| // Copyright 2014 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cc/quads/draw_polygon.h" |
| |
| #include <stddef.h> |
| |
| #include <vector> |
| |
| #include "cc/output/bsp_compare_result.h" |
| #include "cc/quads/draw_quad.h" |
| |
| namespace { |
| // This threshold controls how "thick" a plane is. If a point's distance is |
| // <= |compare_threshold|, then it is considered on the plane. Only when this |
| // boundary is crossed do we consider doing splitting. |
| static const float compare_threshold = 0.1f; |
| // |split_threshold| is lower in this case because we want the points created |
| // during splitting to be well within the range of |compare_threshold| for |
| // comparison purposes. The splitting operation will produce intersection points |
| // that fit within a tighter distance to the splitting plane as a result of this |
| // value. By using a value >= |compare_threshold| we run the risk of creating |
| // points that SHOULD be intersecting the "thick plane", but actually fail to |
| // test positively for it because |split_threshold| allowed them to be outside |
| // this range. |
| // This is really supposd to be compare_threshold / 2.0f, but that would |
| // create another static initializer. |
| static const float split_threshold = 0.05f; |
| |
| static const float normalized_threshold = 0.001f; |
| } // namespace |
| |
| namespace cc { |
| |
| DrawPolygon::DrawPolygon() { |
| } |
| |
| DrawPolygon::DrawPolygon(const DrawQuad* original, |
| const std::vector<gfx::Point3F>& in_points, |
| const gfx::Vector3dF& normal, |
| int draw_order_index) |
| : order_index_(draw_order_index), original_ref_(original), is_split_(true) { |
| for (size_t i = 0; i < in_points.size(); i++) { |
| points_.push_back(in_points[i]); |
| } |
| normal_ = normal; |
| } |
| |
| // This takes the original DrawQuad that this polygon should be based on, |
| // a visible content rect to make the 4 corner points from, and a transformation |
| // to move it and its normal into screen space. |
| DrawPolygon::DrawPolygon(const DrawQuad* original_ref, |
| const gfx::RectF& visible_layer_rect, |
| const gfx::Transform& transform, |
| int draw_order_index) |
| : normal_(0.0f, 0.0f, 1.0f), |
| order_index_(draw_order_index), |
| original_ref_(original_ref), |
| is_split_(false) { |
| gfx::Point3F points[8]; |
| int num_vertices_in_clipped_quad; |
| gfx::QuadF send_quad(visible_layer_rect); |
| |
| // Doing this mapping here is very important, since we can't just transform |
| // the points without clipping and not run into strange geometry issues when |
| // crossing w = 0. At this point, in the constructor, we know that we're |
| // working with a quad, so we can reuse the MathUtil::MapClippedQuad3d |
| // function instead of writing a generic polygon version of it. |
| MathUtil::MapClippedQuad3d( |
| transform, send_quad, points, &num_vertices_in_clipped_quad); |
| for (int i = 0; i < num_vertices_in_clipped_quad; i++) { |
| points_.push_back(points[i]); |
| } |
| ConstructNormal(); |
| } |
| |
| DrawPolygon::~DrawPolygon() { |
| } |
| |
| scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() { |
| scoped_ptr<DrawPolygon> new_polygon(new DrawPolygon()); |
| new_polygon->order_index_ = order_index_; |
| new_polygon->original_ref_ = original_ref_; |
| new_polygon->points_.reserve(points_.size()); |
| new_polygon->points_ = points_; |
| new_polygon->normal_.set_x(normal_.x()); |
| new_polygon->normal_.set_y(normal_.y()); |
| new_polygon->normal_.set_z(normal_.z()); |
| return new_polygon; |
| } |
| |
| // |
| // If this were to be more generally used and expected to be applicable |
| // replacing this with Newell's algorithm (or an improvement thereof) |
| // would be preferable, but usually this is coming in from a rectangle |
| // that has been transformed to screen space and clipped. |
| // Averaging a few near diagonal cross products is pretty good in that case. |
| // |
| void DrawPolygon::ConstructNormal() { |
| normal_.set_x(0.0f); |
| normal_.set_y(0.0f); |
| normal_.set_z(0.0f); |
| int delta = points_.size() / 2; |
| for (size_t i = 1; i + delta < points_.size(); i++) { |
| normal_ += |
| CrossProduct(points_[i] - points_[0], points_[i + delta] - points_[0]); |
| } |
| float normal_magnitude = normal_.Length(); |
| if (normal_magnitude != 0 && normal_magnitude != 1) { |
| normal_.Scale(1.0f / normal_magnitude); |
| } |
| } |
| |
| #if defined(OS_WIN) |
| // |
| // Allows the unittest to invoke this for the more general constructor. |
| // |
| void DrawPolygon::RecomputeNormalForTesting() { |
| ConstructNormal(); |
| } |
| #endif |
| |
| float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { |
