blob: d5cb4f032605656d43ad072866ce27b3cacd6172 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/list_container.h"
#include <algorithm>
#include <vector>
#include "cc/base/scoped_ptr_vector.h"
namespace {
const size_t kDefaultNumElementTypesToReserve = 32;
} // namespace
namespace cc {
// ListContainerCharAllocator
////////////////////////////////////////////////////
// This class deals only with char* and void*. It does allocation and passing
// out raw pointers, as well as memory deallocation when being destroyed.
class ListContainerBase::ListContainerCharAllocator {
public:
// ListContainerCharAllocator::InnerList
/////////////////////////////////////////////
// This class holds the raw memory chunk, as well as information about its
// size and availability.
struct InnerList {
scoped_ptr<char[]> data;
// The number of elements in total the memory can hold. The difference
// between capacity and size is the how many more elements this list can
// hold.
size_t capacity;
// The number of elements have been put into this list.
size_t size;
// The size of each element is in bytes. This is used to move from between
// elements' memory locations.
size_t step;
InnerList() : capacity(0), size(0), step(0) {}
void Erase(char* position) {
// Confident that destructor is called by caller of this function. Since
// ListContainerCharAllocator does not handle construction after
// allocation, it doesn't handle desctrution before deallocation.
DCHECK_LE(position, LastElement());
DCHECK_GE(position, Begin());
char* start = position + step;
std::copy(start, End(), position);
--size;
// Decrease capacity to avoid creating not full not last InnerList.
--capacity;
}
bool IsEmpty() const { return !size; }
bool IsFull() { return capacity == size; }
size_t NumElementsAvailable() const { return capacity - size; }
void* AddElement() {
DCHECK_LT(size, capacity);
++size;
return LastElement();
}
void RemoveLast() {
DCHECK(!IsEmpty());
--size;
}
char* Begin() const { return data.get(); }
char* End() const { return data.get() + size * step; }
char* LastElement() const { return data.get() + (size - 1) * step; }
char* ElementAt(size_t index) const { return data.get() + index * step; }
private:
DISALLOW_COPY_AND_ASSIGN(InnerList);
};
explicit ListContainerCharAllocator(size_t element_size)
: element_size_(element_size),
size_(0),
last_list_index_(0),
last_list_(NULL) {
AllocateNewList(kDefaultNumElementTypesToReserve);
last_list_ = storage_[last_list_index_];
}
ListContainerCharAllocator(size_t element_size, size_t element_count)
: element_size_(element_size),
size_(0),
last_list_index_(0),
last_list_(NULL) {
AllocateNewList(element_count > 0 ? element_count
: kDefaultNumElementTypesToReserve);
last_list_ = storage_[last_list_index_];
}
~ListContainerCharAllocator() {}
void* Allocate() {
if (last_list_->IsFull()) {
// Only allocate a new list if there isn't a spare one still there from
// previous usage.
if (last_list_index_ + 1 >= storage_.size())
AllocateNewList(last_list_->capacity * 2);
++last_list_index_;
last_list_ = storage_[last_list_index_];
}
++size_;
return last_list_->AddElement();
}
size_t element_size() const { return element_size_; }
size_t list_count() const { return storage_.size(); }
size_t size() const { return size_; }
bool IsEmpty() const { return size() == 0; }
size_t Capacity() const {
size_t capacity_sum = 0;
for (const auto& inner_list : storage_)
capacity_sum += inner_list->capacity;
return capacity_sum;
}
void Clear() {
// Remove all except for the first InnerList.
DCHECK(!storage_.empty());
storage_.erase(storage_.begin() + 1, storage_.end());
last_list_index_ = 0;
last_list_ = storage_[0];
last_list_->size = 0;
size_ = 0;
}
void RemoveLast() {
DCHECK(!IsEmpty());
last_list_->RemoveLast();
if (last_list_->IsEmpty() && last_list_index_ > 0) {
--last_list_index_;
last_list_ = storage_[last_list_index_];
// If there are now two empty inner lists, free one of them.
if (last_list_index_ + 2 < storage_.size())
storage_.pop_back();
}
--size_;
}
void Erase(PositionInListContainerCharAllocator position) {
DCHECK_EQ(this, position.ptr_to_container);
storage_[position.vector_index]->Erase(position.item_iterator);
// TODO(weiliangc): Free the InnerList if it is empty.
--size_;
}
InnerList* InnerListById(size_t id) const {
DCHECK_LT(id, storage_.size());
return storage_[id];
}
size_t FirstInnerListId() const {
// |size_| > 0 means that at least one vector in |storage_| will be
// non-empty.
DCHECK_GT(size_, 0u);
size_t id = 0;
while (storage_[id]->size == 0)
++id;
return id;
}
size_t LastInnerListId() const {
// |size_| > 0 means that at least one vector in |storage_| will be
// non-empty.
