std::swap does not work for bit fields.
unsigned deleted = m_deletedCount;
m_deletedCount = other.m_deletedCount;
other.m_deletedCount = deleted;
ASSERT(!m_queueFlag);
ASSERT(!other.m_queueFlag);
#if ENABLE(ASSERT)
std::swap(m_modifications, other.m_modifications);
#endif
#if DUMP_HASHTABLE_STATS_PER_TABLE
m_stats.swap(other.m_stats);
#endif
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>& HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::operator=(const HashTable& other)
{
HashTable tmp(other);
swap(tmp);
return *this;
}
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>& HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::operator=(HashTable&& other)
{
swap(other);
return *this;
}
template <WeakHandlingFlag weakHandlingFlag, typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
struct WeakProcessingHashTableHelper;
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
struct WeakProcessingHashTableHelper<NoWeakHandlingInCollections, Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> {
STATIC_ONLY(WeakProcessingHashTableHelper);
static void process(typename Allocator::Visitor* visitor, void* closure) {}
static void ephemeronIteration(typename Allocator::Visitor* visitor, void* closure) {}
static void ephemeronIterationDone(typename Allocator::Visitor* visitor, void* closure) {}
};
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
struct WeakProcessingHashTableHelper<WeakHandlingInCollections, Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator> {
STATIC_ONLY(WeakProcessingHashTableHelper);
using HashTableType = HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>;
using ValueType = typename HashTableType::ValueType;
// Used for purely weak and for weak-and-strong tables (ephemerons).
static void process(typename Allocator::Visitor* visitor, void* closure)
{
HashTableType* table = reinterpret_cast<HashTableType*>(closure);
if (!table->m_table)
return;
// Now perform weak processing (this is a no-op if the backing was
// accessible through an iterator and was already marked strongly).
for (ValueType* element = table->m_table + table->m_tableSize - 1; element >= table->m_table; element--) {
if (!HashTableType::isEmptyOrDeletedBucket(*element)) {
// At this stage calling trace can make no difference
// (everything is already traced), but we use the return value
// to remove things from the collection.
// FIXME: This should be rewritten so that this can check if the
// element is dead without calling trace, which is semantically
// not correct to be called in weak processing stage.
if (TraceInCollectionTrait<WeakHandlingInCollections, WeakPointersActWeak, ValueType, Traits>::trace(visitor, *element)) {
table->registerModification();
HashTableType::deleteBucket(*element); // Also calls the destructor.
table->m_deletedCount++;
table->m_keyCount--;
// We don't rehash the backing until the next add or delete,
// because that would cause allocation during GC.
}
}
}
}
// Called repeatedly for tables that have both weak and strong pointers.
static void ephemeronIteration(typename Allocator::Visitor* visitor, void* closure)
{
HashTableType* table = reinterpret_cast<HashTableType*>(closure);
ASSERT(table->m_table);
// Check the hash table for elements that we now know will not be
// removed by weak processing. Those elements need to have their strong
// pointers traced.
for (ValueType* element = table->m_table + table->m_tableSize - 1; element >= table->m_table; element--) {
if (!HashTableType::isEmptyOrDeletedBucket(*element))
TraceInCollectionTrait<WeakHandlingInCollections, WeakPointersActWeak, ValueType, Traits>::trace(visitor, *element);
}
}
// Called when the ephemeron iteration is done and before running the per
// thread weak processing. It is guaranteed to be called before any thread
// is resumed.
static void ephemeronIterationDone(typename Allocator::Visitor* visitor, void* closure)
{
HashTableType* table = reinterpret_cast<HashTableType*>(closure);
ASSERT(Allocator::weakTableRegistered(visitor, table));
table->clearEnqueued();
}
};
template <typename Key, typename Value, typename Extractor, typename HashFunctions, typename Traits, typename KeyTraits, typename Allocator>
template <typename VisitorDispatcher>
void HashTable<Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::trace(VisitorDispatcher visitor)
{
// If someone else already marked the backing and queued up the trace and/or
// weak callback then we are done. This optimization does not happen for
// ListHashSet since its iterator does not point at the backing.
if (!m_table || Allocator::isHeapObjectAlive(m_table))
return;
// Normally, we mark the backing store without performing trace. This means
// it is marked live, but the pointers inside it are not marked. Instead we
// will mark the pointers below. However, for backing stores that contain
// weak pointers the handling is rather different. We don't mark the
// backing store here, so the marking GC will leave the backing unmarked. If
// the backing is found in any other way than through its HashTable (ie from
// an iterator) then the mark bit will be set and the pointers will be
// marked strongly, avoiding problems with iterating over things that
// disappear due to weak processing while we are iterating over them. We
// register the backing store pointer for delayed marking which will take
// place after we know if the backing is reachable from elsewhere. We also
// register a weakProcessing callback which will perform weak processing if
// needed.
if (Traits::weakHandlingFlag == NoWeakHandlingInCollections) {
Allocator::markNoTracing(visitor, m_table);
} else {
Allocator::registerDelayedMarkNoTracing(visitor, m_table);
// Since we're delaying marking this HashTable, it is possible that the
// registerWeakMembers is called multiple times (in rare
// cases). However, it shouldn't cause any issue.
