blob: f606f960bffb12d6d274047709f8b051d4bc81a2 [file] [log] [blame]
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/encoded_program.h"
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include "base/logging.h"
#include "base/sys_info.h"
#include "courgette/courgette.h"
#include "courgette/streams.h"
namespace courgette {
// Stream indexes.
const int kStreamMisc = 0;
const int kStreamOps = 1;
const int kStreamBytes = 2;
const int kStreamAbs32Indexes = 3;
const int kStreamRel32Indexes = 4;
const int kStreamAbs32Addresses = 5;
const int kStreamRel32Addresses = 6;
const int kStreamCopyCounts = 7;
const int kStreamOriginAddresses = kStreamMisc;
const int kStreamLimit = 9;
// Binary assembly language operations.
enum EncodedProgram::OP {
ORIGIN, // ORIGIN <rva> - set address for subsequent assembly.
COPY, // COPY <count> <bytes> - copy bytes to output.
COPY1, // COPY1 <byte> - same as COPY 1 <byte>.
REL32, // REL32 <index> - emit rel32 encoded reference to address at
// address table offset <index>
ABS32, // ABS32 <index> - emit abs32 encoded reference to address at
// address table offset <index>
MAKE_BASE_RELOCATION_TABLE, // Emit base relocation table blocks.
OP_LAST
};
// Constructor is here rather than in the header. Although the constructor
// appears to do nothing it is fact quite large because of the implict calls to
// field constructors. Ditto for the destructor.
EncodedProgram::EncodedProgram() {}
EncodedProgram::~EncodedProgram() {}
// Serializes a vector of integral values using Varint32 coding.
template<typename T>
void WriteVector(const std::vector<T>& items, SinkStream* buffer) {
size_t count = items.size();
buffer->WriteVarint32(count);
for (size_t i = 0; i < count; ++i) {
COMPILE_ASSERT(sizeof(T) <= sizeof(uint32), T_must_fit_in_uint32);
buffer->WriteVarint32(static_cast<uint32>(items[i]));
}
}
template<typename T>
bool ReadVector(std::vector<T>* items, SourceStream* buffer) {
uint32 count;
if (!buffer->ReadVarint32(&count))
return false;
items->clear();
items->reserve(count);
for (size_t i = 0; i < count; ++i) {
uint32 item;
if (!buffer->ReadVarint32(&item))
return false;
items->push_back(static_cast<T>(item));
}
return true;
}
// Serializes a vector, using delta coding followed by Varint32 coding.
void WriteU32Delta(const std::vector<uint32>& set, SinkStream* buffer) {
size_t count = set.size();
buffer->WriteVarint32(count);
uint32 prev = 0;
for (size_t i = 0; i < count; ++i) {
uint32 current = set[i];
uint32 delta = current - prev;
buffer->WriteVarint32(delta);
prev = current;
}
}
static bool ReadU32Delta(std::vector<uint32>* set, SourceStream* buffer) {
uint32 count;
if (!buffer->ReadVarint32(&count))
return false;
set->clear();
set->reserve(count);
uint32 prev = 0;
for (size_t i = 0; i < count; ++i) {
uint32 delta;
if (!buffer->ReadVarint32(&delta))
return false;
uint32 current = prev + delta;
set->push_back(current);
prev = current;
}
return true;
}
// Write a vector as the byte representation of the contents.
//
// (This only really makes sense for a type T that has sizeof(T)==1, otherwise
// serilized representation is not endian-agnositic. But it is useful to keep
// the possibility of a greater size for experiments comparing Varint32 encoding
// of a vector of larger integrals vs a plain form.)