DCHECK_GT(size_, 0u);
size_t id = storage_.size() - 1;
while (storage_[id]->size == 0)
--id;
return id;
}
size_t NumAvailableElementsInLastList() const {
return last_list_->NumElementsAvailable();
}
private:
void AllocateNewList(size_t list_size) {
scoped_ptr<InnerList> new_list(new InnerList);
new_list->capacity = list_size;
new_list->size = 0;
new_list->step = element_size_;
new_list->data.reset(new char[list_size * element_size_]);
storage_.push_back(new_list.Pass());
}
ScopedPtrVector<InnerList> storage_;
const size_t element_size_;
// The number of elements in the list.
size_t size_;
// The index of the last list to have had elements added to it, or the only
// list if the container has not had elements added since being cleared.
size_t last_list_index_;
// This is equivalent to |storage_[last_list_index_]|.
InnerList* last_list_;
DISALLOW_COPY_AND_ASSIGN(ListContainerCharAllocator);
};
// PositionInListContainerCharAllocator
//////////////////////////////////////////////////////
ListContainerBase::PositionInListContainerCharAllocator::
PositionInListContainerCharAllocator(
const ListContainerBase::PositionInListContainerCharAllocator& other)
: ptr_to_container(other.ptr_to_container),
vector_index(other.vector_index),
item_iterator(other.item_iterator) {
}
ListContainerBase::PositionInListContainerCharAllocator::
PositionInListContainerCharAllocator(
ListContainerBase::ListContainerCharAllocator* container,
size_t vector_ind,
char* item_iter)
: ptr_to_container(container),
vector_index(vector_ind),
item_iterator(item_iter) {
}
bool ListContainerBase::PositionInListContainerCharAllocator::operator==(
const ListContainerBase::PositionInListContainerCharAllocator& other)
const {
DCHECK_EQ(ptr_to_container, other.ptr_to_container);
return vector_index == other.vector_index &&
item_iterator == other.item_iterator;
}
bool ListContainerBase::PositionInListContainerCharAllocator::operator!=(
const ListContainerBase::PositionInListContainerCharAllocator& other)
const {
return !(*this == other);
}
ListContainerBase::PositionInListContainerCharAllocator
ListContainerBase::PositionInListContainerCharAllocator::Increment() {
ListContainerCharAllocator::InnerList* list =
ptr_to_container->InnerListById(vector_index);
if (item_iterator == list->LastElement()) {
++vector_index;
while (vector_index < ptr_to_container->list_count()) {
if (ptr_to_container->InnerListById(vector_index)->size != 0)
break;
++vector_index;
}
if (vector_index < ptr_to_container->list_count())
item_iterator = ptr_to_container->InnerListById(vector_index)->Begin();
else
item_iterator = NULL;
} else {
item_iterator += list->step;
}
return *this;
}
ListContainerBase::PositionInListContainerCharAllocator
ListContainerBase::PositionInListContainerCharAllocator::ReverseIncrement() {
ListContainerCharAllocator::InnerList* list =
ptr_to_container->InnerListById(vector_index);
if (item_iterator == list->Begin()) {
--vector_index;
// Since |vector_index| is unsigned, we compare < list_count() instead of
// comparing >= 0, as the variable will wrap around when it goes out of
// range (below 0).
while (vector_index < ptr_to_container->list_count()) {
if (ptr_to_container->InnerListById(vector_index)->size != 0)
break;
--vector_index;
}
if (vector_index < ptr_to_container->list_count()) {
item_iterator =
ptr_to_container->InnerListById(vector_index)->LastElement();
} else {
item_iterator = NULL;
}
} else {
item_iterator -= list->step;
}
return *this;
}
// ListContainerBase
////////////////////////////////////////////
ListContainerBase::ListContainerBase(size_t max_size_for_derived_class)
: data_(new ListContainerCharAllocator(max_size_for_derived_class)) {
}
ListContainerBase::ListContainerBase(size_t max_size_for_derived_class,
size_t num_of_elements_to_reserve_for)
: data_(new ListContainerCharAllocator(max_size_for_derived_class,
num_of_elements_to_reserve_for)) {
}
ListContainerBase::~ListContainerBase() {
}
void ListContainerBase::RemoveLast() {
data_->RemoveLast();
}
void ListContainerBase::EraseAndInvalidateAllPointers(
ListContainerBase::Iterator position) {
data_->Erase(position);
}
ListContainerBase::ConstReverseIterator ListContainerBase::crbegin() const {
if (data_->IsEmpty())
return crend();
size_t id = data_->LastInnerListId();
return ConstReverseIterator(data_.get(), id,
data_->InnerListById(id)->LastElement(), 0);
}
ListContainerBase::ConstReverseIterator ListContainerBase::crend() const {
return ConstReverseIterator(data_.get(), static_cast<size_t>(-1), NULL,
size());
}
ListContainerBase::ReverseIterator ListContainerBase::rbegin() {
if (data_->IsEmpty())
return rend();
size_t id = data_->LastInnerListId();
return ReverseIterator(data_.get(), id,
data_->InnerListById(id)->LastElement(), 0);
}