| return gfx::DotProduct(point - points_[0], normal_); |
| } |
| |
| // Checks whether or not shape a lies on the front or back side of b, or |
| // whether they should be considered coplanar. If on the back side, we |
| // say A_BEFORE_B because it should be drawn in that order. |
| // Assumes that layers are split and there are no intersecting planes. |
| BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a, |
| const DrawPolygon& b) { |
| // Let's make sure that this is normalized. Without this SignedPointDistance |
| // will not be right, but putting the check in there will validate it |
| // redundantly for each point. |
| DCHECK_GE(normalized_threshold, std::abs(b.normal_.LengthSquared() - 1.0f)); |
| |
| int pos_count = 0; |
| int neg_count = 0; |
| for (size_t i = 0; i < a.points_.size(); i++) { |
| float sign = b.SignedPointDistance(a.points_[i]); |
| |
| if (sign < -compare_threshold) { |
| ++neg_count; |
| } else if (sign > compare_threshold) { |
| ++pos_count; |
| } |
| |
| if (pos_count && neg_count) { |
| return BSP_SPLIT; |
| } |
| } |
| |
| if (pos_count) { |
| return BSP_FRONT; |
| } |
| if (neg_count) { |
| return BSP_BACK; |
| } |
| |
| double dot = gfx::DotProduct(a.normal_, b.normal_); |
| if ((dot >= 0.0f && a.order_index_ >= b.order_index_) || |
| (dot <= 0.0f && a.order_index_ <= b.order_index_)) { |
| // The sign of the dot product of the normals along with document order |
| // determine which side it goes on, the vertices are ambiguous. |
| return BSP_COPLANAR_BACK; |
| } |
| |
| return BSP_COPLANAR_FRONT; |
| } |
| |
| static bool LineIntersectPlane(const gfx::Point3F& line_start, |
| const gfx::Point3F& line_end, |
| const gfx::Point3F& plane_origin, |
| const gfx::Vector3dF& plane_normal, |
| gfx::Point3F* intersection, |
| float distance_threshold) { |
| gfx::Vector3dF start_to_origin_vector = plane_origin - line_start; |
| gfx::Vector3dF end_to_origin_vector = plane_origin - line_end; |
| |
| double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal); |
| double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal); |
| |
| // The case where one vertex lies on the thick-plane and the other |
| // is outside of it. |
| if (std::abs(start_distance) <= distance_threshold && |
| std::abs(end_distance) > distance_threshold) { |
| intersection->SetPoint(line_start.x(), line_start.y(), line_start.z()); |
| return true; |
| } |
| |
| // This is the case where we clearly cross the thick-plane. |
| if ((start_distance > distance_threshold && |
| end_distance < -distance_threshold) || |
| (start_distance < -distance_threshold && |
| end_distance > distance_threshold)) { |
| gfx::Vector3dF v = line_end - line_start; |
| float total_distance = std::abs(start_distance) + std::abs(end_distance); |
| float lerp_factor = std::abs(start_distance) / total_distance; |
| |
| intersection->SetPoint(line_start.x() + (v.x() * lerp_factor), |
| line_start.y() + (v.y() * lerp_factor), |
| line_start.z() + (v.z() * lerp_factor)); |
| |
| return true; |
| } |
| return false; |
| } |
| |
| // This function is separate from ApplyTransform because it is often unnecessary |
| // to transform the normal with the rest of the polygon. |
| // When drawing these polygons, it is necessary to move them back into layer |
| // space before sending them to OpenGL, which requires using ApplyTransform, |
| // but normal information is no longer needed after sorting. |
| void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) { |
| // Now we use the inverse transpose of |transform| to transform the normal. |
| gfx::Transform inverse_transform; |
| bool inverted = transform.GetInverse(&inverse_transform); |
| DCHECK(inverted); |
| if (!inverted) |
| return; |
| inverse_transform.Transpose(); |
| |
| gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z()); |
| inverse_transform.TransformPoint(&new_normal); |
| // Make sure our normal is still normalized. |
| normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z()); |
| float normal_magnitude = normal_.Length(); |
| if (normal_magnitude != 0 && normal_magnitude != 1) { |
| normal_.Scale(1.0f / normal_magnitude); |
| } |
| } |
| |
| void DrawPolygon::ApplyTransform(const gfx::Transform& transform) { |
| for (size_t i = 0; i < points_.size(); i++) { |
| transform.TransformPoint(&points_[i]); |
| } |
| } |
| |
| // TransformToScreenSpace assumes we're moving a layer from its layer space |
| // into 3D screen space, which for sorting purposes requires the normal to |
| // be transformed along with the vertices. |
| void DrawPolygon::TransformToScreenSpace(const gfx::Transform& transform) { |
| ApplyTransform(transform); |
| ConstructNormal(); |
| } |
| |
| // In the case of TransformToLayerSpace, we assume that we are giving the |
