blob: b396a72d022abcbcb33ad181445054ec026a2943 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/timer/timer.h"
#include <stddef.h>
#include <utility>
#include "base/check.h"
#include "base/feature_list.h"
#include "base/memory/ptr_util.h"
#include "base/memory/ref_counted.h"
#include "base/threading/platform_thread.h"
#include "base/threading/sequenced_task_runner_handle.h"
#include "base/time/tick_clock.h"
namespace base {
namespace internal {
namespace {
// This feature controls whether or not the scheduled task is always abandoned
// when the timer is stopped or reset. The re-use of the scheduled task is an
// optimization that ensures a timer can not leave multiple canceled tasks in
// the task queue.
constexpr Feature kAlwaysAbandonScheduledTask{"AlwaysAbandonScheduledTask",
FEATURE_DISABLED_BY_DEFAULT};
// Cache of the state of the kAlwaysAbandonScheduledTask feature. This avoids
// the need to constantly query its enabled state through
// FeatureList::IsEnabled().
bool g_is_always_abandon_scheduled_task_enabled =
kAlwaysAbandonScheduledTask.default_state == FEATURE_ENABLED_BY_DEFAULT;
} // namespace
// TaskDestructionDetector's role is to detect when the scheduled task is
// deleted without being executed. It can be disabled when the timer no longer
// wants to be notified.
class TaskDestructionDetector {
public:
explicit TaskDestructionDetector(TimerBase* timer) : timer_(timer) {}
TaskDestructionDetector(const TaskDestructionDetector&) = delete;
TaskDestructionDetector& operator=(const TaskDestructionDetector&) = delete;
~TaskDestructionDetector() {
// If this instance is getting destroyed before it was disabled, notify the
// timer.
if (timer_)
timer_->OnTaskDestroyed();
}
// Disables this instance so that the timer is no longer notified in the
// destructor.
void Disable() { timer_ = nullptr; }
private:
// `timer_` is not a raw_ptr<...> for performance reasons (based on analysis
// of sampling profiler data and tab_search:top100:2020).
TimerBase* timer_;
};
// static
void TimerBase::InitializeFeatures() {
g_is_always_abandon_scheduled_task_enabled =
FeatureList::IsEnabled(kAlwaysAbandonScheduledTask);
}
TimerBase::TimerBase(const Location& posted_from)
: posted_from_(posted_from), task_destruction_detector_(nullptr) {
// It is safe for the timer to be created on a different thread/sequence than
// the one from which the timer APIs are called. The first call to the
// checker's CalledOnValidSequence() method will re-bind the checker, and
// later calls will verify that the same task runner is used.
DETACH_FROM_SEQUENCE(sequence_checker_);
}
TimerBase::~TimerBase() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
AbandonScheduledTask();
}
bool TimerBase::IsRunning() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return is_running_;
}
void TimerBase::SetTaskRunner(scoped_refptr<SequencedTaskRunner> task_runner) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(task_runner->RunsTasksInCurrentSequence());
DCHECK(!IsRunning());
task_runner_.swap(task_runner);
}
scoped_refptr<SequencedTaskRunner> TimerBase::GetTaskRunner() {
return task_runner_ ? task_runner_ : SequencedTaskRunnerHandle::Get();
}
void TimerBase::OnTaskDestroyed() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(task_destruction_detector_);
task_destruction_detector_ = nullptr;
delayed_task_handle_.CancelTask();
is_running_ = false;
// It's safe to destroy or restart Timer on another sequence after it has been
// stopped.
DETACH_FROM_SEQUENCE(sequence_checker_);
OnStop();
// No more member accesses here: |this| could be deleted after OnStop() call.
}
void TimerBase::Stop() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
is_running_ = false;
AbandonScheduledTask();
OnStop();
// No more member accesses here: |this| could be deleted after Stop() call.
}
void TimerBase::AbandonScheduledTask() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (task_destruction_detector_) {
task_destruction_detector_->Disable();
task_destruction_detector_ = nullptr;
DCHECK(delayed_task_handle_.IsValid());
delayed_task_handle_.CancelTask();
}
// It's safe to destroy or restart Timer on another sequence after the task is
// abandoned.
DETACH_FROM_SEQUENCE(sequence_checker_);
}
DelayTimerBase::DelayTimerBase(const TickClock* tick_clock)
: tick_clock_(tick_clock) {}
DelayTimerBase::DelayTimerBase(const Location& posted_from,
TimeDelta delay,
const TickClock* tick_clock)
: TimerBase(posted_from), delay_(delay), tick_clock_(tick_clock) {}
DelayTimerBase::~DelayTimerBase() = default;
TimeDelta DelayTimerBase::GetCurrentDelay() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return delay_;
}
void DelayTimerBase::StartInternal(const Location& posted_from,
TimeDelta delay) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
posted_from_ = posted_from;
delay_ = delay;
Reset();
}
void DelayTimerBase::AbandonAndStop() {
// Note: Stop() is more or less re-implemented here because it cannot be
// called without rebinding the |sequence_checker_| to the current sequence
// after the call to AbandonScheduledTask().
