blob: 67460ad968eb1f6517c8d615506a3c63b7c835d3 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <d3d9.h>
#include <random>
#include "base/basictypes.h"
#include "base/file_util.h"
#include "base/hash.h"
#include "base/scoped_native_library.h"
#include "base/strings/stringprintf.h"
#include "base/time/time.h"
#include "base/win/scoped_comptr.h"
#include "base/win/windows_version.h"
#include "media/base/simd/convert_rgb_to_yuv.h"
#include "media/base/yuv_convert.h"
#include "skia/ext/image_operations.h"
#include "testing/gtest/include/gtest/gtest-param-test.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColor.h"
#include "ui/gfx/codec/png_codec.h"
#include "ui/gfx/rect.h"
#include "ui/surface/accelerated_surface_transformer_win.h"
#include "ui/surface/accelerated_surface_win.h"
#include "ui/surface/d3d9_utils_win.h"
namespace d3d_utils = ui_surface_d3d9_utils;
using base::win::ScopedComPtr;
using std::uniform_int_distribution;
namespace {
// Debug flag, useful when hacking on tests.
const bool kDumpImagesOnFailure = false;
SkBitmap ToSkBitmap(IDirect3DSurface9* surface, bool is_single_channel) {
D3DLOCKED_RECT locked_rect;
EXPECT_HRESULT_SUCCEEDED(
surface->LockRect(&locked_rect, NULL, D3DLOCK_READONLY));
SkBitmap result;
gfx::Size size = d3d_utils::GetSize(surface);
if (is_single_channel)
size = gfx::Size(size.width() * 4, size.height());
result.setConfig(SkBitmap::kARGB_8888_Config, size.width(), size.height(),
0, kOpaque_SkAlphaType);
result.allocPixels();
result.lockPixels();
for (int y = 0; y < size.height(); ++y) {
uint8* row8 = reinterpret_cast<uint8*>(locked_rect.pBits) +
(y * locked_rect.Pitch);
if (is_single_channel) {
for (int x = 0; x < size.width(); ++x) {
*result.getAddr32(x, y) = SkColorSetRGB(row8[x], row8[x], row8[x]);
}
} else {
uint32* row32 = reinterpret_cast<uint32*>(row8);
for (int x = 0; x < size.width(); ++x) {
*result.getAddr32(x, y) = row32[x] | 0xFF000000;
}
}
}
result.unlockPixels();
result.setImmutable();
surface->UnlockRect();
return result;
}
bool WritePNGFile(const SkBitmap& bitmap, const base::FilePath& file_path) {
std::vector<unsigned char> png_data;
const bool discard_transparency = true;
if (gfx::PNGCodec::EncodeBGRASkBitmap(bitmap,
discard_transparency,
&png_data) &&
file_util::CreateDirectory(file_path.DirName())) {
char* data = reinterpret_cast<char*>(&png_data[0]);
int size = static_cast<int>(png_data.size());
return file_util::WriteFile(file_path, data, size) == size;
}
return false;
}
} // namespace
// Test fixture for AcceleratedSurfaceTransformer.
//
// This class is parameterized so that it runs only on Vista+. See
// WindowsVersionIfVistaOrBetter() for details on this works.
class AcceleratedSurfaceTransformerTest : public testing::TestWithParam<int> {
public:
AcceleratedSurfaceTransformerTest() : color_error_tolerance_(0) {};
IDirect3DDevice9Ex* device() { return device_.get(); }
virtual void SetUp() {
if (!d3d_module_.is_valid()) {
if (!d3d_utils::LoadD3D9(&d3d_module_)) {
GTEST_FAIL() << "Could not load d3d9.dll";
return;
}
}
if (!d3d_utils::CreateDevice(d3d_module_,
D3DDEVTYPE_HAL,
D3DPRESENT_INTERVAL_IMMEDIATE,
device_.Receive())) {
GTEST_FAIL() << "Could not create Direct3D device.";
return;
}
SeedRandom("default");
}
virtual void TearDown() {
device_ = NULL;
}
// Gets a human-readable identifier of the graphics hardware being used,
// intended for use inside of SCOPED_TRACE().
