blob: 3c269dc63c343d0ea4fbbb5a4bbfb71b82be625f [file] [log] [blame]
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/segmentation_platform/internal/selection/request_handler.h"
#include "base/memory/raw_ptr.h"
#include "base/metrics/user_metrics.h"
#include "base/run_loop.h"
#include "base/test/gmock_callback_support.h"
#include "base/test/task_environment.h"
#include "components/segmentation_platform/internal/metadata/metadata_writer.h"
#include "components/segmentation_platform/internal/post_processor/post_processing_test_utils.h"
#include "components/segmentation_platform/internal/selection/segment_result_provider.h"
#include "components/segmentation_platform/public/config.h"
#include "components/segmentation_platform/public/prediction_options.h"
#include "components/segmentation_platform/public/result.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using testing::_;
using testing::ElementsAre;
using testing::FloatNear;
using testing::Invoke;
namespace segmentation_platform {
namespace {
// Test Ids.
const proto::SegmentId kSegmentId =
proto::SegmentId::OPTIMIZATION_TARGET_SEGMENTATION_NEW_TAB;
class MockResultProvider : public SegmentResultProvider {
public:
MOCK_METHOD1(GetSegmentResult,
void(std::unique_ptr<GetResultOptions> options));
};
proto::PredictionResult CreatePredictionResultWithBinaryClassifier() {
proto::SegmentationModelMetadata model_metadata;
MetadataWriter writer(&model_metadata);
writer.AddOutputConfigForBinaryClassifier(0.5f, "positive_label",
"negative_label");
proto::PredictionResult prediction_result;
prediction_result.add_result(0.8f);
prediction_result.mutable_output_config()->Swap(
model_metadata.mutable_output_config());
return prediction_result;
}
proto::PredictionResult CreatePredictionResultWithGenericPredictor() {
proto::SegmentationModelMetadata model_metadata;
MetadataWriter writer(&model_metadata);
writer.AddOutputConfigForGenericPredictor({"output1", "output2"});
proto::PredictionResult prediction_result;
prediction_result.add_result(0.8f);
prediction_result.add_result(0.2f);
prediction_result.mutable_output_config()->Swap(
model_metadata.mutable_output_config());
return prediction_result;
}
class RequestHandlerTest : public testing::Test {
public:
RequestHandlerTest() = default;
~RequestHandlerTest() override = default;
void SetUp() override {
base::SetRecordActionTaskRunner(
task_environment_.GetMainThreadTaskRunner());
config_ = test_utils::CreateTestConfig("test_client", kSegmentId);
auto provider = std::make_unique<MockResultProvider>();
result_provider_ = provider.get();
request_handler_ = RequestHandler::Create(*config_, std::move(provider),
&execution_service_);
}
void OnGetClassificationResult(base::RepeatingClosure closure,
const ClassificationResult& expected,
const ClassificationResult& actual) {
EXPECT_EQ(expected.ordered_labels, actual.ordered_labels);
EXPECT_EQ(expected.status, actual.status);
std::move(closure).Run();
}
void OnGetAnnotatedNumericResult(base::RepeatingClosure closure,
const AnnotatedNumericResult& result) {
EXPECT_NEAR(0.8, result.result.result(0), 0.001);
EXPECT_NEAR(0.2, result.result.result(1), 0.001);
EXPECT_EQ(PredictionStatus::kSucceeded, result.status);
std::move(closure).Run();
}
base::test::TaskEnvironment task_environment_{
base::test::TaskEnvironment::TimeSource::MOCK_TIME};
std::unique_ptr<Config> config_;
raw_ptr<MockResultProvider> result_provider_ = nullptr;
std::unique_ptr<RequestHandler> request_handler_;
ExecutionService execution_service_;
};
TEST_F(RequestHandlerTest, TestGetClassificationResult) {
PredictionOptions options;
options.on_demand_execution = true;
EXPECT_CALL(*result_provider_, GetSegmentResult(_))
.Times(1)
.WillRepeatedly(Invoke(
[](std::unique_ptr<SegmentResultProvider::GetResultOptions> options) {
EXPECT_TRUE(options->ignore_db_scores);
EXPECT_EQ(options->segment_id, kSegmentId);
auto result =
std::make_unique<SegmentResultProvider::SegmentResult>(
SegmentResultProvider::ResultState::kTfliteModelScoreUsed,
CreatePredictionResultWithBinaryClassifier(), /*rank=*/2);
std::move(options->callback).Run(std::move(result));
}));
base::RunLoop loop;
ClassificationResult expected(PredictionStatus::kSucceeded);
expected.ordered_labels.emplace_back("positive_label");
request_handler_->GetClassificationResult(
options, scoped_refptr<InputContext>(),
base::BindOnce(&RequestHandlerTest::OnGetClassificationResult,
base::Unretained(this), loop.QuitClosure(), expected));
loop.Run();
}
TEST_F(RequestHandlerTest, GetAnnotatedNumericResult) {
PredictionOptions options;
options.on_demand_execution = true;
EXPECT_CALL(*result_provider_, GetSegmentResult(_))
.Times(1)
.WillRepeatedly(Invoke(
[](std::unique_ptr<SegmentResultProvider::GetResultOptions> options) {
EXPECT_TRUE(options->ignore_db_scores);
EXPECT_EQ(options->segment_id, kSegmentId);
auto result =
std::make_unique<SegmentResultProvider::SegmentResult>(
SegmentResultProvider::ResultState::kTfliteModelScoreUsed,
CreatePredictionResultWithGenericPredictor(), /*rank=*/2);
std::move(options->callback).Run(std::move(result));
}));
base::RunLoop loop;
AnnotatedNumericResult result(PredictionStatus::kSucceeded);
request_handler_->GetAnnotatedNumericResult(
options, scoped_refptr<InputContext>(),
base::BindOnce(&RequestHandlerTest::OnGetAnnotatedNumericResult,
base::Unretained(this), loop.QuitClosure()));
loop.Run();
}
} // namespace
} // namespace segmentation_platform