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
is_running_ = false;
AbandonScheduledTask();
OnStop();
// No more member accesses here: |this| could be deleted at this point.
}
void DelayTimerBase::Reset() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
EnsureNonNullUserTask();
if (!g_is_always_abandon_scheduled_task_enabled) {
// If there's no pending task, start one up and return.
if (!task_destruction_detector_) {
ScheduleNewTask(delay_);
return;
}
// Set the new |desired_run_time_|.
if (delay_ > Microseconds(0))
desired_run_time_ = Now() + delay_;
else
desired_run_time_ = TimeTicks();
// We can use the existing scheduled task if it arrives before the new
// |desired_run_time_|.
if (desired_run_time_ >= scheduled_run_time_) {
is_running_ = true;
return;
}
}
// We can't reuse the |scheduled_task_|, so abandon it and post a new one.
AbandonScheduledTask();
ScheduleNewTask(delay_);
}
// TODO(1262205): Merge with TimerBase::Stop() once the "always abandon
// scheduled task" feature is launched.
void DelayTimerBase::Stop() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
is_running_ = false;
if (g_is_always_abandon_scheduled_task_enabled)
AbandonScheduledTask();
OnStop();
// No more member accesses here: |this| could be deleted after Stop() call.
}
void DelayTimerBase::ScheduleNewTask(TimeDelta delay) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!task_destruction_detector_);
is_running_ = true;
auto task_destruction_detector =
std::make_unique<TaskDestructionDetector>(this);
task_destruction_detector_ = task_destruction_detector.get();
// Ignore negative deltas.
// TODO(pmonette): Fix callers providing negative deltas and ban passing them.
if (delay < TimeDelta())
delay = TimeDelta();
delayed_task_handle_ = GetTaskRunner()->PostCancelableDelayedTask(
base::subtle::PostDelayedTaskPassKey(), posted_from_,
BindOnce(&DelayTimerBase::OnScheduledTaskInvoked, Unretained(this),
std::move(task_destruction_detector)),
delay);
scheduled_run_time_ = desired_run_time_ = Now() + delay;
}
TimeTicks DelayTimerBase::Now() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return tick_clock_ ? tick_clock_->NowTicks() : TimeTicks::Now();
}
void DelayTimerBase::OnScheduledTaskInvoked(
std::unique_ptr<TaskDestructionDetector> task_destruction_detector) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!delayed_task_handle_.IsValid());
// The scheduled task is currently running so its destruction detector is no
// longer needed.
task_destruction_detector->Disable();
task_destruction_detector_ = nullptr;
task_destruction_detector.reset();
// The timer may have been stopped.
if (!is_running_)
return;
// First check if we need to delay the task because of a new target time.
if (desired_run_time_ > scheduled_run_time_) {
// Now() can be expensive, so only call it if we know the user has changed
// the |desired_run_time_|.
TimeTicks now = Now();
// Task runner may have called us late anyway, so only post a continuation
// task if the |desired_run_time_| is in the future.
if (desired_run_time_ > now) {
// Post a new task to span the remaining time.
ScheduleNewTask(desired_run_time_ - now);
return;
}
}
RunUserTask();
// No more member accesses here: |this| could be deleted at this point.
}
} // namespace internal
OneShotTimer::OneShotTimer() = default;
OneShotTimer::OneShotTimer(const TickClock* tick_clock)
: internal::DelayTimerBase(tick_clock) {}
OneShotTimer::~OneShotTimer() = default;
void OneShotTimer::Start(const Location& posted_from,
TimeDelta delay,
OnceClosure user_task) {
user_task_ = std::move(user_task);
StartInternal(posted_from, delay);
}
void OneShotTimer::FireNow() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!task_runner_) << "FireNow() is incompatible with SetTaskRunner()";
DCHECK(IsRunning());
RunUserTask();
}
void OneShotTimer::OnStop() {
user_task_.Reset();
// No more member accesses here: |this| could be deleted after freeing
// |user_task_|.
}
void OneShotTimer::RunUserTask() {
// Make a local copy of the task to run. The Stop method will reset the
// |user_task_| member.
OnceClosure task = std::move(user_task_);
Stop();
DCHECK(task);
std::move(task).Run();
// No more member accesses here: |this| could be deleted at this point.