std::string GetAdapterInfo() {
ScopedComPtr<IDirect3D9> d3d;
EXPECT_HRESULT_SUCCEEDED(device()->GetDirect3D(d3d.Receive()));
D3DADAPTER_IDENTIFIER9 info;
EXPECT_HRESULT_SUCCEEDED(d3d->GetAdapterIdentifier(0, 0, &info));
return base::StringPrintf(
"Running on graphics hardware: %s", info.Description);
}
void SeedRandom(const char* seed) {
rng_.seed(base::Hash(seed));
random_dword_.reset();
}
// Driver workaround: on an Intel GPU (Mobile Intel 965 Express), it seems
// necessary to flush between drawing and locking, for the synchronization
// to behave properly.
void BeforeLockWorkaround() {
EXPECT_HRESULT_SUCCEEDED(
device()->Present(0, 0, 0, 0));
}
void WarnOnMissingFeatures(AcceleratedSurfaceTransformer* gpu_ops) {
// Prints a single warning line if some tests are feature-dependent
// and the feature is not supported by the current GPU.
if (!gpu_ops->device_supports_multiple_render_targets()) {
LOG(WARNING) << "MRT not supported, some tests will be skipped. "
<< GetAdapterInfo();
}
}
// Locks and fills a surface with a checkerboard pattern where the colors
// are random but the total image pattern is horizontally and vertically
// symmetric.
void FillSymmetricRandomCheckerboard(
IDirect3DSurface9* lockable_surface,
const gfx::Size& size,
int checker_square_size) {
D3DLOCKED_RECT locked_rect;
ASSERT_HRESULT_SUCCEEDED(
lockable_surface->LockRect(&locked_rect, NULL, D3DLOCK_DISCARD));
DWORD* surface = reinterpret_cast<DWORD*>(locked_rect.pBits);
ASSERT_EQ(0, locked_rect.Pitch % sizeof(DWORD));
int pitch = locked_rect.Pitch / sizeof(DWORD);
for (int y = 0; y < (size.height() + 1) / 2; y += checker_square_size) {
for (int x = 0; x < (size.width() + 1) / 2; x += checker_square_size) {
DWORD color = RandomColor();
int y_limit = std::min(size.height() / 2, y + checker_square_size - 1);
int x_limit = std::min(size.width() / 2, x + checker_square_size - 1);
for (int y_lo = y; y_lo <= y_limit; y_lo++) {
for (int x_lo = x; x_lo <= x_limit; x_lo++) {
int y_hi = size.height() - 1 - y_lo;
int x_hi = size.width() - 1 - x_lo;
surface[x_lo + y_lo*pitch] = color;
surface[x_lo + y_hi*pitch] = color;
surface[x_hi + y_lo*pitch] = color;
surface[x_hi + y_hi*pitch] = color;
}
}
}
}
lockable_surface->UnlockRect();
}
void FillRandomCheckerboard(
IDirect3DSurface9* lockable_surface,
const gfx::Size& size,
int checker_square_size) {
D3DLOCKED_RECT locked_rect;
ASSERT_HRESULT_SUCCEEDED(
lockable_surface->LockRect(&locked_rect, NULL, D3DLOCK_DISCARD));
DWORD* surface = reinterpret_cast<DWORD*>(locked_rect.pBits);
ASSERT_EQ(0, locked_rect.Pitch % sizeof(DWORD));
int pitch = locked_rect.Pitch / sizeof(DWORD);
for (int y = 0; y <= size.height(); y += checker_square_size) {
for (int x = 0; x <= size.width(); x += checker_square_size) {
DWORD color = RandomColor();
int y_limit = std::min(size.height(), y + checker_square_size);
int x_limit = std::min(size.width(), x + checker_square_size);
for (int square_y = y; square_y < y_limit; square_y++) {
for (int square_x = x; square_x < x_limit; square_x++) {
surface[square_x + square_y*pitch] = color;
}
}
}
}
lockable_surface->UnlockRect();
}
// Approximate color-equality check. Allows for some rounding error.
