blob: 3d3031a99be59806f0882fe329a6951f8d51807e [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "android_webview/browser/address_parser_internal.h"
#include <bitset>
#include "base/logging.h"
#include "base/macros.h"
#include "base/strings/string_util.h"
namespace {
// Number of digits for a valid zip code.
const size_t kZipDigits = 5;
// Number of digits for a valid zip code in the Zip Plus 4 format.
const size_t kZipPlus4Digits = 9;
// Maximum number of digits of a house number, including possible hyphens.
const size_t kMaxHouseDigits = 5;
base::char16 SafePreviousChar(const base::string16::const_iterator& it,
const base::string16::const_iterator& begin) {
if (it == begin)
return ' ';
return *(it - 1);
}
base::char16 SafeNextChar(const base::string16::const_iterator& it,
const base::string16::const_iterator& end) {
if (it == end)
return ' ';
return *(it + 1);
}
bool WordLowerCaseEqualsASCII(base::string16::const_iterator word_begin,
base::string16::const_iterator word_end,
const char* ascii_to_match) {
for (base::string16::const_iterator it = word_begin; it != word_end;
++it, ++ascii_to_match) {
if (!*ascii_to_match || base::ToLowerASCII(*it) != *ascii_to_match)
return false;
}
return *ascii_to_match == 0 || *ascii_to_match == ' ';
}
bool LowerCaseEqualsASCIIWithPlural(base::string16::const_iterator word_begin,
base::string16::const_iterator word_end,
const char* ascii_to_match,
bool allow_plural) {
for (base::string16::const_iterator it = word_begin; it != word_end;
++it, ++ascii_to_match) {
if (!*ascii_to_match && allow_plural && *it == 's' && it + 1 == word_end)
return true;
if (!*ascii_to_match || base::ToLowerASCII(*it) != *ascii_to_match)
return false;
}
return *ascii_to_match == 0;
}
} // anonymous namespace
namespace android_webview {
namespace address_parser {
namespace internal {
Word::Word() {}
Word::Word(const base::string16::const_iterator& begin,
const base::string16::const_iterator& end)
: begin(begin), end(end) {
DCHECK(begin <= end);
}
Word::Word(const Word& other) = default;
HouseNumberParser::HouseNumberParser() {}
bool HouseNumberParser::IsPreDelimiter(base::char16 character) {
return character == ':' || IsPostDelimiter(character);
}
bool HouseNumberParser::IsPostDelimiter(base::char16 character) {
return base::IsUnicodeWhitespace(character) || strchr(",\"'", character);
}
void HouseNumberParser::RestartOnNextDelimiter() {
ResetState();
for (; it_ != end_ && !IsPreDelimiter(*it_); ++it_) {
}
}
void HouseNumberParser::AcceptChars(size_t num_chars) {
size_t offset =
std::min(static_cast<size_t>(std::distance(it_, end_)), num_chars);
it_ += offset;
result_chars_ += offset;
}
void HouseNumberParser::SkipChars(size_t num_chars) {
it_ += std::min(static_cast<size_t>(std::distance(it_, end_)), num_chars);
}
void HouseNumberParser::ResetState() {
num_digits_ = 0;
result_chars_ = 0;
}
bool HouseNumberParser::CheckFinished(Word* word) const {
// There should always be a number after a hyphen.
if (result_chars_ == 0 || SafePreviousChar(it_, begin_) == '-')
return false;
if (word) {
word->begin = it_ - result_chars_;
word->end = it_;
}
return true;
}
bool HouseNumberParser::Parse(const base::string16::const_iterator& begin,
const base::string16::const_iterator& end,
Word* word) {
it_ = begin_ = begin;
end_ = end;
ResetState();
// Iterations only used as a fail-safe against any buggy infinite loops.
size_t iterations = 0;
size_t max_iterations = end - begin + 1;
for (; it_ != end_ && iterations < max_iterations; ++iterations) {
// Word finished case.
