blob: 61af0679529f7cfbb1a69488c74252978ce6ca5d [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/ip_address_number.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "url/gurl.h"
#include "url/url_canon_ip.h"
namespace net {
namespace {
bool IPNumberPrefixCheck(const IPAddressNumber& ip_number,
const unsigned char* ip_prefix,
size_t prefix_length_in_bits) {
// Compare all the bytes that fall entirely within the prefix.
int num_entire_bytes_in_prefix = prefix_length_in_bits / 8;
for (int i = 0; i < num_entire_bytes_in_prefix; ++i) {
if (ip_number[i] != ip_prefix[i])
return false;
}
// In case the prefix was not a multiple of 8, there will be 1 byte
// which is only partially masked.
int remaining_bits = prefix_length_in_bits % 8;
if (remaining_bits != 0) {
unsigned char mask = 0xFF << (8 - remaining_bits);
int i = num_entire_bytes_in_prefix;
if ((ip_number[i] & mask) != (ip_prefix[i] & mask))
return false;
}
return true;
}
} // namespace
// Don't compare IPv4 and IPv6 addresses (they have different range
// reservations). Keep separate reservation arrays for each IP type, and
// consolidate adjacent reserved ranges within a reservation array when
// possible.
// Sources for info:
// www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
// www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
// They're formatted here with the prefix as the last element. For example:
// 10.0.0.0/8 becomes 10,0,0,0,8 and fec0::/10 becomes 0xfe,0xc0,0,0,0...,10.
bool IsIPAddressReserved(const IPAddressNumber& host_addr) {
static const unsigned char kReservedIPv4[][5] = {
{ 0,0,0,0,8 }, { 10,0,0,0,8 }, { 100,64,0,0,10 }, { 127,0,0,0,8 },
{ 169,254,0,0,16 }, { 172,16,0,0,12 }, { 192,0,2,0,24 },
{ 192,88,99,0,24 }, { 192,168,0,0,16 }, { 198,18,0,0,15 },
{ 198,51,100,0,24 }, { 203,0,113,0,24 }, { 224,0,0,0,3 }
};
static const unsigned char kReservedIPv6[][17] = {
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8 },
{ 0x40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2 },
{ 0x80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2 },
{ 0xc0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3 },
{ 0xe0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4 },
{ 0xf0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5 },
{ 0xf8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6 },
{ 0xfc,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7 },
{ 0xfe,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9 },
{ 0xfe,0x80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10 },
{ 0xfe,0xc0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10 },
};
size_t array_size = 0;
const unsigned char* array = NULL;
switch (host_addr.size()) {
case kIPv4AddressSize:
array_size = arraysize(kReservedIPv4);
array = kReservedIPv4[0];
break;
case kIPv6AddressSize:
array_size = arraysize(kReservedIPv6);
array = kReservedIPv6[0];
break;
}
if (!array)
return false;
size_t width = host_addr.size() + 1;
for (size_t i = 0; i < array_size; ++i, array += width) {
if (IPNumberPrefixCheck(host_addr, array, array[width-1]))
return true;
}
return false;
}
std::string IPAddressToString(const uint8_t* address, size_t address_len) {
std::string str;
url::StdStringCanonOutput output(&str);
if (address_len == kIPv4AddressSize) {
url::AppendIPv4Address(address, &output);
} else if (address_len == kIPv6AddressSize) {
url::AppendIPv6Address(address, &output);
} else {
CHECK(false) << "Invalid IP address with length: " << address_len;
}
output.Complete();
return str;
}
std::string IPAddressToStringWithPort(const uint8_t* address,
size_t address_len,
uint16_t port) {
std::string address_str = IPAddressToString(address, address_len);
if (address_len == kIPv6AddressSize) {
// Need to bracket IPv6 addresses since they contain colons.
return base::StringPrintf("[%s]:%d", address_str.c_str(), port);
}
return base::StringPrintf("%s:%d", address_str.c_str(), port);
}
std::string IPAddressToString(const IPAddressNumber& addr) {
return IPAddressToString(&addr.front(), addr.size());
}
std::string IPAddressToStringWithPort(const IPAddressNumber& addr,
uint16_t port) {
return IPAddressToStringWithPort(&addr.front(), addr.size(), port);
}
std::string IPAddressToPackedString(const IPAddressNumber& addr) {
return std::string(reinterpret_cast<const char *>(&addr.front()),
addr.size());
}
bool ParseURLHostnameToNumber(const std::string& hostname,
IPAddressNumber* ip_number) {
// |hostname| is an already canoncalized hostname, conforming to RFC 3986.