bool AssertSameColor(DWORD color_a, DWORD color_b) {
if (color_a == color_b)
return true;
uint8* a = reinterpret_cast<uint8*>(&color_a);
uint8* b = reinterpret_cast<uint8*>(&color_b);
int max_error = 0;
for (int i = 0; i < 4; i++)
max_error = std::max(max_error,
std::abs(static_cast<int>(a[i]) - b[i]));
if (max_error <= color_error_tolerance())
return true;
std::string expected_color =
base::StringPrintf("%3d, %3d, %3d, %3d", a[0], a[1], a[2], a[3]);
std::string actual_color =
base::StringPrintf("%3d, %3d, %3d, %3d", b[0], b[1], b[2], b[3]);
EXPECT_EQ(expected_color, actual_color)
<< "Componentwise color difference was "
<< max_error << "; max allowed is " << color_error_tolerance();
return false;
}
bool AssertSameColor(uint8 color_a, uint8 color_b) {
if (color_a == color_b)
return true;
int max_error = std::abs((int) color_a - (int) color_b);
if (max_error <= color_error_tolerance())
return true;
ADD_FAILURE() << "Colors not equal: "
<< base::StringPrintf("0x%x", color_a)
<< " vs. " << base::StringPrintf("0x%x", color_b);
return false;
}
// Asserts that an image is symmetric with respect to itself: both
// horizontally and vertically, within the tolerance of AssertSameColor.
void AssertSymmetry(IDirect3DSurface9* lockable_surface,
const gfx::Size& size) {
BeforeLockWorkaround();
D3DLOCKED_RECT locked_rect;
ASSERT_HRESULT_SUCCEEDED(
lockable_surface->LockRect(&locked_rect, NULL, D3DLOCK_READONLY));
ASSERT_EQ(0, locked_rect.Pitch % sizeof(DWORD));
int pitch = locked_rect.Pitch / sizeof(DWORD);
DWORD* surface = reinterpret_cast<DWORD*>(locked_rect.pBits);
for (int y_lo = 0; y_lo < size.height() / 2; y_lo++) {
int y_hi = size.height() - 1 - y_lo;
for (int x_lo = 0; x_lo < size.width() / 2; x_lo++) {
int x_hi = size.width() - 1 - x_lo;
if (!AssertSameColor(surface[x_lo + y_lo*pitch],
surface[x_hi + y_lo*pitch])) {
lockable_surface->UnlockRect();
GTEST_FAIL() << "Pixels (" << x_lo << ", " << y_lo << ") vs. "
<< "(" << x_hi << ", " << y_lo << ")";
}
if (!AssertSameColor(surface[x_hi + y_lo*pitch],
surface[x_hi + y_hi*pitch])) {
lockable_surface->UnlockRect();
GTEST_FAIL() << "Pixels (" << x_hi << ", " << y_lo << ") vs. "
<< "(" << x_hi << ", " << y_hi << ")";
}
if (!AssertSameColor(surface[x_hi + y_hi*pitch],
surface[x_lo + y_hi*pitch])) {
lockable_surface->UnlockRect();
GTEST_FAIL() << "Pixels (" << x_hi << ", " << y_hi << ") vs. "
<< "(" << x_lo << ", " << y_hi << ")";
}
}
}
lockable_surface->UnlockRect();
}
// Asserts that the actual image is a bit-identical, vertically mirrored
// copy of the expected image.