if (IsPostDelimiter(*it_)) {
if (CheckFinished(word))
return true;
else if (result_chars_)
ResetState();
SkipChars(1);
continue;
}
// More digits. There should be no more after a letter was found.
if (base::IsAsciiDigit(*it_)) {
if (num_digits_ >= kMaxHouseDigits) {
RestartOnNextDelimiter();
} else {
AcceptChars(1);
++num_digits_;
}
continue;
}
if (base::IsAsciiAlpha(*it_)) {
// Handle special case 'one'.
if (result_chars_ == 0) {
if (it_ + 3 <= end_ && base::LowerCaseEqualsASCII(
base::StringPiece16(it_, it_ + 3), "one"))
AcceptChars(3);
else
RestartOnNextDelimiter();
continue;
}
// There should be more than 1 character because of result_chars.
DCHECK_GT(result_chars_, 0U);
DCHECK(it_ != begin_);
base::char16 previous = SafePreviousChar(it_, begin_);
if (base::IsAsciiDigit(previous)) {
// Check cases like '12A'.
base::char16 next = SafeNextChar(it_, end_);
if (IsPostDelimiter(next)) {
AcceptChars(1);
continue;
}
// Handle cases like 12a, 1st, 2nd, 3rd, 7th.
if (base::IsAsciiAlpha(next)) {
base::char16 last_digit = previous;
base::char16 first_letter = base::ToLowerASCII(*it_);
base::char16 second_letter = base::ToLowerASCII(next);
bool is_teen =
SafePreviousChar(it_ - 1, begin_) == '1' && num_digits_ == 2;
switch (last_digit - '0') {
case 1:
if ((first_letter == 's' && second_letter == 't') ||
(first_letter == 't' && second_letter == 'h' && is_teen)) {
AcceptChars(2);
continue;
}
break;
case 2:
if ((first_letter == 'n' && second_letter == 'd') ||
(first_letter == 't' && second_letter == 'h' && is_teen)) {
AcceptChars(2);
continue;
}
break;
case 3:
if ((first_letter == 'r' && second_letter == 'd') ||
(first_letter == 't' && second_letter == 'h' && is_teen)) {
AcceptChars(2);
continue;
}
break;
case 0:
// Explicitly exclude '0th'.
if (num_digits_ == 1)
break;
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
if (first_letter == 't' && second_letter == 'h') {
AcceptChars(2);
continue;
}
break;
default:
NOTREACHED();
}
}
}
RestartOnNextDelimiter();
continue;
}
if (*it_ == '-' && num_digits_ > 0) {
AcceptChars(1);
++num_digits_;
continue;
}
RestartOnNextDelimiter();
SkipChars(1);
}
if (iterations >= max_iterations)
return false;
return CheckFinished(word);
}
bool FindStateStartingInWord(WordList* words,
size_t state_first_word,
size_t* state_last_word,
String16Tokenizer* tokenizer,
size_t* state_index) {
// Bitmasks containing the allowed suffixes for 2-letter state codes.
static const int state_two_letter_suffix[23] = {
0x02060c00, // A followed by: [KLRSZ].
0x00000000, // B.
0x00084001, // C followed by: [AOT].
0x00000014, // D followed by: [CE].
0x00000000, // E.
0x00001800, // F followed by: [LM].
0x00100001, // G followed by: [AU].
0x00000100, // H followed by: [I].
0x00002809, // I followed by: [ADLN].
0x00000000, // J.
0x01040000, // K followed by: [SY].
0x00000001, // L followed by: [A].
0x000ce199, // M followed by: [ADEHINOPST].
0x0120129c, // N followed by: [CDEHJMVY].
0x00020480, // O followed by: [HKR].
0x00420001, // P followed by: [ARW].
0x00000000, // Q.
0x00000100, // R followed by: [I].
0x0000000c, // S followed by: [CD].
0x00802000, // T followed by: [NX].
0x00080000, // U followed by: [T].
0x00080101, // V followed by: [AIT].
0x01200101 // W followed by: [AIVY].
