blob: 70930ddbed5365e33052cf2d03715984a21b4b51 [file] [log] [blame]
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/animation/keyframe/keyframe_model.h"
#include "base/memory/ptr_util.h"
#include "base/notreached.h"
#include "base/time/time.h"
namespace gfx {
namespace {
// This should match the RunState enum.
static constexpr auto s_runStateNames = std::to_array<const char*>(
{"WAITING_FOR_TARGET_AVAILABILITY", "WAITING_FOR_DELETION", "STARTING",
"RUNNING", "PAUSED", "FINISHED", "ABORTED",
"ABORTED_BUT_NEEDS_COMPLETION"});
static_assert(static_cast<int>(KeyframeModel::LAST_RUN_STATE) + 1 ==
std::size(s_runStateNames),
"RunStateEnumSize should equal the number of elements in "
"s_runStateNames");
} // namespace
std::string KeyframeModel::ToString(RunState state) {
return s_runStateNames[state];
}
std::unique_ptr<KeyframeModel> KeyframeModel::Create(
std::unique_ptr<AnimationCurve> curve,
int keyframe_model_id,
int target_property_id) {
return base::WrapUnique(new KeyframeModel(std::move(curve), keyframe_model_id,
target_property_id));
}
KeyframeModel::KeyframeModel(std::unique_ptr<AnimationCurve> curve,
int keyframe_model_id,
int target_property_id)
: curve_(std::move(curve)),
id_(keyframe_model_id),
target_property_(target_property_id),
run_state_(WAITING_FOR_TARGET_AVAILABILITY),
iterations_(1),
iteration_start_(0),
direction_(Direction::NORMAL),
playback_rate_(1),
fill_mode_(FillMode::BOTH) {}
KeyframeModel::~KeyframeModel() {
if (run_state() == RUNNING || run_state() == PAUSED)
SetRunState(ABORTED, base::TimeTicks());
}
int KeyframeModel::TargetProperty() const {
return target_property_;
}
void KeyframeModel::SetRunState(RunState run_state,
base::TimeTicks monotonic_time) {
if (run_state == RUNNING && run_state_ == PAUSED)
total_paused_duration_ += (monotonic_time - pause_time_);
else if (run_state == PAUSED)
pause_time_ = monotonic_time;
run_state_ = run_state;
}
void KeyframeModel::Pause(base::TimeDelta pause_offset) {
// Convert pause offset which is in local time to monotonic time.
// TODO(crbug.com/41430321): This should be scaled by playbackrate.
base::TimeTicks monotonic_time = pause_offset +
start_time_.value_or(base::TimeTicks()) +
total_paused_duration_;
SetRunState(PAUSED, monotonic_time);
}
KeyframeModel::Phase KeyframeModel::CalculatePhaseForTesting(
base::TimeDelta local_time) const {
return CalculatePhase(local_time);
}
KeyframeModel::Phase KeyframeModel::CalculatePhase(
base::TimeDelta local_time) const {
base::TimeDelta opposite_time_offset = time_offset_ == base::TimeDelta::Min()
? base::TimeDelta::Max()
: -time_offset_;
base::TimeDelta before_active_boundary_time =
std::max(opposite_time_offset, base::TimeDelta());
if ((local_time < before_active_boundary_time) ||
(local_time == before_active_boundary_time && playback_rate_ < 0)) {
return KeyframeModel::Phase::BEFORE;
}
// TODO(crbug.com/41428771): By spec end time = max(start delay + duration +
// end delay, 0). The logic should be updated once "end delay" is supported.
base::TimeDelta active_after_boundary_time = base::TimeDelta::Max();
if (std::isfinite(iterations_)) {
// Scaling the duration is against spec but needed to comply with the cc
// implementation. By spec (in blink) the playback rate is an Animation
// level concept but in cc it's per KeyframeModel. We grab the active time
// calculated here and later scale it with the playback rate in order to get
// a proper progress. Therefore we need to un-scale it here. This can be
// fixed once we scale the local time by playback rate. See
// https://crbug.com/912407.