void AssertIsInvertedCopy(const gfx::Size& size,
IDirect3DSurface9* expected,
IDirect3DSurface9* actual) {
BeforeLockWorkaround();
D3DLOCKED_RECT locked_expected, locked_actual;
ASSERT_HRESULT_SUCCEEDED(
expected->LockRect(&locked_expected, NULL, D3DLOCK_READONLY));
ASSERT_HRESULT_SUCCEEDED(
actual->LockRect(&locked_actual, NULL, D3DLOCK_READONLY));
ASSERT_EQ(0, locked_expected.Pitch % sizeof(DWORD));
int pitch = locked_expected.Pitch / sizeof(DWORD);
DWORD* expected_image = reinterpret_cast<DWORD*>(locked_expected.pBits);
DWORD* actual_image = reinterpret_cast<DWORD*>(locked_actual.pBits);
for (int y = 0; y < size.height(); y++) {
int y_actual = size.height() - 1 - y;
for (int x = 0; x < size.width(); ++x)
if (!AssertSameColor(expected_image[y*pitch + x],
actual_image[y_actual*pitch + x])) {
expected->UnlockRect();
actual->UnlockRect();
GTEST_FAIL() << "Pixels (" << x << ", " << y << ") vs. "
<< "(" << x << ", " << y_actual << ")";
}
}
expected->UnlockRect();
actual->UnlockRect();
}
protected:
DWORD RandomColor() {
return random_dword_(rng_);
}
void set_color_error_tolerance(int value) {
color_error_tolerance_ = value;
}
int color_error_tolerance() {
return color_error_tolerance_;
}
void DoResizeBilinearTest(AcceleratedSurfaceTransformer* gpu_ops,
const gfx::Size& src_size,
const gfx::Size& dst_size,
int checkerboard_size) {
SCOPED_TRACE(
base::StringPrintf(
"Resizing %dx%d -> %dx%d at checkerboard size of %d",
src_size.width(), src_size.height(),
dst_size.width(), dst_size.height(),
checkerboard_size));
set_color_error_tolerance(4);
base::win::ScopedComPtr<IDirect3DSurface9> src, dst;
ASSERT_TRUE(d3d_utils::CreateOrReuseLockableSurface(
device(), src_size, &src))
<< "Could not create src render target";
ASSERT_TRUE(d3d_utils::CreateOrReuseLockableSurface(
device(), dst_size, &dst))
<< "Could not create dst render target";
FillSymmetricRandomCheckerboard(src, src_size, checkerboard_size);
ASSERT_TRUE(gpu_ops->ResizeBilinear(src, gfx::Rect(src_size), dst,
gfx::Rect(dst_size)));
AssertSymmetry(dst, dst_size);
}
void CreateRandomCheckerboardTexture(
const gfx::Size& size,
int checkerboard_size,
base::win::ScopedComPtr<IDirect3DSurface9>* reference_surface,
base::win::ScopedComPtr<IDirect3DTexture9>* result) {
base::win::ScopedComPtr<IDirect3DSurface9> dst;
ASSERT_TRUE(d3d_utils::CreateOrReuseLockableSurface(device(), size,
reference_surface));
ASSERT_TRUE(d3d_utils::CreateOrReuseRenderTargetTexture(device(), size,
result, dst.Receive()));
FillRandomCheckerboard(*reference_surface, size, checkerboard_size);
ASSERT_HRESULT_SUCCEEDED(
device()->StretchRect(
*reference_surface, NULL, dst, NULL, D3DTEXF_NONE));
}
void AssertSame(int width_in_bytes, int height, uint8* reference,
IDirect3DSurface9* lockable) {
BeforeLockWorkaround();
D3DLOCKED_RECT locked_rect;
ASSERT_HRESULT_SUCCEEDED(
lockable->LockRect(&locked_rect, NULL, D3DLOCK_READONLY));
uint8* actual = reinterpret_cast<uint8*>(locked_rect.pBits);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width_in_bytes; ++x) {
if (!AssertSameColor(reference[y * width_in_bytes + x],
actual[y * locked_rect.Pitch + x])) {
lockable->UnlockRect();
GTEST_FAIL() << "At pixel (" << x << ", " << y << ")";
}
}
}
lockable->UnlockRect();
}
void DoCopyInvertedTest(AcceleratedSurfaceTransformer* gpu_ops,
const gfx::Size& size) {
SCOPED_TRACE(base::StringPrintf(
"CopyInverted @ %dx%d", size.width(), size.height()));
set_color_error_tolerance(0);
base::win::ScopedComPtr<IDirect3DSurface9> dst, reference_pattern;
base::win::ScopedComPtr<IDirect3DTexture9> src;
CreateRandomCheckerboardTexture(size, 1, &reference_pattern, &src);
// Alloc a slightly larger image 75% of the time, to test that the
// viewport is set properly.
const int kAlign = 4;
gfx::Size alloc_size((size.width() + kAlign - 1) / kAlign * kAlign,
(size.height() + kAlign - 1) / kAlign * kAlign);
ASSERT_TRUE(d3d_utils::CreateOrReuseLockableSurface(device(), alloc_size,
&dst)) << "Could not create dst render target.";
ASSERT_TRUE(gpu_ops->CopyInverted(src, dst, size));
AssertIsInvertedCopy(size, reference_pattern, dst);
}
void DoYUVConversionTest(AcceleratedSurfaceTransformer* gpu_ops,
const gfx::Size& src_size,
int checkerboard_size) {
// Test the non-MRT implementation, and the MRT implementation as well
// (if supported by the device).