};
// Accumulative number of states for the 2-letter code indexed by the first.
static const int state_two_letter_accumulative[24] = {
0, 5, 5, 8, 10, 10, 12, 14, 15, 19, 19, 21,
22, 32, 40, 43, 46, 46, 47, 49, 51, 52, 55, 59};
// State names sorted alphabetically with their lengths.
// There can be more than one possible name for a same state if desired.
static const struct StateNameInfo {
const char* string;
char first_word_length;
char length;
char state_index; // Relative to two-character code alphabetical order.
} state_names[59] = {{"alabama", 7, 7, 1},
{"alaska", 6, 6, 0},
{"american samoa", 8, 14, 3},
{"arizona", 7, 7, 4},
{"arkansas", 8, 8, 2},
{"california", 10, 10, 5},
{"colorado", 8, 8, 6},
{"connecticut", 11, 11, 7},
{"delaware", 8, 8, 9},
{"district of columbia", 8, 20, 8},
{"federated states of micronesia", 9, 30, 11},
{"florida", 7, 7, 10},
{"guam", 4, 4, 13},
{"georgia", 7, 7, 12},
{"hawaii", 6, 6, 14},
{"idaho", 5, 5, 16},
{"illinois", 8, 8, 17},
{"indiana", 7, 7, 18},
{"iowa", 4, 4, 15},
{"kansas", 6, 6, 19},
{"kentucky", 8, 8, 20},
{"louisiana", 9, 9, 21},
{"maine", 5, 5, 24},
{"marshall islands", 8, 16, 25},
{"maryland", 8, 8, 23},
{"massachusetts", 13, 13, 22},
{"michigan", 8, 8, 26},
{"minnesota", 9, 9, 27},
{"mississippi", 11, 11, 30},
{"missouri", 8, 8, 28},
{"montana", 7, 7, 31},
{"nebraska", 8, 8, 34},
{"nevada", 6, 6, 38},
{"new hampshire", 3, 13, 35},
{"new jersey", 3, 10, 36},
{"new mexico", 3, 10, 37},
{"new york", 3, 8, 39},
{"north carolina", 5, 14, 32},
{"north dakota", 5, 12, 33},
{"northern mariana islands", 8, 24, 29},
{"ohio", 4, 4, 40},
{"oklahoma", 8, 8, 41},
{"oregon", 6, 6, 42},
{"palau", 5, 5, 45},
{"pennsylvania", 12, 12, 43},
{"puerto rico", 6, 11, 44},
{"rhode island", 5, 5, 46},
{"south carolina", 5, 14, 47},
{"south dakota", 5, 12, 48},
{"tennessee", 9, 9, 49},
{"texas", 5, 5, 50},
{"utah", 4, 4, 51},
{"vermont", 7, 7, 54},
{"virgin islands", 6, 14, 53},
{"virginia", 8, 8, 52},
{"washington", 10, 10, 55},
{"west virginia", 4, 13, 57},
{"wisconsin", 9, 9, 56},
{"wyoming", 7, 7, 58}};
// Accumulative number of states for sorted names indexed by the first letter.
// Required a different one since there are codes that don't share their
// first letter with the name of their state (MP = Northern Mariana Islands).
static const int state_names_accumulative[24] = {
0, 5, 5, 8, 10, 10, 12, 14, 15, 19, 19, 21,
22, 31, 40, 43, 46, 46, 47, 49, 51, 52, 55, 59};
DCHECK_EQ(state_names_accumulative[arraysize(state_names_accumulative) - 1],
static_cast<int>(arraysize(state_names)));
const Word& first_word = words->at(state_first_word);
int length = first_word.end - first_word.begin;
if (length < 2 || !base::IsAsciiAlpha(*first_word.begin))
return false;
// No state names start with x, y, z.
base::char16 first_letter = base::ToLowerASCII(*first_word.begin);
if (first_letter > 'w')
return false;
DCHECK(first_letter >= 'a');
int first_index = first_letter - 'a';
// Look for two-letter state names.