Allocator::registerWeakMembers(visitor, this, m_table, WeakProcessingHashTableHelper<Traits::weakHandlingFlag, Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::process);
}
if (!IsTraceableInCollectionTrait<Traits>::value)
return;
if (Traits::weakHandlingFlag == WeakHandlingInCollections) {
// If we have both strong and weak pointers in the collection then
// we queue up the collection for fixed point iteration a la
// Ephemerons:
// http://dl.acm.org/citation.cfm?doid=263698.263733 - see also
// http://www.jucs.org/jucs_14_21/eliminating_cycles_in_weak
ASSERT(!enqueued() || Allocator::weakTableRegistered(visitor, this));
if (!enqueued()) {
Allocator::registerWeakTable(visitor, this,
WeakProcessingHashTableHelper<Traits::weakHandlingFlag, Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::ephemeronIteration,
WeakProcessingHashTableHelper<Traits::weakHandlingFlag, Key, Value, Extractor, HashFunctions, Traits, KeyTraits, Allocator>::ephemeronIterationDone);
setEnqueued();
}
// We don't need to trace the elements here, since registering as a
// weak table above will cause them to be traced (perhaps several
// times). It's better to wait until everything else is traced
// before tracing the elements for the first time; this may reduce
// (by one) the number of iterations needed to get to a fixed point.
return;
}
for (ValueType* element = m_table + m_tableSize - 1; element >= m_table; element--) {
if (!isEmptyOrDeletedBucket(*element))
Allocator::template trace<VisitorDispatcher, ValueType, Traits>(visitor, *element);
}
}
// iterator adapters
template <typename HashTableType, typename Traits> struct HashTableConstIteratorAdapter {
STACK_ALLOCATED();
HashTableConstIteratorAdapter() {}
HashTableConstIteratorAdapter(const typename HashTableType::const_iterator& impl) : m_impl(impl) {}
typedef typename Traits::IteratorConstGetType GetType;
typedef typename HashTableType::ValueTraits::IteratorConstGetType SourceGetType;
GetType get() const { return const_cast<GetType>(SourceGetType(m_impl.get())); }
typename Traits::IteratorConstReferenceType operator*() const { return Traits::getToReferenceConstConversion(get()); }
GetType operator->() const { return get(); }
HashTableConstIteratorAdapter& operator++() { ++m_impl; return *this; }
// postfix ++ intentionally omitted
typename HashTableType::const_iterator m_impl;
};
template <typename HashTable, typename Traits>
std::ostream& operator<<(std::ostream& stream, const HashTableConstIteratorAdapter<HashTable, Traits>& iterator)
{
return stream << iterator.m_impl;
}
template <typename HashTableType, typename Traits> struct HashTableIteratorAdapter {
STACK_ALLOCATED();
typedef typename Traits::IteratorGetType GetType;
typedef typename HashTableType::ValueTraits::IteratorGetType SourceGetType;
HashTableIteratorAdapter() {}
HashTableIteratorAdapter(const typename HashTableType::iterator& impl) : m_impl(impl) {}
GetType get() const { return const_cast<GetType>(SourceGetType(m_impl.get())); }
typename Traits::IteratorReferenceType operator*() const { return Traits::getToReferenceConversion(get()); }
GetType operator->() const { return get(); }
HashTableIteratorAdapter& operator++() { ++m_impl; return *this; }
// postfix ++ intentionally omitted
operator HashTableConstIteratorAdapter<HashTableType, Traits>()
{
typename HashTableType::const_iterator i = m_impl;
return i;
}
typename HashTableType::iterator m_impl;
};
template <typename HashTable, typename Traits>
std::ostream& operator<<(std::ostream& stream, const HashTableIteratorAdapter<HashTable, Traits>& iterator)
{
return stream << iterator.m_impl;
}
template <typename T, typename U>
inline bool operator==(const HashTableConstIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
return a.m_impl == b.m_impl;
}
template <typename T, typename U>
inline bool operator!=(const HashTableConstIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
return a.m_impl != b.m_impl;
}
template <typename T, typename U>
inline bool operator==(const HashTableIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
return a.m_impl == b.m_impl;
}
template <typename T, typename U>
inline bool operator!=(const HashTableIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
return a.m_impl != b.m_impl;
}
// All 4 combinations of ==, != and Const,non const.
template <typename T, typename U>
inline bool operator==(const HashTableConstIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
return a.m_impl == b.m_impl;
}
template <typename T, typename U>
inline bool operator!=(const HashTableConstIteratorAdapter<T, U>& a, const HashTableIteratorAdapter<T, U>& b)
{
return a.m_impl != b.m_impl;
}
template <typename T, typename U>
inline bool operator==(const HashTableIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
return a.m_impl == b.m_impl;
}
template <typename T, typename U>
inline bool operator!=(const HashTableIteratorAdapter<T, U>& a, const HashTableConstIteratorAdapter<T, U>& b)
{
return a.m_impl != b.m_impl;
}
template <typename Collection1, typename Collection2>
inline void removeAll(Collection1& collection, const Collection2& toBeRemoved)
{
if (collection.isEmpty() || toBeRemoved.isEmpty())
return;
typedef typename Collection2::const_iterator CollectionIterator;
CollectionIterator end(toBeRemoved.end());
for (CollectionIterator it(toBeRemoved.begin()); it != end; ++it)
collection.remove(*it);
}
} // namespace WTF
#include "wtf/HashIterators.h"
#endif // WTF_HashTable_h