| // inverse transformation back to the polygon to move it back into layer space |
| // but we can ignore the costly process of applying the inverse to the normal |
| // since we know the normal will just reset to its original state. |
| void DrawPolygon::TransformToLayerSpace( |
| const gfx::Transform& inverse_transform) { |
| ApplyTransform(inverse_transform); |
| normal_ = gfx::Vector3dF(0.0f, 0.0f, -1.0f); |
| } |
| |
| bool DrawPolygon::Split(const DrawPolygon& splitter, |
| scoped_ptr<DrawPolygon>* front, |
| scoped_ptr<DrawPolygon>* back) { |
| gfx::Point3F intersections[2]; |
| std::vector<gfx::Point3F> out_points[2]; |
| // vertex_before stores the index of the vertex before its matching |
| // intersection. |
| // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane |
| // which resulted in the line/plane intersection giving us intersections[0]. |
| size_t vertex_before[2]; |
| size_t points_size = points_.size(); |
| size_t current_intersection = 0; |
| |
| size_t current_vertex = 0; |
| // We will only have two intersection points because we assume all polygons |
| // are convex. |
| while (current_intersection < 2) { |
| if (LineIntersectPlane(points_[(current_vertex % points_size)], |
| points_[(current_vertex + 1) % points_size], |
| splitter.points_[0], |
| splitter.normal_, |
| &intersections[current_intersection], |
| split_threshold)) { |
| vertex_before[current_intersection] = current_vertex % points_size; |
| current_intersection++; |
| // We found both intersection points so we're done already. |
| if (current_intersection == 2) { |
| break; |
| } |
| } |
| if (current_vertex++ > (points_size)) { |
| break; |
| } |
| } |
| DCHECK_EQ(current_intersection, static_cast<size_t>(2)); |
| |
| // Since we found both the intersection points, we can begin building the |
| // vertex set for both our new polygons. |
| size_t start1 = (vertex_before[0] + 1) % points_size; |
| size_t start2 = (vertex_before[1] + 1) % points_size; |
| size_t points_remaining = points_size; |
| |
| // First polygon. |
| out_points[0].push_back(intersections[0]); |
| DCHECK_GE(vertex_before[1], start1); |
| for (size_t i = start1; i <= vertex_before[1]; i++) { |
| out_points[0].push_back(points_[i]); |
| --points_remaining; |
| } |
| out_points[0].push_back(intersections[1]); |
| |
| // Second polygon. |
| out_points[1].push_back(intersections[1]); |
| size_t index = start2; |
| for (size_t i = 0; i < points_remaining; i++) { |
| out_points[1].push_back(points_[index % points_size]); |
| ++index; |
| } |
| out_points[1].push_back(intersections[0]); |
| |
| // Give both polygons the original splitting polygon's ID, so that they'll |
| // still be sorted properly in co-planar instances. |
| scoped_ptr<DrawPolygon> poly1( |
| new DrawPolygon(original_ref_, out_points[0], normal_, order_index_)); |
| scoped_ptr<DrawPolygon> poly2( |
| new DrawPolygon(original_ref_, out_points[1], normal_, order_index_)); |
| |
| DCHECK_GE(poly1->points().size(), 3u); |
| DCHECK_GE(poly2->points().size(), 3u); |
| |
| if (SideCompare(*poly1, splitter) == BSP_FRONT) { |
| *front = std::move(poly1); |
| *back = std::move(poly2); |
| } else { |
| *front = std::move(poly2); |
| *back = std::move(poly1); |
| } |
| return true; |
| } |
| |
| // This algorithm takes the first vertex in the polygon and uses that as a |
| // pivot point to fan out and create quads from the rest of the vertices. |
| // |offset| starts off as the second vertex, and then |op1| and |op2| indicate |
| // offset+1 and offset+2 respectively. |
| // After the first quad is created, the first vertex in the next quad is the |
| // same as all the rest, the pivot point. The second vertex in the next quad is |
| // the old |op2|, the last vertex added to the previous quad. This continues |
| // until all points are exhausted. |
| // The special case here is where there are only 3 points remaining, in which |
| // case we use the same values for vertex 3 and 4 to make a degenerate quad |
| // that represents a triangle. |
| void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { |
| if (points_.size() <= 2) |
| return; |
| |
| gfx::PointF first(points_[0].x(), points_[0].y()); |
| size_t offset = 1; |
| while (offset < points_.size() - 1) { |
| size_t op1 = offset + 1; |
| size_t op2 = offset + 2; |
| if (op2 >= points_.size()) { |
| // It's going to be a degenerate triangle. |
| op2 = op1; |
| } |
| quads->push_back( |
| gfx::QuadF(first, |
| gfx::PointF(points_[offset].x(), points_[offset].y()), |
| gfx::PointF(points_[op1].x(), points_[op1].y()), |
| gfx::PointF(points_[op2].x(), points_[op2].y()))); |
| offset = op2; |
| } |
| } |
| |
| } // namespace cc |