}
void OneShotTimer::EnsureNonNullUserTask() {
DCHECK(user_task_);
}
RepeatingTimer::RepeatingTimer() = default;
RepeatingTimer::RepeatingTimer(const TickClock* tick_clock)
: internal::DelayTimerBase(tick_clock) {}
RepeatingTimer::~RepeatingTimer() = default;
RepeatingTimer::RepeatingTimer(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task)
: internal::DelayTimerBase(posted_from, delay),
user_task_(std::move(user_task)) {}
RepeatingTimer::RepeatingTimer(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task,
const TickClock* tick_clock)
: internal::DelayTimerBase(posted_from, delay, tick_clock),
user_task_(std::move(user_task)) {}
void RepeatingTimer::Start(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task) {
user_task_ = std::move(user_task);
StartInternal(posted_from, delay);
}
void RepeatingTimer::OnStop() {}
void RepeatingTimer::RunUserTask() {
// Make a local copy of the task to run in case the task destroy the timer
// instance.
RepeatingClosure task = user_task_;
ScheduleNewTask(GetCurrentDelay());
task.Run();
// No more member accesses here: |this| could be deleted at this point.
}
void RepeatingTimer::EnsureNonNullUserTask() {
DCHECK(user_task_);
}
RetainingOneShotTimer::RetainingOneShotTimer() = default;
RetainingOneShotTimer::RetainingOneShotTimer(const TickClock* tick_clock)
: internal::DelayTimerBase(tick_clock) {}
RetainingOneShotTimer::~RetainingOneShotTimer() = default;
RetainingOneShotTimer::RetainingOneShotTimer(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task)
: internal::DelayTimerBase(posted_from, delay),
user_task_(std::move(user_task)) {}
RetainingOneShotTimer::RetainingOneShotTimer(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task,
const TickClock* tick_clock)
: internal::DelayTimerBase(posted_from, delay, tick_clock),
user_task_(std::move(user_task)) {}
void RetainingOneShotTimer::Start(const Location& posted_from,
TimeDelta delay,
RepeatingClosure user_task) {
user_task_ = std::move(user_task);
StartInternal(posted_from, delay);
}
void RetainingOneShotTimer::OnStop() {}
void RetainingOneShotTimer::RunUserTask() {
// Make a local copy of the task to run in case the task destroys the timer
// instance.
RepeatingClosure task = user_task_;
Stop();
task.Run();
// No more member accesses here: |this| could be deleted at this point.
}
void RetainingOneShotTimer::EnsureNonNullUserTask() {
DCHECK(user_task_);
}
DeadlineTimer::DeadlineTimer() = default;
DeadlineTimer::~DeadlineTimer() = default;
void DeadlineTimer::Start(const Location& posted_from,
TimeTicks deadline,
OnceClosure user_task,
ExactDeadline exact) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
user_task_ = std::move(user_task);
posted_from_ = posted_from;
subtle::DelayPolicy delay_policy =
exact ? subtle::DelayPolicy::kPrecise
: subtle::DelayPolicy::kFlexiblePreferEarly;
ScheduleNewTask(deadline, delay_policy);
}
void DeadlineTimer::OnStop() {
user_task_.Reset();
// No more member accesses here: |this| could be deleted after freeing
// |user_task_|.
}
void DeadlineTimer::RunUserTask() {
// Make a local copy of the task to run. The Stop method will reset the
// |user_task_| member.
OnceClosure task = std::move(user_task_);
Stop();
std::move(task).Run();
// No more member accesses here: |this| could be deleted at this point.
}
void DeadlineTimer::ScheduleNewTask(TimeTicks deadline,
subtle::DelayPolicy delay_policy) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!task_destruction_detector_);
is_running_ = true;
auto task_destruction_detector =
std::make_unique<internal::TaskDestructionDetector>(this);
task_destruction_detector_ = task_destruction_detector.get();
delayed_task_handle_ = GetTaskRunner()->PostCancelableDelayedTaskAt(
base::subtle::PostDelayedTaskPassKey(), posted_from_,
BindOnce(&DeadlineTimer::OnScheduledTaskInvoked, Unretained(this),
std::move(task_destruction_detector)),
deadline, delay_policy);
}
void DeadlineTimer::OnScheduledTaskInvoked(
std::unique_ptr<internal::TaskDestructionDetector>
task_destruction_detector) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!delayed_task_handle_.IsValid());
// The scheduled task is currently running so its destruction detector is no
// longer needed.
task_destruction_detector->Disable();
task_destruction_detector_ = nullptr;
task_destruction_detector.reset();
RunUserTask();
// No more member accesses here: |this| could be deleted at this point.
}
} // namespace base