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(gpu_ops, src_size, src_size,
checkerboard_size, false));
if (gpu_ops->device_supports_multiple_render_targets()) {
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(gpu_ops, src_size, src_size,
checkerboard_size, true));
}
}
void DoYUVConversionScaleTest(AcceleratedSurfaceTransformer* gpu_ops,
const gfx::Size& src_size,
const gfx::Size& dst_size) {
// Test the non-MRT implementation, and the MRT implementation as well
// (if supported by the device).
if (gpu_ops->device_supports_multiple_render_targets()) {
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(gpu_ops, src_size, dst_size, 4, true));
}
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(gpu_ops, src_size, dst_size, 4, false));
}
void DoYUVConversionTest(AcceleratedSurfaceTransformer* gpu_ops,
const gfx::Size& src_size,
const gfx::Size& dst_size,
int checkerboard_size,
boolean use_multi_render_targets) {
SCOPED_TRACE(
base::StringPrintf(
"YUV Converting %dx%d at checkerboard size of %d; MRT %s",
src_size.width(), src_size.height(),
checkerboard_size,
use_multi_render_targets ? "enabled" : "disabled"));
base::win::ScopedComPtr<IDirect3DTexture9> src;
base::win::ScopedComPtr<IDirect3DSurface9> reference;
base::win::ScopedComPtr<IDirect3DSurface9> dst_y, dst_u, dst_v;
// TODO(ncarter): Use a better error metric that measures aggregate error
// rather than simply max error. There seems to be slightly more error at
// higher resolutions, maybe due to precision issues during rasterization
// (or maybe more pixels = more test trials). Results are usually to an
// error of 1, but we must use a tolerance of 3.
set_color_error_tolerance(3);
CreateRandomCheckerboardTexture(src_size, checkerboard_size, &reference,
&src);
gfx::Size packed_y_size, packed_uv_size;
ASSERT_TRUE(gpu_ops->AllocYUVBuffers(dst_size,
&packed_y_size,
&packed_uv_size,
dst_y.Receive(),
dst_u.Receive(),
dst_v.Receive()));
// Actually do the conversion.
if (use_multi_render_targets) {
ASSERT_TRUE(gpu_ops->TransformRGBToYV12_MRT(src,
dst_size,
packed_y_size,
packed_uv_size,
dst_y,
dst_u,
dst_v));
} else {
ASSERT_TRUE(gpu_ops->TransformRGBToYV12_WithoutMRT(src,
dst_size,
packed_y_size,
packed_uv_size,
dst_y,
dst_u,
dst_v));
}
// UV size (in bytes/samples) is half, rounded up.
gfx::Size uv_size((dst_size.width() + 1) / 2,
(dst_size.height() + 1) / 2);
// Generate a reference bitmap by calling a software implementation.
SkBitmap reference_rgb = ToSkBitmap(reference, false);
SkBitmap reference_rgb_scaled;
if (dst_size == src_size) {
reference_rgb_scaled = reference_rgb;
} else {
// We'll call Copy to do the bilinear scaling if needed.
base::win::ScopedComPtr<IDirect3DSurface9> reference_scaled;
ASSERT_TRUE(
d3d_utils::CreateOrReuseLockableSurface(
device(), dst_size, &reference_scaled));
ASSERT_TRUE(gpu_ops->Copy(src, reference_scaled, dst_size));
BeforeLockWorkaround();
reference_rgb_scaled = ToSkBitmap(reference_scaled, false);
}
scoped_ptr<uint8[]> reference_y(new uint8[dst_size.GetArea()]);
scoped_ptr<uint8[]> reference_u(new uint8[uv_size.GetArea()]);
scoped_ptr<uint8[]> reference_v(new uint8[uv_size.GetArea()]);
reference_rgb_scaled.lockPixels();
media::ConvertRGB32ToYUV_SSE2_Reference(
reinterpret_cast<uint8*>(reference_rgb_scaled.getAddr32(0, 0)),
&reference_y[0],
&reference_u[0],
&reference_v[0],
dst_size.width(),
dst_size.height(),
reference_rgb_scaled.rowBytes(),
dst_size.width(),
uv_size.width());
reference_rgb_scaled.unlockPixels();
// Check for equality of the reference and the actual.