//
template<typename T>
void WriteVectorU8(const std::vector<T>& items, SinkStream* buffer) {
uint32 count = items.size();
buffer->WriteVarint32(count);
if (count != 0) {
size_t byte_count = count * sizeof(T);
buffer->Write(static_cast<const void*>(&items[0]), byte_count);
}
}
template<typename T>
bool ReadVectorU8(std::vector<T>* items, SourceStream* buffer) {
uint32 count;
if (!buffer->ReadVarint32(&count))
return false;
items->clear();
items->resize(count);
if (count != 0) {
size_t byte_count = count * sizeof(T);
return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count);
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
void EncodedProgram::DefineRel32Label(int index, RVA value) {
DefineLabelCommon(&rel32_rva_, index, value);
}
void EncodedProgram::DefineAbs32Label(int index, RVA value) {
DefineLabelCommon(&abs32_rva_, index, value);
}
static const RVA kUnassignedRVA = static_cast<RVA>(-1);
void EncodedProgram::DefineLabelCommon(std::vector<RVA>* rvas,
int index,
RVA rva) {
if (static_cast<int>(rvas->size()) <= index) {
rvas->resize(index + 1, kUnassignedRVA);
}
if ((*rvas)[index] != kUnassignedRVA) {
NOTREACHED() << "DefineLabel double assigned " << index;
}
(*rvas)[index] = rva;
}
void EncodedProgram::EndLabels() {
FinishLabelsCommon(&abs32_rva_);
FinishLabelsCommon(&rel32_rva_);
}
void EncodedProgram::FinishLabelsCommon(std::vector<RVA>* rvas) {
// Replace all unassigned slots with the value at the previous index so they
// delta-encode to zero. (There might be better values than zero. The way to
// get that is have the higher level assembly program assign the unassigned
// slots.)
RVA previous = 0;
size_t size = rvas->size();
for (size_t i = 0; i < size; ++i) {
if ((*rvas)[i] == kUnassignedRVA)
(*rvas)[i] = previous;
else
previous = (*rvas)[i];
}
}
void EncodedProgram::AddOrigin(RVA origin) {
ops_.push_back(ORIGIN);
origins_.push_back(origin);
}
void EncodedProgram::AddCopy(int count, const void* bytes) {
const uint8* source = static_cast<const uint8*>(bytes);
// Fold adjacent COPY instructions into one. This nearly halves the size of
// an EncodedProgram with only COPY1 instructions since there are approx plain
// 16 bytes per reloc. This has a working-set benefit during decompression.
// For compression of files with large differences this makes a small (4%)
// improvement in size. For files with small differences this degrades the
// compressed size by 1.3%
if (ops_.size() > 0) {
if (ops_.back() == COPY1) {
ops_.back() = COPY;
copy_counts_.push_back(1);
}
if (ops_.back() == COPY) {
copy_counts_.back() += count;
for (int i = 0; i < count; ++i) {
copy_bytes_.push_back(source[i]);
}
return;
}
}
if (count == 1) {
ops_.push_back(COPY1);
copy_bytes_.push_back(source[0]);
} else {
ops_.push_back(COPY);
copy_counts_.push_back(count);
for (int i = 0; i < count; ++i) {
copy_bytes_.push_back(source[i]);
}
}
}
void EncodedProgram::AddAbs32(int label_index) {
ops_.push_back(ABS32);
abs32_ix_.push_back(label_index);
}
void EncodedProgram::AddRel32(int label_index) {
ops_.push_back(REL32);
rel32_ix_.push_back(label_index);
}
void EncodedProgram::AddMakeRelocs() {
ops_.push_back(MAKE_BASE_RELOCATION_TABLE);
}
void EncodedProgram::DebuggingSummary() {
LOG(INFO) << "EncodedProgram Summary";
LOG(INFO) << " image base " << image_base_;
LOG(INFO) << " abs32 rvas " << abs32_rva_.size();
LOG(INFO) << " rel32 rvas " << rel32_rva_.size();
LOG(INFO) << " ops " << ops_.size();
LOG(INFO) << " origins " << origins_.size();
LOG(INFO) << " copy_counts " << copy_counts_.size();
LOG(INFO) << " copy_bytes " << copy_bytes_.size();
LOG(INFO) << " abs32_ix " << abs32_ix_.size();
LOG(INFO) << " rel32_ix " << rel32_ix_.size();
}
////////////////////////////////////////////////////////////////////////////////
// For algorithm refinement purposes it is useful to write subsets of the file
// format. This gives us the ability to estimate the entropy of the
// differential compression of the individual streams, which can provide
// invaluable insights. The default, of course, is to include all the streams.
