blob: b12b9afe7d238f67c2194497d747bc31b47ac841 [file] [log] [blame]
# Copyright 2016 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
"""Labels requests according to the type of content they represent."""
import collections
import logging
import os
import loading_trace
import request_track
class ContentClassificationLens(object):
"""Associates requests and frames with the type of content they represent."""
def __init__(self, trace, ad_rules, tracking_rules):
"""Initializes an instance of ContentClassificationLens.
Args:
trace: (LoadingTrace) loading trace.
ad_rules: ([str]) List of Adblock+ compatible rules used to classify ads.
tracking_rules: ([str]) List of Adblock+ compatible rules used to
classify tracking and analytics.
"""
self._trace = trace
self._requests = trace.request_track.GetEvents()
self._main_frame_id = trace.page_track.GetEvents()[0]['frame_id']
self._frame_to_requests = collections.defaultdict(list)
self._ad_requests = set()
self._tracking_requests = set()
self._ad_matcher = _RulesMatcher(ad_rules, True)
self._tracking_matcher = _RulesMatcher(tracking_rules, True)
self._GroupRequestsByFrameId()
self._LabelRequests()
def IsAdRequest(self, request):
"""Returns True iff the request matches one of the ad_rules."""
return request.request_id in self._ad_requests
def IsTrackingRequest(self, request):
"""Returns True iff the request matches one of the tracking_rules."""
return request.request_id in self._tracking_requests
def IsAdFrame(self, frame_id, ratio):
"""A Frame is an Ad frame if more than |ratio| of its requests are
ad-related, and is not the main frame."""
if frame_id == self._main_frame_id:
return False
ad_requests_count = sum(r in self._ad_requests
for r in self._frame_to_requests[frame_id])
frame_requests_count = len(self._frame_to_requests[frame_id])
return (float(ad_requests_count) / frame_requests_count) > ratio
@classmethod
def WithRulesFiles(cls, trace, ad_rules_filename, tracking_rules_filename):
"""Returns an instance of ContentClassificationLens with the rules read
from files.
"""
ad_rules = []
tracking_rules = []
if os.path.exists(ad_rules_filename):
ad_rules = open(ad_rules_filename, 'r').readlines()
if os.path.exists(tracking_rules_filename):
tracking_rules = open(tracking_rules_filename, 'r').readlines()
return ContentClassificationLens(trace, ad_rules, tracking_rules)
def _GroupRequestsByFrameId(self):
for request in self._requests:
frame_id = request.frame_id
self._frame_to_requests[frame_id].append(request.request_id)
def _LabelRequests(self):
for request in self._requests:
request_id = request.request_id
if self._ad_matcher.Matches(request):
self._ad_requests.add(request_id)
if self._tracking_matcher.Matches(request):
self._tracking_requests.add(request_id)
class _RulesMatcher(object):
"""Matches requests with rules in Adblock+ format."""
_WHITELIST_PREFIX = '@@'
_RESOURCE_TYPE_TO_OPTIONS_KEY = {
'Script': 'script', 'Stylesheet': 'stylesheet', 'Image': 'image',
'XHR': 'xmlhttprequest'}
def __init__(self, rules, no_whitelist):
"""Initializes an instance of _RulesMatcher.
Args:
rules: ([str]) list of rules.
no_whitelist: (bool) Whether the whitelisting rules should be ignored.
"""
self._rules = self._FilterRules(rules, no_whitelist)
if self._rules:
try:
import adblockparser
self._matcher = adblockparser.AdblockRules(self._rules)
except ImportError:
logging.critical('Likely you need to install adblockparser. Try:\n'
' pip install --user adblockparser\n'
'For 10-100x better performance, also try:\n'
" pip install --user 're2 >= 0.2.21'")
raise
else:
self._matcher = None
def Matches(self, request):
"""Returns whether a request matches one of the rules."""
if self._matcher is None:
return False
url = request.url
return self._matcher.should_block(url, self._GetOptions(request))
@classmethod
def _GetOptions(cls, request):
options = {}
resource_type = request.resource_type
option = cls._RESOURCE_TYPE_TO_OPTIONS_KEY.get(resource_type)
if option:
options[option] = True
return options
@classmethod
def _FilterRules(cls, rules, no_whitelist):
if not no_whitelist:
return rules
else:
return [rule for rule in rules
if not rule.startswith(cls._WHITELIST_PREFIX)]