AssertSame(dst_size.width(), dst_size.height(), &reference_y[0], dst_y);
AssertSame(uv_size.width(), uv_size.height(), &reference_u[0], dst_u);
AssertSame(uv_size.width(), uv_size.height(), &reference_v[0], dst_v);
if (kDumpImagesOnFailure && HasFatalFailure()) {
// Note that this will dump the full u and v buffers, including
// extra columns added due to packing. That means up to 7 extra
// columns for uv, and up to 3 extra columns for y.
WritePNGFile(reference_rgb,
base::FilePath(FILE_PATH_LITERAL("test_fail_src.png")));
WritePNGFile(reference_rgb_scaled,
base::FilePath(
FILE_PATH_LITERAL("test_fail_src_scaled.png")));
WritePNGFile(ToSkBitmap(dst_y, true),
base::FilePath(FILE_PATH_LITERAL("test_fail_y.png")));
WritePNGFile(ToSkBitmap(dst_u, true),
base::FilePath(FILE_PATH_LITERAL("test_fail_u.png")));
WritePNGFile(ToSkBitmap(dst_v, true),
base::FilePath(FILE_PATH_LITERAL("test_fail_v.png")));
}
}
int color_error_tolerance_;
uniform_int_distribution<DWORD> random_dword_;
std::mt19937 rng_;
base::ScopedNativeLibrary d3d_module_;
base::win::ScopedComPtr<IDirect3DDevice9Ex> device_;
};
// Fails on some bots because Direct3D isn't allowed.
TEST_P(AcceleratedSurfaceTransformerTest, Init) {
SCOPED_TRACE(GetAdapterInfo());
AcceleratedSurfaceTransformer gpu_ops;
ASSERT_TRUE(gpu_ops.Init(device()));
WarnOnMissingFeatures(&gpu_ops);
};
// Fails on some bots because Direct3D isn't allowed.
TEST_P(AcceleratedSurfaceTransformerTest, TestConsistentRandom) {
// This behavior should be the same for every execution on every machine.
// Otherwise tests might be flaky and impossible to debug.
SeedRandom("AcceleratedSurfaceTransformerTest.TestConsistentRandom");
ASSERT_EQ(2922058934, RandomColor());
SeedRandom("AcceleratedSurfaceTransformerTest.TestConsistentRandom");
ASSERT_EQ(2922058934, RandomColor());
ASSERT_EQ(4050239976, RandomColor());
SeedRandom("DifferentSeed");
ASSERT_EQ(3904108833, RandomColor());
}
// Fails on some bots because Direct3D isn't allowed.
TEST_P(AcceleratedSurfaceTransformerTest, CopyInverted) {
// This behavior should be the same for every execution on every machine.
// Otherwise tests might be flaky and impossible to debug.
SCOPED_TRACE(GetAdapterInfo());
SeedRandom("CopyInverted");
AcceleratedSurfaceTransformer t;
ASSERT_TRUE(t.Init(device()));
uniform_int_distribution<int> size(1, 512);
for (int i = 0; i < 100; ++i) {
ASSERT_NO_FATAL_FAILURE(
DoCopyInvertedTest(&t, gfx::Size(size(rng_), size(rng_))))
<< "At iteration " << i;
}
}
// Fails on some bots because Direct3D isn't allowed.
// Fails on other bots because of ResizeBilinear symmetry failures.
// Should pass, at least, on NVIDIA Quadro 600.