// For an IP address, this is defined in Section 3.2.2 of RFC 3986, with
// the canonical form for IPv6 addresses defined in Section 4 of RFC 5952.
url::Component host_comp(0, hostname.size());
// If it has a bracket, try parsing it as an IPv6 address.
if (hostname[0] == '[') {
ip_number->resize(16); // 128 bits.
return url::IPv6AddressToNumber(
hostname.data(), host_comp, &(*ip_number)[0]);
}
// Otherwise, try IPv4.
ip_number->resize(4); // 32 bits.
int num_components;
url::CanonHostInfo::Family family = url::IPv4AddressToNumber(
hostname.data(), host_comp, &(*ip_number)[0], &num_components);
return family == url::CanonHostInfo::IPV4;
}
bool ParseIPLiteralToNumber(const base::StringPiece& ip_literal,
IPAddressNumber* ip_number) {
// |ip_literal| could be either a IPv4 or an IPv6 literal. If it contains
// a colon however, it must be an IPv6 address.
if (ip_literal.find(':') != base::StringPiece::npos) {
// GURL expects IPv6 hostnames to be surrounded with brackets.
std::string host_brackets = "[";
ip_literal.AppendToString(&host_brackets);
host_brackets.push_back(']');
url::Component host_comp(0, host_brackets.size());
// Try parsing the hostname as an IPv6 literal.
ip_number->resize(16); // 128 bits.
return url::IPv6AddressToNumber(host_brackets.data(), host_comp,
&(*ip_number)[0]);
}
// Otherwise the string is an IPv4 address.
ip_number->resize(4); // 32 bits.
url::Component host_comp(0, ip_literal.size());
int num_components;
url::CanonHostInfo::Family family = url::IPv4AddressToNumber(
ip_literal.data(), host_comp, &(*ip_number)[0], &num_components);
return family == url::CanonHostInfo::IPV4;
}
namespace {
const unsigned char kIPv4MappedPrefix[] =
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF };
}
IPAddressNumber ConvertIPv4NumberToIPv6Number(
const IPAddressNumber& ipv4_number) {
DCHECK(ipv4_number.size() == 4);
// IPv4-mapped addresses are formed by:
// <80 bits of zeros> + <16 bits of ones> + <32-bit IPv4 address>.
IPAddressNumber ipv6_number;
ipv6_number.reserve(16);
ipv6_number.insert(ipv6_number.end(),
kIPv4MappedPrefix,
kIPv4MappedPrefix + arraysize(kIPv4MappedPrefix));
ipv6_number.insert(ipv6_number.end(), ipv4_number.begin(), ipv4_number.end());
return ipv6_number;
}
bool IsIPv4Mapped(const IPAddressNumber& address) {
if (address.size() != kIPv6AddressSize)
return false;
return std::equal(address.begin(),
address.begin() + arraysize(kIPv4MappedPrefix),
kIPv4MappedPrefix);
}
IPAddressNumber ConvertIPv4MappedToIPv4(const IPAddressNumber& address) {
DCHECK(IsIPv4Mapped(address));
return IPAddressNumber(address.begin() + arraysize(kIPv4MappedPrefix),
address.end());
}
bool ParseCIDRBlock(const std::string& cidr_literal,
IPAddressNumber* ip_number,
size_t* prefix_length_in_bits) {
// We expect CIDR notation to match one of these two templates:
// <IPv4-literal> "/" <number of bits>
// <IPv6-literal> "/" <number of bits>
std::vector<base::StringPiece> parts = base::SplitStringPiece(
cidr_literal, "/", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
if (parts.size() != 2)
return false;
// Parse the IP address.
if (!ParseIPLiteralToNumber(parts[0], ip_number))
return false;
// Parse the prefix length.
int number_of_bits = -1;
if (!base::StringToInt(parts[1], &number_of_bits))
return false;
// Make sure the prefix length is in a valid range.
if (number_of_bits < 0 ||
number_of_bits > static_cast<int>(ip_number->size() * 8))
return false;
*prefix_length_in_bits = static_cast<size_t>(number_of_bits);
return true;
}
bool IPNumberMatchesPrefix(const IPAddressNumber& ip_number,
const IPAddressNumber& ip_prefix,
size_t prefix_length_in_bits) {
// Both the input IP address and the prefix IP address should be
// either IPv4 or IPv6.
DCHECK(ip_number.size() == 4 || ip_number.size() == 16);
DCHECK(ip_prefix.size() == 4 || ip_prefix.size() == 16);
DCHECK_LE(prefix_length_in_bits, ip_prefix.size() * 8);
// In case we have an IPv6 / IPv4 mismatch, convert the IPv4 addresses to
// IPv6 addresses in order to do the comparison.
if (ip_number.size() != ip_prefix.size()) {
if (ip_number.size() == 4) {
return IPNumberMatchesPrefix(ConvertIPv4NumberToIPv6Number(ip_number),
ip_prefix, prefix_length_in_bits);
}
return IPNumberMatchesPrefix(ip_number,
ConvertIPv4NumberToIPv6Number(ip_prefix),
96 + prefix_length_in_bits);
}
return IPNumberPrefixCheck(ip_number, &ip_prefix[0], prefix_length_in_bits);
}
unsigned CommonPrefixLength(const IPAddressNumber& a1,
const IPAddressNumber& a2) {
DCHECK_EQ(a1.size(), a2.size());
for (size_t i = 0; i < a1.size(); ++i) {
unsigned diff = a1[i] ^ a2[i];
if (!diff)
continue;
for (unsigned j = 0; j < CHAR_BIT; ++j) {
if (diff & (1 << (CHAR_BIT - 1)))
return i * CHAR_BIT + j;
diff <<= 1;
}
NOTREACHED();
}
return a1.size() * CHAR_BIT;
}
unsigned MaskPrefixLength(const IPAddressNumber& mask) {
IPAddressNumber all_ones(mask.size(), 0xFF);
return CommonPrefixLength(mask, all_ones);
}
} // namespace net