| // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "base/sha1.h" | 
 |  | 
 | #include <stddef.h> | 
 | #include <stdint.h> | 
 | #include <string.h> | 
 |  | 
 |  | 
 | namespace base { | 
 |  | 
 | // Implementation of SHA-1. Only handles data in byte-sized blocks, | 
 | // which simplifies the code a fair bit. | 
 |  | 
 | // Identifier names follow notation in FIPS PUB 180-3, where you'll | 
 | // also find a description of the algorithm: | 
 | // http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf | 
 |  | 
 | // Usage example: | 
 | // | 
 | // SecureHashAlgorithm sha; | 
 | // while(there is data to hash) | 
 | //   sha.Update(moredata, size of data); | 
 | // sha.Final(); | 
 | // memcpy(somewhere, sha.Digest(), 20); | 
 | // | 
 | // to reuse the instance of sha, call sha.Init(); | 
 |  | 
 | // TODO(jhawkins): Replace this implementation with a per-platform | 
 | // implementation using each platform's crypto library.  See | 
 | // http://crbug.com/47218 | 
 |  | 
 | class SecureHashAlgorithm { | 
 |  public: | 
 |   SecureHashAlgorithm() { Init(); } | 
 |  | 
 |   static const int kDigestSizeBytes; | 
 |  | 
 |   void Init(); | 
 |   void Update(const void* data, size_t nbytes); | 
 |   void Final(); | 
 |  | 
 |   // 20 bytes of message digest. | 
 |   const unsigned char* Digest() const { | 
 |     return reinterpret_cast<const unsigned char*>(H); | 
 |   } | 
 |  | 
 |  private: | 
 |   void Pad(); | 
 |   void Process(); | 
 |  | 
 |   uint32_t A, B, C, D, E; | 
 |  | 
 |   uint32_t H[5]; | 
 |  | 
 |   union { | 
 |     uint32_t W[80]; | 
 |     uint8_t M[64]; | 
 |   }; | 
 |  | 
 |   uint32_t cursor; | 
 |   uint64_t l; | 
 | }; | 
 |  | 
 | static inline uint32_t f(uint32_t t, uint32_t B, uint32_t C, uint32_t D) { | 
 |   if (t < 20) { | 
 |     return (B & C) | ((~B) & D); | 
 |   } else if (t < 40) { | 
 |     return B ^ C ^ D; | 
 |   } else if (t < 60) { | 
 |     return (B & C) | (B & D) | (C & D); | 
 |   } else { | 
 |     return B ^ C ^ D; | 
 |   } | 
 | } | 
 |  | 
 | static inline uint32_t S(uint32_t n, uint32_t X) { | 
 |   return (X << n) | (X >> (32-n)); | 
 | } | 
 |  | 
 | static inline uint32_t K(uint32_t t) { | 
 |   if (t < 20) { | 
 |     return 0x5a827999; | 
 |   } else if (t < 40) { | 
 |     return 0x6ed9eba1; | 
 |   } else if (t < 60) { | 
 |     return 0x8f1bbcdc; | 
 |   } else { | 
 |     return 0xca62c1d6; | 
 |   } | 
 | } | 
 |  | 
 | static inline void swapends(uint32_t* t) { | 
 |   *t = (*t >> 24) | ((*t >> 8) & 0xff00) | ((*t & 0xff00) << 8) | (*t << 24); | 
 | } | 
 |  | 
 | const int SecureHashAlgorithm::kDigestSizeBytes = 20; | 
 |  | 
 | void SecureHashAlgorithm::Init() { | 
 |   A = 0; | 
 |   B = 0; | 
 |   C = 0; | 
 |   D = 0; | 
 |   E = 0; | 
 |   cursor = 0; | 
 |   l = 0; | 
 |   H[0] = 0x67452301; | 