TEST_P(AcceleratedSurfaceTransformerTest, MixedOperations) {
SCOPED_TRACE(GetAdapterInfo());
SeedRandom("MixedOperations");
AcceleratedSurfaceTransformer t;
ASSERT_TRUE(t.Init(device()));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(255, 255), 1));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(255, 255), 2));
ASSERT_NO_FATAL_FAILURE(
DoCopyInvertedTest(&t, gfx::Size(20, 107)));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(255, 255), 5));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(64, 64), 5));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&t, gfx::Size(128, 128), 1));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(3, 3), 1));
ASSERT_NO_FATAL_FAILURE(
DoCopyInvertedTest(&t, gfx::Size(1412, 124)));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&t, gfx::Size(100, 200), 1));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(257, 257), 1));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(257, 257), 2));
ASSERT_NO_FATAL_FAILURE(
DoCopyInvertedTest(&t, gfx::Size(1512, 7)));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(257, 257), 5));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(150, 256), gfx::Size(126, 256), 8));
ASSERT_NO_FATAL_FAILURE(
DoCopyInvertedTest(&t, gfx::Size(1521, 3)));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&t, gfx::Size(140, 181), 1));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(150, 256), gfx::Size(126, 256), 1));
ASSERT_NO_FATAL_FAILURE(
DoCopyInvertedTest(&t, gfx::Size(33, 712)));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(150, 256), gfx::Size(126, 8), 8));
ASSERT_NO_FATAL_FAILURE(
DoCopyInvertedTest(&t, gfx::Size(33, 2)));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&t, gfx::Size(200, 256), gfx::Size(126, 8), 8));
}
// Tests ResizeBilinear with 16K wide/hight src and dst surfaces.
//
// Fails on some bots because Direct3D isn't allowed.
// Should pass, at least, on NVIDIA Quadro 600.
TEST_P(AcceleratedSurfaceTransformerTest, LargeSurfaces) {
SCOPED_TRACE(GetAdapterInfo());
SeedRandom("LargeSurfaces");
AcceleratedSurfaceTransformer gpu_ops;
ASSERT_TRUE(gpu_ops.Init(device()));
D3DCAPS9 caps;
ASSERT_HRESULT_SUCCEEDED(
device()->GetDeviceCaps(&caps));
SCOPED_TRACE(base::StringPrintf(
"max texture size: %dx%d, max texture aspect: %d",
caps.MaxTextureWidth, caps.MaxTextureHeight, caps.MaxTextureAspectRatio));
const int w = caps.MaxTextureWidth;
const int h = caps.MaxTextureHeight;
const int lo = 256;
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&gpu_ops, gfx::Size(w, lo), gfx::Size(lo, lo), 1));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&gpu_ops, gfx::Size(lo, h), gfx::Size(lo, lo), 1));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&gpu_ops, gfx::Size(lo, lo), gfx::Size(w, lo), lo));
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&gpu_ops, gfx::Size(lo, lo), gfx::Size(lo, h), lo));
ASSERT_NO_FATAL_FAILURE(
DoCopyInvertedTest(&gpu_ops, gfx::Size(w, lo)));
ASSERT_NO_FATAL_FAILURE(
DoCopyInvertedTest(&gpu_ops, gfx::Size(lo, h)));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(w, lo), 1));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(lo, h), 1));
}
// Exercises ResizeBilinear with random minification cases where the
// aspect ratio does not change.
//
// Fails on some bots because Direct3D isn't allowed.
// Fails on other bots because of StretchRect symmetry failures.
// Should pass, at least, on NVIDIA Quadro 600.
TEST_P(AcceleratedSurfaceTransformerTest, MinifyUniform) {
SCOPED_TRACE(GetAdapterInfo());
SeedRandom("MinifyUniform");
AcceleratedSurfaceTransformer gpu_ops;
ASSERT_TRUE(gpu_ops.Init(device()));
const int dims[] = {21, 63, 64, 65, 99, 127, 128, 129, 192, 255, 256, 257};
const int checkerboards[] = {1, 2, 3, 9};
uniform_int_distribution<int> dim(0, arraysize(dims) - 1);
uniform_int_distribution<int> checkerboard(0, arraysize(checkerboards) - 1);
for (int i = 0; i < 300; i++) {
// Widths are picked so that dst is smaller than src.
int dst_width = dims[dim(rng_)];
int src_width = dims[dim(rng_)];
if (src_width < dst_width)
std::swap(dst_width, src_width);
// src_height is picked to preserve aspect ratio.
int dst_height = dims[dim(rng_)];
int src_height = static_cast<int>(
static_cast<int64>(src_width) * dst_height / dst_width);
int checkerboard_size = checkerboards[checkerboard(rng_)];
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&gpu_ops,
gfx::Size(src_width, src_height), // Src size (larger)
gfx::Size(dst_width, dst_height), // Dst size (smaller)
checkerboard_size)) << "Failed on iteration " << i;
}
};
// Exercises ResizeBilinear with random magnification cases where the
// aspect ratio does not change.