base::TimeDelta active_duration =
curve_->Duration() * iterations_ / std::abs(playback_rate_);
active_after_boundary_time =
std::max(opposite_time_offset + active_duration, base::TimeDelta());
}
if ((local_time > active_after_boundary_time) ||
(local_time == active_after_boundary_time && playback_rate_ > 0)) {
return KeyframeModel::Phase::AFTER;
}
return KeyframeModel::Phase::ACTIVE;
}
std::optional<base::TimeDelta> KeyframeModel::CalculateActiveTime(
base::TimeTicks monotonic_time) const {
base::TimeDelta local_time = ConvertMonotonicTimeToLocalTime(monotonic_time);
KeyframeModel::Phase phase = CalculatePhase(local_time);
return CalculateActiveTime(local_time, phase);
}
std::optional<base::TimeDelta> KeyframeModel::CalculateActiveTime(
base::TimeDelta local_time,
KeyframeModel::Phase phase) const {
DCHECK(playback_rate_);
switch (phase) {
case KeyframeModel::Phase::BEFORE:
if (fill_mode_ == FillMode::BACKWARDS || fill_mode_ == FillMode::BOTH)
return std::max(local_time + time_offset_, base::TimeDelta());
return std::nullopt;
case KeyframeModel::Phase::ACTIVE:
return local_time + time_offset_;
case KeyframeModel::Phase::AFTER:
if (fill_mode_ == FillMode::FORWARDS || fill_mode_ == FillMode::BOTH) {
DCHECK_NE(iterations_, std::numeric_limits<double>::infinity());
base::TimeDelta active_duration =
curve_->Duration() * iterations_ / std::abs(playback_rate_);
return std::max(std::min(local_time + time_offset_, active_duration),
base::TimeDelta());
}
return std::nullopt;
default:
NOTREACHED();
}
}
bool KeyframeModel::IsFinishedAt(base::TimeTicks monotonic_time) const {
if (is_finished())
return true;
if (StartShouldBeDeferred())
return false;
if (playback_rate_ == 0)
return false;
return run_state_ == RUNNING && std::isfinite(iterations_) &&
(curve_->Duration() * (iterations_ / std::abs(playback_rate_))) <=
(ConvertMonotonicTimeToLocalTime(monotonic_time) + time_offset_);
}
bool KeyframeModel::HasActiveTime(base::TimeTicks monotonic_time) const {
return CalculateActiveTime(monotonic_time).has_value();
}
bool KeyframeModel::StartShouldBeDeferred() const {
return false;
}
base::TimeDelta KeyframeModel::TrimTimeToCurrentIteration(
base::TimeTicks monotonic_time,
TimingFunction::LimitDirection* limit_direction) const {
DCHECK(playback_rate_);
DCHECK_GE(iteration_start_, 0);
DCHECK(HasActiveTime(monotonic_time));
base::TimeDelta local_time = ConvertMonotonicTimeToLocalTime(monotonic_time);
KeyframeModel::Phase phase = CalculatePhase(local_time);
base::TimeDelta active_time = CalculateActiveTime(local_time, phase).value();
base::TimeDelta start_offset = curve_->Duration() * iteration_start_;
if (limit_direction) {
if (phase == KeyframeModel::Phase::BEFORE) {
*limit_direction = TimingFunction::LimitDirection::LEFT;
} else {
*limit_direction = TimingFunction::LimitDirection::RIGHT;
}
}
DCHECK(!active_time.is_negative());
// Always return zero if we have no iterations.
if (!iterations_) {
return base::TimeDelta();
}
// Don't attempt to trim if we have no duration.
if (curve_->Duration() <= base::TimeDelta()) {
return base::TimeDelta();
}
base::TimeDelta repeated_duration = std::isfinite(iterations_)
? (curve_->Duration() * iterations_)
: base::TimeDelta::Max();
// Calculate the scaled active time
base::TimeDelta scaled_active_time;
if (playback_rate_ < 0) {
DCHECK(std::isfinite(iterations_));
base::TimeDelta active_duration =
repeated_duration / std::abs(playback_rate_);
scaled_active_time =
((active_time - active_duration) * playback_rate_) + start_offset;
} else {
scaled_active_time = (active_time * playback_rate_) + start_offset;
}
// Calculate the iteration time
base::TimeDelta iteration_time;
bool has_defined_time_delta =
(start_offset != scaled_active_time) ||
!(start_offset.is_max() || start_offset.is_min());
if (has_defined_time_delta &&
scaled_active_time - start_offset == repeated_duration &&
fmod(iterations_ + iteration_start_, 1) == 0)
iteration_time = curve_->Duration();
else
iteration_time = scaled_active_time % curve_->Duration();
// Calculate the current iteration
int iteration;
if (scaled_active_time <= base::TimeDelta())
iteration = 0;
else if (iteration_time == curve_->Duration())
iteration = ceil(iteration_start_ + iterations_ - 1);
else
iteration = base::ClampFloor(scaled_active_time / curve_->Duration());
// Check if we are running the keyframe model in reverse direction for the
// current iteration
bool reverse =
(direction_ == Direction::REVERSE) ||
(direction_ == Direction::ALTERNATE_NORMAL && iteration % 2 == 1) ||
(direction_ == Direction::ALTERNATE_REVERSE && iteration % 2 == 0);
// If we are running the keyframe model in reverse direction, reverse the
// result
if (reverse)
iteration_time = curve_->Duration() - iteration_time;
return iteration_time;
}
// TODO(crbug.com/41430321): Local time should be scaled by playback rate by
// spec.
base::TimeDelta KeyframeModel::ConvertMonotonicTimeToLocalTime(
base::TimeTicks monotonic_time) const {
// When waiting on receiving a start time, then our global clock is 'stuck' at
// the initial state.
if ((run_state_ == STARTING && !has_set_start_time()) ||
StartShouldBeDeferred())
return base::TimeDelta();
// If we're paused, time is 'stuck' at the pause time.
base::TimeTicks time = (run_state_ == PAUSED) ? pause_time_ : monotonic_time;
return time - start_time_.value_or(base::TimeTicks()) -
total_paused_duration_;
}
} // namespace gfx