if (length == 2 && base::IsAsciiAlpha(*(first_word.begin + 1))) {
base::char16 second_letter = base::ToLowerASCII(*(first_word.begin + 1));
DCHECK(second_letter >= 'a');
int second_index = second_letter - 'a';
if (!(state_two_letter_suffix[first_index] & (1 << second_index)))
return false;
std::bitset<32> previous_suffixes =
state_two_letter_suffix[first_index] & ((1 << second_index) - 1);
*state_last_word = state_first_word;
*state_index =
state_two_letter_accumulative[first_index] + previous_suffixes.count();
return true;
}
// Look for full state names by their first letter. Discard by length.
for (int state = state_names_accumulative[first_index];
state < state_names_accumulative[first_index + 1]; ++state) {
if (state_names[state].first_word_length != length)
continue;
bool state_match = false;
size_t state_word = state_first_word;
for (int pos = 0; true;) {
if (!WordLowerCaseEqualsASCII(words->at(state_word).begin,
words->at(state_word).end,
&state_names[state].string[pos]))
break;
pos += words->at(state_word).end - words->at(state_word).begin + 1;
if (pos >= state_names[state].length) {
state_match = true;
break;
}
// Ran out of words, extract more from the tokenizer.
if (++state_word == words->size()) {
do {
if (!tokenizer->GetNext())
break;
} while (tokenizer->token_is_delim());
words->push_back(
Word(tokenizer->token_begin(), tokenizer->token_end()));
}
}
if (state_match) {
*state_last_word = state_word;
*state_index = state_names[state].state_index;
return true;
}
}
return false;
}
bool IsZipValid(const Word& word, size_t state_index) {
size_t length = word.end - word.begin;
if (length != kZipDigits && length != kZipPlus4Digits + 1)
return false;
for (base::string16::const_iterator it = word.begin; it != word.end; ++it) {
size_t pos = it - word.begin;
if (base::IsAsciiDigit(*it) || (*it == '-' && pos == kZipDigits))
continue;
return false;
}
return IsZipValidForState(word, state_index);
}
bool IsZipValidForState(const Word& word, size_t state_index) {
// List of valid zip code ranges.
static const struct {
signed char low;
signed char high;
signed char exception1;
signed char exception2;
} zip_range[] = {
{99, 99, -1, -1}, // AK Alaska.
{35, 36, -1, -1}, // AL Alabama.
{71, 72, -1, -1}, // AR Arkansas.
{96, 96, -1, -1}, // AS American Samoa.
{85, 86, -1, -1}, // AZ Arizona.
{90, 96, -1, -1}, // CA California.
{80, 81, -1, -1}, // CO Colorado.
{6, 6, -1, -1}, // CT Connecticut.
{20, 20, -1, -1}, // DC District of Columbia.
{19, 19, -1, -1}, // DE Delaware.
{32, 34, -1, -1}, // FL Florida.
{96, 96, -1, -1}, // FM Federated States of Micronesia.
{30, 31, -1, -1}, // GA Georgia.
{96, 96, -1, -1}, // GU Guam.
{96, 96, -1, -1}, // HI Hawaii.
{50, 52, -1, -1}, // IA Iowa.
{83, 83, -1, -1}, // ID Idaho.
{60, 62, -1, -1}, // IL Illinois.
{46, 47, -1, -1}, // IN Indiana.
{66, 67, 73, -1}, // KS Kansas.
{40, 42, -1, -1}, // KY Kentucky.
{70, 71, -1, -1}, // LA Louisiana.
{1, 2, -1, -1}, // MA Massachusetts.
{20, 21, -1, -1}, // MD Maryland.
{3, 4, -1, -1}, // ME Maine.
{96, 96, -1, -1}, // MH Marshall Islands.
{48, 49, -1, -1}, // MI Michigan.
{55, 56, -1, -1}, // MN Minnesota.
{63, 65, -1, -1}, // MO Missouri.
{96, 96, -1, -1}, // MP Northern Mariana Islands.
{38, 39, -1, -1}, // MS Mississippi.
{55, 56, -1, -1}, // MT Montana.
