| // Copyright 2016 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "components/client_update_protocol/ecdsa.h" |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <string> |
| #include <string_view> |
| #include <vector> |
| |
| #include "base/base64url.h" |
| #include "base/check.h" |
| #include "base/containers/to_vector.h" |
| #include "base/logging.h" |
| #include "base/memory/ptr_util.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "base/strings/string_util.h" |
| #include "base/strings/stringprintf.h" |
| #include "crypto/hash.h" |
| #include "crypto/random.h" |
| #include "crypto/sign.h" |
| |
| namespace client_update_protocol { |
| namespace { |
| |
| bool ParseETagHeader(std::string_view etag_header_value_in, |
| std::vector<uint8_t>* ecdsa_signature_out, |
| std::vector<uint8_t>* request_hash_out) { |
| // The ETag value is a UTF-8 string, formatted as "S:H", where: |
| // * S is the ECDSA signature in DER-encoded ASN.1 form, converted to hex. |
| // * H is the SHA-256 hash of the observed request body, standard hex format. |
| // A Weak ETag is formatted as W/"S:H". This function treats it the same as a |
| // strong ETag. |
| std::string_view etag_header_value(etag_header_value_in); |
| |
| // Remove the weak prefix, then remove the begin and the end quotes. |
| const char kWeakETagPrefix[] = "W/"; |
| if (base::StartsWith(etag_header_value, kWeakETagPrefix)) { |
| etag_header_value.remove_prefix(std::size(kWeakETagPrefix) - 1); |
| } |
| if (etag_header_value.size() >= 2 && |
| base::StartsWith(etag_header_value, "\"") && |
| base::EndsWith(etag_header_value, "\"")) { |
| etag_header_value.remove_prefix(1); |
| etag_header_value.remove_suffix(1); |
| } |
| |
| const std::string_view::size_type delim_pos = etag_header_value.find(':'); |
| if (delim_pos == std::string_view::npos || delim_pos == 0 || |
| delim_pos == etag_header_value.size() - 1) { |
| return false; |
| } |
| |
| const std::string_view sig_hex = etag_header_value.substr(0, delim_pos); |
| const std::string_view hash_hex = etag_header_value.substr(delim_pos + 1); |
| |
| // Decode the ECDSA signature. Don't bother validating the contents of it; |
| // the SignatureValidator class will handle the actual DER decoding and |
| // ASN.1 parsing. Check for an expected size range only -- valid ECDSA |
| // signatures are between 8 and 72 bytes. |
| if (!base::HexStringToBytes(sig_hex, ecdsa_signature_out)) { |
| return false; |
| } |
| if (ecdsa_signature_out->size() < 8 || ecdsa_signature_out->size() > 72) { |
| return false; |
| } |
| |
| // Decode the SHA-256 hash; it should be exactly 32 bytes, no more or less. |
| if (!base::HexStringToBytes(hash_hex, request_hash_out)) { |
| return false; |
| } |
| if (request_hash_out->size() != crypto::hash::kSha256Size) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| } // namespace |
| |
| Ecdsa::Ecdsa(int key_version, base::span<const uint8_t> public_key) |
| : pub_key_version_(key_version), |
| // This will fail a CHECK if the public key is malformed. Since the public |
| // key is hardcoded, that's fine. |
| public_key_( |
| *crypto::keypair::PublicKey::FromSubjectPublicKeyInfo(public_key)) { |
| CHECK_GT(key_version, 0); |
| CHECK(public_key_.IsEc()); |
| } |
| |
| Ecdsa::~Ecdsa() = default; |
| |
| void Ecdsa::OverrideNonceForTesting(int key_version, uint32_t nonce) { |
| DCHECK(!request_query_cup2key_.empty()); |
| request_query_cup2key_ = base::StringPrintf("%d:%u", pub_key_version_, nonce); |
| } |
| |
| void Ecdsa::SignRequest(std::string_view request_body, |
| std::string* query_params) { |
| DCHECK(query_params); |
| Ecdsa::RequestParameters request_parameters = SignRequest(request_body); |
| *query_params = base::StringPrintf("cup2key=%s&cup2hreq=%s", |
| request_parameters.query_cup2key.c_str(), |
| request_parameters.hash_hex.c_str()); |
| } |
| |
| Ecdsa::RequestParameters Ecdsa::SignRequest(std::string_view request_body) { |
| // Generate a random nonce to use for freshness, build the cup2key query |
| // string, and compute the SHA-256 hash of the request body. Set these |
| // two pieces of data aside to use during ValidateResponse(). |
| std::array<uint8_t, 32> nonce; |
| crypto::RandBytes(nonce); |
| |
| // The nonce is an opaque string to the server, so the exact encoding does not |
| // matter. Use base64url as it is slightly more compact than hex. |
| std::string nonce_b64; |
| base::Base64UrlEncode(nonce, base::Base64UrlEncodePolicy::OMIT_PADDING, |
| &nonce_b64); |
| |
| request_query_cup2key_ = |
| base::StringPrintf("%d:%s", pub_key_version_, nonce_b64); |
| request_hash_ = crypto::hash::Sha256(base::as_byte_span(request_body)); |
| |
| // Return the query string for the user to send with the request. |
| return {.query_cup2key = request_query_cup2key_, |
| .hash_hex = base::ToLowerASCII(base::HexEncode(request_hash_))}; |
| } |
| |
| bool Ecdsa::ValidateResponse(std::string_view response_body, |
| std::string_view server_etag) { |
| CHECK(!request_hash_.empty()); |
| CHECK(!request_query_cup2key_.empty()); |
| |
| if (response_body.empty() || server_etag.empty()) { |
| return false; |
| } |
| |
| // Break the ETag into its two components (the ECDSA signature, and the |
| // hash of the request that the server observed) and decode to byte buffers. |
| std::vector<uint8_t> signature; |
| std::vector<uint8_t> observed_request_hash; |
| if (!ParseETagHeader(server_etag, &signature, &observed_request_hash)) { |
| return false; |
| } |
| |
| // Check that the server's observed request hash is equal to the original |
| // request hash. (This is a quick rejection test; the signature test is |
| // authoritative, but slower.) |
| if (!std::ranges::equal(observed_request_hash, request_hash_)) { |
| return false; |
| } |
| |
| // Next, build the buffer that the server will have signed on its end: |
| // hash( hash(request) | hash(response) | cup2key_query_string ) |
| // When building the client's version of the buffer, it's important to use |
| // the original request hash that it attempted to send, and not the observed |
| // request hash that the server sent back to us. |
| crypto::hash::Hasher hasher(crypto::hash::HashKind::kSha256); |
| hasher.Update(request_hash_); |
| hasher.Update(crypto::hash::Sha256(base::as_byte_span(response_body))); |
| hasher.Update(base::as_byte_span(request_query_cup2key_)); |
| std::array<uint8_t, crypto::hash::kSha256Size> inner_hash; |
| hasher.Finish(inner_hash); |
| |
| // If the verification fails, that implies one of two outcomes: |
| // * The signature was modified. |
| // * The buffer that the server signed does not match the buffer that the |
| // client assembled -- implying that either request body or response body |
| // was modified, or a different nonce value was used. |
| // |
| // Note that the signature is taken over a hash of inner_hash (hence signature |
| // kind ECDSA_SHA256). |
| return crypto::sign::Verify(crypto::sign::SignatureKind::ECDSA_SHA256, |
| public_key_, inner_hash, signature); |
| } |
| |
| } // namespace client_update_protocol |