 |   H[1] = 0xefcdab89; | 
 |   H[2] = 0x98badcfe; | 
 |   H[3] = 0x10325476; | 
 |   H[4] = 0xc3d2e1f0; | 
 | } | 
 |  | 
 | void SecureHashAlgorithm::Final() { | 
 |   Pad(); | 
 |   Process(); | 
 |  | 
 |   for (int t = 0; t < 5; ++t) | 
 |     swapends(&H[t]); | 
 | } | 
 |  | 
 | void SecureHashAlgorithm::Update(const void* data, size_t nbytes) { | 
 |   const uint8_t* d = reinterpret_cast<const uint8_t*>(data); | 
 |   while (nbytes--) { | 
 |     M[cursor++] = *d++; | 
 |     if (cursor >= 64) | 
 |       Process(); | 
 |     l += 8; | 
 |   } | 
 | } | 
 |  | 
 | void SecureHashAlgorithm::Pad() { | 
 |   M[cursor++] = 0x80; | 
 |  | 
 |   if (cursor > 64-8) { | 
 |     // pad out to next block | 
 |     while (cursor < 64) | 
 |       M[cursor++] = 0; | 
 |  | 
 |     Process(); | 
 |   } | 
 |  | 
 |   while (cursor < 64-8) | 
 |     M[cursor++] = 0; | 
 |  | 
 |   M[cursor++] = (l >> 56) & 0xff; | 
 |   M[cursor++] = (l >> 48) & 0xff; | 
 |   M[cursor++] = (l >> 40) & 0xff; | 
 |   M[cursor++] = (l >> 32) & 0xff; | 
 |   M[cursor++] = (l >> 24) & 0xff; | 
 |   M[cursor++] = (l >> 16) & 0xff; | 
 |   M[cursor++] = (l >> 8) & 0xff; | 
 |   M[cursor++] = l & 0xff; | 
 | } | 
 |  | 
 | void SecureHashAlgorithm::Process() { | 
 |   uint32_t t; | 
 |  | 
 |   // Each a...e corresponds to a section in the FIPS 180-3 algorithm. | 
 |  | 
 |   // a. | 
 |   // | 
 |   // W and M are in a union, so no need to memcpy. | 
 |   // memcpy(W, M, sizeof(M)); | 
 |   for (t = 0; t < 16; ++t) | 
 |     swapends(&W[t]); | 
 |  | 
 |   // b. | 
 |   for (t = 16; t < 80; ++t) | 
 |     W[t] = S(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]); | 
 |  | 
 |   // c. | 
 |   A = H[0]; | 
 |   B = H[1]; | 
 |   C = H[2]; | 
 |   D = H[3]; | 
 |   E = H[4]; | 
 |  | 
 |   // d. | 
 |   for (t = 0; t < 80; ++t) { | 
 |     uint32_t TEMP = S(5, A) + f(t, B, C, D) + E + W[t] + K(t); | 
 |     E = D; | 
 |     D = C; | 
 |     C = S(30, B); | 
 |     B = A; | 
 |     A = TEMP; | 
 |   } | 
 |  | 
 |   // e. | 
 |   H[0] += A; | 
 |   H[1] += B; | 
 |   H[2] += C; | 
 |   H[3] += D; | 
 |   H[4] += E; | 
 |  | 
 |   cursor = 0; | 
 | } | 
 |  | 
 | std::string SHA1HashString(const std::string& str) { | 
 |   char hash[SecureHashAlgorithm::kDigestSizeBytes]; | 
 |   SHA1HashBytes(reinterpret_cast<const unsigned char*>(str.c_str()), | 
 |                 str.length(), reinterpret_cast<unsigned char*>(hash)); | 
 |   return std::string(hash, SecureHashAlgorithm::kDigestSizeBytes); | 
 | } | 
 |  | 
 | void SHA1HashBytes(const unsigned char* data, size_t len, | 
 |                    unsigned char* hash) { | 
 |   SecureHashAlgorithm sha; | 
 |   sha.Update(data, len); | 
 |   sha.Final(); | 
 |  | 
 |   memcpy(hash, sha.Digest(), SecureHashAlgorithm::kDigestSizeBytes); | 
 | } | 
 |  | 
 | }  // namespace base |