//
enum FieldSelect {
INCLUDE_ABS32_ADDRESSES = 0x0001,
INCLUDE_REL32_ADDRESSES = 0x0002,
INCLUDE_ABS32_INDEXES = 0x0010,
INCLUDE_REL32_INDEXES = 0x0020,
INCLUDE_OPS = 0x0100,
INCLUDE_BYTES = 0x0200,
INCLUDE_COPY_COUNTS = 0x0400,
INCLUDE_MISC = 0x1000
};
static FieldSelect GetFieldSelect() {
#if 1
// TODO(sra): Use better configuration.
std::wstring s = base::SysInfo::GetEnvVar(L"A_FIELDS");
if (!s.empty()) {
return static_cast<FieldSelect>(wcstoul(s.c_str(), 0, 0));
}
#endif
return static_cast<FieldSelect>(~0);
}
void EncodedProgram::WriteTo(SinkStreamSet* streams) {
FieldSelect select = GetFieldSelect();
// The order of fields must be consistent in WriteTo and ReadFrom, regardless
// of the streams used. The code can be configured with all kStreamXXX
// constants the same.
//
// If we change the code to pipeline reading with assembly (to avoid temporary
// storage vectors by consuming operands directly from the stream) then we
// need to read the base address and the random access address tables first,
// the rest can be interleaved.
if (select & INCLUDE_MISC) {
// TODO(sra): write 64 bits.
streams->stream(kStreamMisc)->WriteVarint32(
static_cast<uint32>(image_base_));
}
if (select & INCLUDE_ABS32_ADDRESSES)
WriteU32Delta(abs32_rva_, streams->stream(kStreamAbs32Addresses));
if (select & INCLUDE_REL32_ADDRESSES)
WriteU32Delta(rel32_rva_, streams->stream(kStreamRel32Addresses));
if (select & INCLUDE_MISC)
WriteVector(origins_, streams->stream(kStreamOriginAddresses));
if (select & INCLUDE_OPS) {
streams->stream(kStreamOps)->Reserve(ops_.size() + 5); // 5 for length.
WriteVector(ops_, streams->stream(kStreamOps));
}
if (select & INCLUDE_COPY_COUNTS)
WriteVector(copy_counts_, streams->stream(kStreamCopyCounts));
if (select & INCLUDE_BYTES)
WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes));
if (select & INCLUDE_ABS32_INDEXES)
WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes));
if (select & INCLUDE_REL32_INDEXES)
WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes));
}
bool EncodedProgram::ReadFrom(SourceStreamSet* streams) {
// TODO(sra): read 64 bits.
uint32 temp;
if (!streams->stream(kStreamMisc)->ReadVarint32(&temp))
return false;
image_base_ = temp;
if (!ReadU32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses)))
return false;
if (!ReadU32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses)))
return false;
if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses)))
return false;
if (!ReadVector(&ops_, streams->stream(kStreamOps)))
return false;
if (!ReadVector(&copy_counts_, streams->stream(kStreamCopyCounts)))
return false;
if (!ReadVectorU8(&copy_bytes_, streams->stream(kStreamBytes)))
return false;
if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes)))
return false;
if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes)))
return false;
// Check that streams have been completely consumed.
for (int i = 0; i < kStreamLimit; ++i) {
if (streams->stream(i)->Remaining() > 0)
return false;
}
return true;
}
// Safe, non-throwing version of std::vector::at(). Returns 'true' for success,
// 'false' for out-of-bounds index error.
template<typename T>
bool VectorAt(const std::vector<T>& v, size_t index, T* output) {
if (index >= v.size())
return false;
*output = v[index];
return true;
}
bool EncodedProgram::AssembleTo(SinkStream* final_buffer) {
// For the most part, the assembly process walks the various tables.
// ix_mumble is the index into the mumble table.