{27, 28, -1, -1}, // NC North Carolina.
{58, 58, -1, -1}, // ND North Dakota.
{68, 69, -1, -1}, // NE Nebraska.
{3, 4, -1, -1}, // NH New Hampshire.
{7, 8, -1, -1}, // NJ New Jersey.
{87, 88, 86, -1}, // NM New Mexico.
{88, 89, 96, -1}, // NV Nevada.
{10, 14, 0, 6}, // NY New York.
{43, 45, -1, -1}, // OH Ohio.
{73, 74, -1, -1}, // OK Oklahoma.
{97, 97, -1, -1}, // OR Oregon.
{15, 19, -1, -1}, // PA Pennsylvania.
{6, 6, 0, 9}, // PR Puerto Rico.
{96, 96, -1, -1}, // PW Palau.
{2, 2, -1, -1}, // RI Rhode Island.
{29, 29, -1, -1}, // SC South Carolina.
{57, 57, -1, -1}, // SD South Dakota.
{37, 38, -1, -1}, // TN Tennessee.
{75, 79, 87, 88}, // TX Texas.
{84, 84, -1, -1}, // UT Utah.
{22, 24, 20, -1}, // VA Virginia.
{6, 9, -1, -1}, // VI Virgin Islands.
{5, 5, -1, -1}, // VT Vermont.
{98, 99, -1, -1}, // WA Washington.
{53, 54, -1, -1}, // WI Wisconsin.
{24, 26, -1, -1}, // WV West Virginia.
{82, 83, -1, -1} // WY Wyoming.
};
// Zip numeric value for the first two characters.
DCHECK(word.begin != word.end);
DCHECK(base::IsAsciiDigit(*word.begin));
DCHECK(base::IsAsciiDigit(*(word.begin + 1)));
int zip_prefix = (*word.begin - '0') * 10 + (*(word.begin + 1) - '0');
if ((zip_prefix >= zip_range[state_index].low &&
zip_prefix <= zip_range[state_index].high) ||
zip_prefix == zip_range[state_index].exception1 ||
zip_prefix == zip_range[state_index].exception2) {
return true;
}
return false;
}
bool IsValidLocationName(const Word& word) {
// Supported location names sorted alphabetically and grouped by first letter.
static const struct LocationNameInfo {
const char* string;
char length;
bool allow_plural;
} location_names[159] = {{"alley", 5, false}, {"annex", 5, false},
{"arcade", 6, false}, {"ave", 3, false},
{"ave.", 4, false}, {"avenue", 6, false},
{"alameda", 7, false}, {"bayou", 5, false},
{"beach", 5, false}, {"bend", 4, false},
{"bluff", 5, true}, {"bottom", 6, false},
{"boulevard", 9, false}, {"branch", 6, false},
{"bridge", 6, false}, {"brook", 5, true},
{"burg", 4, true}, {"bypass", 6, false},
{"broadway", 8, false}, {"camino", 6, false},
{"camp", 4, false}, {"canyon", 6, false},
{"cape", 4, false}, {"causeway", 8, false},
{"center", 6, true}, {"circle", 6, true},
{"cliff", 5, true}, {"club", 4, false},
{"common", 6, false}, {"corner", 6, true},
{"course", 6, false}, {"court", 5, true},
{"cove", 4, true}, {"creek", 5, false},
{"crescent", 8, false}, {"crest", 5, false},
{"crossing", 8, false}, {"crossroad", 9, false},
{"curve", 5, false}, {"circulo", 7, false},
{"dale", 4, false}, {"dam", 3, false},
{"divide", 6, false}, {"drive", 5, true},
{"estate", 6, true}, {"expressway", 10, false},
{"extension", 9, true}, {"fall", 4, true},
{"ferry", 5, false}, {"field", 5, true},
{"flat", 4, true}, {"ford", 4, true},
{"forest", 6, false}, {"forge", 5, true},
{"fork", 4, true}, {"fort", 4, false},
{"freeway", 7, false}, {"garden", 6, true},
{"gateway", 7, false}, {"glen", 4, true},
{"green", 5, true}, {"grove", 5, true},
{"harbor", 6, true}, {"haven", 5, false},
{"heights", 7, false}, {"highway", 7, false},