//
// This test relies on an assertion that resizing preserves symmetry in the
// image, but for the current implementation of ResizeBilinear, this does not
// seem to be true (fails on NVIDIA Quadro 600; passes on
// Intel Mobile 965 Express)
TEST_P(AcceleratedSurfaceTransformerTest, DISABLED_MagnifyUniform) {
SCOPED_TRACE(GetAdapterInfo());
SeedRandom("MagnifyUniform");
AcceleratedSurfaceTransformer gpu_ops;
ASSERT_TRUE(gpu_ops.Init(device()));
const int dims[] = {63, 64, 65, 99, 127, 128, 129, 192, 255, 256, 257};
const int checkerboards[] = {1, 2, 3, 9};
uniform_int_distribution<int> dim(0, arraysize(dims) - 1);
uniform_int_distribution<int> checkerboard(0, arraysize(checkerboards) - 1);
for (int i = 0; i < 50; i++) {
// Widths are picked so that src is smaller than dst.
int dst_width = dims[dim(rng_)];
int src_width = dims[dim(rng_)];
if (dst_width < src_width)
std::swap(src_width, dst_width);
int dst_height = dims[dim(rng_)];
int src_height = static_cast<int>(
static_cast<int64>(src_width) * dst_height / dst_width);
int checkerboard_size = checkerboards[checkerboard(rng_)];
ASSERT_NO_FATAL_FAILURE(
DoResizeBilinearTest(&gpu_ops,
gfx::Size(src_width, src_height), // Src size (smaller)
gfx::Size(dst_width, dst_height), // Dst size (larger)
checkerboard_size)) << "Failed on iteration " << i;
}
};
TEST_P(AcceleratedSurfaceTransformerTest, RGBtoYUV) {
SeedRandom("RGBtoYUV");
AcceleratedSurfaceTransformer gpu_ops;
ASSERT_TRUE(gpu_ops.Init(device()));
// Start with some easy-to-debug cases. A checkerboard size of 1 is the
// best test, but larger checkerboard sizes give more insight into where
// a bug might be.
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(32, 32), 4));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(32, 32), 2));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(32, 32), 3));
// All cases of width (mod 8) and height (mod 8), using 1x1 checkerboard.
for (int w = 32; w < 40; ++w) {
for (int h = 32; h < 40; ++h) {
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(w, h), 1));
}
}
// All the very small sizes which require the most shifting in the
// texture coordinates when doing alignment.
for (int w = 1; w <= 9; ++w) {
for (int h = 1; h <= 9; ++h) {
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(w, h), 1));
}
}
// Random medium dimensions.
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(10, 142), 1));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(124, 333), 1));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(853, 225), 1));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(231, 412), 1));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(512, 128), 1));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(1024, 768), 1));
// Common video/monitor resolutions
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(800, 768), 1));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(1024, 768), 1));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(1280, 720), 1));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(1280, 720), 2));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(1920, 1080), 1));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(1920, 1080), 2));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionTest(&gpu_ops, gfx::Size(2048, 1536), 1));
}
TEST_P(AcceleratedSurfaceTransformerTest, RGBtoYUVScaled) {
SeedRandom("RGBtoYUVScaled");
AcceleratedSurfaceTransformer gpu_ops;
ASSERT_TRUE(gpu_ops.Init(device()));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(64, 64)));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(16, 16)));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(24, 24)));
ASSERT_NO_FATAL_FAILURE(
DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(48, 48)));
}
namespace {
// Used to suppress test on Windows versions prior to Vista.
std::vector<int> WindowsVersionIfVistaOrBetter() {
std::vector<int> result;
if (base::win::GetVersion() >= base::win::VERSION_VISTA) {
result.push_back(base::win::GetVersion());
}
return result;
}
} // namespace
INSTANTIATE_TEST_CASE_P(VistaAndUp,
AcceleratedSurfaceTransformerTest,
::testing::ValuesIn(WindowsVersionIfVistaOrBetter()));