size_t ix_origins = 0;
size_t ix_copy_counts = 0;
size_t ix_copy_bytes = 0;
size_t ix_abs32_ix = 0;
size_t ix_rel32_ix = 0;
RVA current_rva = 0;
bool pending_base_relocation_table = false;
SinkStream bytes_following_base_relocation_table;
SinkStream* output = final_buffer;
for (size_t ix_ops = 0; ix_ops < ops_.size(); ++ix_ops) {
OP op = ops_[ix_ops];
switch (op) {
default:
return false;
case ORIGIN: {
RVA section_rva;
if (!VectorAt(origins_, ix_origins, &section_rva))
return false;
++ix_origins;
current_rva = section_rva;
break;
}
case COPY: {
int count;
if (!VectorAt(copy_counts_, ix_copy_counts, &count))
return false;
++ix_copy_counts;
for (int i = 0; i < count; ++i) {
uint8 b;
if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
return false;
++ix_copy_bytes;
output->Write(&b, 1);
}
current_rva += count;
break;
}
case COPY1: {
uint8 b;
if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
return false;
++ix_copy_bytes;
output->Write(&b, 1);
current_rva += 1;
break;
}
case REL32: {
uint32 index;
if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
return false;
++ix_rel32_ix;
RVA rva;
if (!VectorAt(rel32_rva_, index, &rva))
return false;
uint32 offset = (rva - (current_rva + 4));
output->Write(&offset, 4);
current_rva += 4;
break;
}
case ABS32: {
uint32 index;
if (!VectorAt(abs32_ix_, ix_abs32_ix, &index))
return false;
++ix_abs32_ix;
RVA rva;
if (!VectorAt(abs32_rva_, index, &rva))
return false;
uint32 abs32 = static_cast<uint32>(rva + image_base_);
abs32_relocs_.push_back(current_rva);
output->Write(&abs32, 4);
current_rva += 4;
break;
}
case MAKE_BASE_RELOCATION_TABLE: {
// We can see the base relocation anywhere, but we only have the
// information to generate it at the very end. So we divert the bytes
// we are generating to a temporary stream.
if (pending_base_relocation_table) // Can't have two base relocation
// tables.
return false;
pending_base_relocation_table = true;
output = &bytes_following_base_relocation_table;
break;
// There is a potential problem *if* the instruction stream contains
// some REL32 relocations following the base relocation and in the same
// section. We don't know the size of the table, so 'current_rva' will
// be wrong, causing REL32 offsets to be miscalculated. This never
// happens; the base relocation table is usually in a section of its
// own, a data-only section, and following everything else in the
// executable except some padding zero bytes. We could fix this by
// emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE.
}
}
}
if (pending_base_relocation_table) {
GenerateBaseRelocations(final_buffer);
final_buffer->Append(&bytes_following_base_relocation_table);
}
// Final verification check: did we consume all lists?
if (ix_copy_counts != copy_counts_.size())
return false;
if (ix_copy_bytes != copy_bytes_.size())
return false;
if (ix_abs32_ix != abs32_ix_.size())
return false;
if (ix_rel32_ix != rel32_ix_.size())
return false;
return true;
}
// RelocBlock has the layout of a block of relocations in the base relocation
// table file format.
//
class RelocBlock {
public:
uint32 page_rva;
uint32 block_size;
uint16 relocs[4096]; // Allow up to one relocation per byte of a 4k page.
RelocBlock() : page_rva(~0), block_size(8) {}
void Add(uint16 item) {
relocs[(block_size-8)/2] = item;
block_size += 2;
}
void Flush(SinkStream* buffer) {
if (block_size != 8) {
if (block_size % 4 != 0) { // Pad to make size multiple of 4 bytes.
Add(0);
}
buffer->Write(this, block_size);
block_size = 8;
}
}
};
COMPILE_ASSERT(offsetof(RelocBlock, relocs) == 8, reloc_block_header_size);
void EncodedProgram::GenerateBaseRelocations(SinkStream* buffer) {
std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
RelocBlock block;
for (size_t i = 0; i < abs32_relocs_.size(); ++i) {
uint32 rva = abs32_relocs_[i];
uint32 page_rva = rva & ~0xFFF;
if (page_rva != block.page_rva) {
block.Flush(buffer);
block.page_rva = page_rva;
}
block.Add(0x3000 | (rva & 0xFFF));
}
block.Flush(buffer);
}
////////////////////////////////////////////////////////////////////////////////
Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) {
encoded->WriteTo(sink);
return C_OK;
}
Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) {
EncodedProgram* encoded = new EncodedProgram();
if (encoded->ReadFrom(streams)) {
*output = encoded;
return C_OK;
}
delete encoded;
return C_DESERIALIZATION_FAILED;
}
Status Assemble(EncodedProgram* encoded, SinkStream* buffer) {
bool assembled = encoded->AssembleTo(buffer);
if (assembled)
return C_OK;
return C_ASSEMBLY_FAILED;
}
void DeleteEncodedProgram(EncodedProgram* encoded) {
delete encoded;
}
} // end namespace