ListContainerBase::ReverseIterator ListContainerBase::rend() {
return ReverseIterator(data_.get(), static_cast<size_t>(-1), NULL, size());
}
ListContainerBase::ConstIterator ListContainerBase::cbegin() const {
if (data_->IsEmpty())
return cend();
size_t id = data_->FirstInnerListId();
return ConstIterator(data_.get(), id, data_->InnerListById(id)->Begin(), 0);
}
ListContainerBase::ConstIterator ListContainerBase::cend() const {
if (data_->IsEmpty())
return ConstIterator(data_.get(), 0, NULL, size());
size_t id = data_->list_count();
return ConstIterator(data_.get(), id, NULL, size());
}
ListContainerBase::Iterator ListContainerBase::begin() {
if (data_->IsEmpty())
return end();
size_t id = data_->FirstInnerListId();
return Iterator(data_.get(), id, data_->InnerListById(id)->Begin(), 0);
}
ListContainerBase::Iterator ListContainerBase::end() {
if (data_->IsEmpty())
return Iterator(data_.get(), 0, NULL, size());
size_t id = data_->list_count();
return Iterator(data_.get(), id, NULL, size());
}
ListContainerBase::ConstIterator ListContainerBase::IteratorAt(
size_t index) const {
DCHECK_LT(index, size());
size_t original_index = index;
size_t list_index;
for (list_index = 0; list_index < data_->list_count(); ++list_index) {
size_t current_size = data_->InnerListById(list_index)->size;
if (index < current_size)
break;
index -= current_size;
}
return ConstIterator(data_.get(), list_index,
data_->InnerListById(list_index)->ElementAt(index),
original_index);
}
ListContainerBase::Iterator ListContainerBase::IteratorAt(size_t index) {
DCHECK_LT(index, size());
size_t original_index = index;
size_t list_index;
for (list_index = 0; list_index < data_->list_count(); ++list_index) {
size_t current_size = data_->InnerListById(list_index)->size;
if (index < current_size)
break;
index -= current_size;
}
return Iterator(data_.get(), list_index,
data_->InnerListById(list_index)->ElementAt(index),
original_index);
}
void* ListContainerBase::Allocate(size_t size_of_actual_element_in_bytes) {
DCHECK_LE(size_of_actual_element_in_bytes, data_->element_size());
return data_->Allocate();
}
size_t ListContainerBase::size() const {
return data_->size();
}
bool ListContainerBase::empty() const {
return data_->IsEmpty();
}
size_t ListContainerBase::MaxSizeForDerivedClass() const {
return data_->element_size();
}
size_t ListContainerBase::GetCapacityInBytes() const {
return data_->Capacity() * data_->element_size();
}
void ListContainerBase::clear() {
data_->Clear();
}
size_t ListContainerBase::AvailableSizeWithoutAnotherAllocationForTesting()
const {
return data_->NumAvailableElementsInLastList();
}
// ListContainerBase::Iterator
/////////////////////////////////////////////////
ListContainerBase::Iterator::Iterator(ListContainerCharAllocator* container,
size_t vector_ind,
char* item_iter,
size_t index)
: PositionInListContainerCharAllocator(container, vector_ind, item_iter),
index_(index) {
}
ListContainerBase::Iterator::~Iterator() {
}
size_t ListContainerBase::Iterator::index() const {
return index_;
}
// ListContainerBase::ConstIterator
/////////////////////////////////////////////////
ListContainerBase::ConstIterator::ConstIterator(
const ListContainerBase::Iterator& other)
: PositionInListContainerCharAllocator(other), index_(other.index()) {
}
ListContainerBase::ConstIterator::ConstIterator(
ListContainerCharAllocator* container,
size_t vector_ind,
char* item_iter,
size_t index)
: PositionInListContainerCharAllocator(container, vector_ind, item_iter),
index_(index) {
}
ListContainerBase::ConstIterator::~ConstIterator() {
}
size_t ListContainerBase::ConstIterator::index() const {
return index_;
}
// ListContainerBase::ReverseIterator
/////////////////////////////////////////////////
ListContainerBase::ReverseIterator::ReverseIterator(
ListContainerCharAllocator* container,
size_t vector_ind,
char* item_iter,
size_t index)
: PositionInListContainerCharAllocator(container, vector_ind, item_iter),
index_(index) {
}
ListContainerBase::ReverseIterator::~ReverseIterator() {
}
size_t ListContainerBase::ReverseIterator::index() const {
return index_;
}
// ListContainerBase::ConstReverseIterator
/////////////////////////////////////////////////
ListContainerBase::ConstReverseIterator::ConstReverseIterator(
const ListContainerBase::ReverseIterator& other)
: PositionInListContainerCharAllocator(other), index_(other.index()) {
}
ListContainerBase::ConstReverseIterator::ConstReverseIterator(
ListContainerCharAllocator* container,
size_t vector_ind,
char* item_iter,
size_t index)
: PositionInListContainerCharAllocator(container, vector_ind, item_iter),
index_(index) {
}
ListContainerBase::ConstReverseIterator::~ConstReverseIterator() {
}
size_t ListContainerBase::ConstReverseIterator::index() const {
return index_;
}
} // namespace cc