{"hill", 4, true}, {"hollow", 6, false},
{"inlet", 5, false}, {"island", 6, true},
{"isle", 4, false}, {"junction", 8, true},
{"key", 3, true}, {"knoll", 5, true},
{"lake", 4, true}, {"land", 4, false},
{"landing", 7, false}, {"lane", 4, false},
{"light", 5, true}, {"loaf", 4, false},
{"lock", 4, true}, {"lodge", 5, false},
{"loop", 4, false}, {"mall", 4, false},
{"manor", 5, true}, {"meadow", 6, true},
{"mews", 4, false}, {"mill", 4, true},
{"mission", 7, false}, {"motorway", 8, false},
{"mount", 5, false}, {"mountain", 8, true},
{"neck", 4, false}, {"orchard", 7, false},
{"oval", 4, false}, {"overpass", 8, false},
{"park", 4, true}, {"parkway", 7, true},
{"pass", 4, false}, {"passage", 7, false},
{"path", 4, false}, {"pike", 4, false},
{"pine", 4, true}, {"plain", 5, true},
{"plaza", 5, false}, {"point", 5, true},
{"port", 4, true}, {"prairie", 7, false},
{"privada", 7, false}, {"radial", 6, false},
{"ramp", 4, false}, {"ranch", 5, false},
{"rapid", 5, true}, {"rd", 2, false},
{"rd.", 3, false}, {"rest", 4, false},
{"ridge", 5, true}, {"river", 5, false},
{"road", 4, true}, {"route", 5, false},
{"row", 3, false}, {"rue", 3, false},
{"run", 3, false}, {"shoal", 5, true},
{"shore", 5, true}, {"skyway", 6, false},
{"spring", 6, true}, {"spur", 4, true},
{"square", 6, true}, {"station", 7, false},
{"stravenue", 9, false}, {"stream", 6, false},
{"st", 2, false}, {"st.", 3, false},
{"street", 6, true}, {"summit", 6, false},
{"speedway", 8, false}, {"terrace", 7, false},
{"throughway", 10, false}, {"trace", 5, false},
{"track", 5, false}, {"trafficway", 10, false},
{"trail", 5, false}, {"tunnel", 6, false},
{"turnpike", 8, false}, {"underpass", 9, false},
{"union", 5, true}, {"valley", 6, true},
{"viaduct", 7, false}, {"view", 4, true},
{"village", 7, true}, {"ville", 5, false},
{"vista", 5, false}, {"walk", 4, true},
{"wall", 4, false}, {"way", 3, true},
{"well", 4, true}, {"xing", 4, false},
{"xrd", 3, false}};
// Accumulative number of location names for each starting letter.
static const int location_names_accumulative[25] = {
0, 7, 19, 40, 44, 47, 57, 62, 68, 71, 72, 74, 83,
92, 93, 96, 109, 109, 123, 137, 145, 147, 153, 157, 159};
DCHECK_EQ(
location_names_accumulative[arraysize(location_names_accumulative) - 1],
static_cast<int>(arraysize(location_names)));
if (!base::IsAsciiAlpha(*word.begin))
return false;
// No location names start with y, z.
base::char16 first_letter = base::ToLowerASCII(*word.begin);
if (first_letter > 'x')
return false;
DCHECK(first_letter >= 'a');
int index = first_letter - 'a';
int length = std::distance(word.begin, word.end);
for (int i = location_names_accumulative[index];
i < location_names_accumulative[index + 1]; ++i) {
if (location_names[i].length != length &&
(location_names[i].allow_plural &&
location_names[i].length + 1 != length)) {
continue;
}
if (LowerCaseEqualsASCIIWithPlural(word.begin, word.end,
location_names[i].string,
location_names[i].allow_plural)) {
return true;
}
}
return false;
}
} // namespace internal
} // namespace address_parser
} // namespace android_webview