blob: 84047265f7a1b90fce2c34b669f42ef7a5cccff5 [file] [log] [blame]
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** An tokenizer for SQL
**
** This file contains C code that splits an SQL input string up into
** individual tokens and sends those tokens one-by-one over to the
** parser for analysis.
*/
#include "sqliteInt.h"
#include <stdlib.h>
/* Character classes for tokenizing
**
** In the sqlite3GetToken() function, a switch() on aiClass[c] is implemented
** using a lookup table, whereas a switch() directly on c uses a binary search.
** The lookup table is much faster. To maximize speed, and to ensure that
** a lookup table is used, all of the classes need to be small integers and
** all of them need to be used within the switch.
*/
#define CC_X 0 /* The letter 'x', or start of BLOB literal */
#define CC_KYWD 1 /* Alphabetics or '_'. Usable in a keyword */
#define CC_ID 2 /* unicode characters usable in IDs */
#define CC_DIGIT 3 /* Digits */
#define CC_DOLLAR 4 /* '$' */
#define CC_VARALPHA 5 /* '@', '#', ':'. Alphabetic SQL variables */
#define CC_VARNUM 6 /* '?'. Numeric SQL variables */
#define CC_SPACE 7 /* Space characters */
#define CC_QUOTE 8 /* '"', '\'', or '`'. String literals, quoted ids */
#define CC_QUOTE2 9 /* '['. [...] style quoted ids */
#define CC_PIPE 10 /* '|'. Bitwise OR or concatenate */
#define CC_MINUS 11 /* '-'. Minus or SQL-style comment */
#define CC_LT 12 /* '<'. Part of < or <= or <> */
#define CC_GT 13 /* '>'. Part of > or >= */
#define CC_EQ 14 /* '='. Part of = or == */
#define CC_BANG 15 /* '!'. Part of != */
#define CC_SLASH 16 /* '/'. / or c-style comment */
#define CC_LP 17 /* '(' */
#define CC_RP 18 /* ')' */
#define CC_SEMI 19 /* ';' */
#define CC_PLUS 20 /* '+' */
#define CC_STAR 21 /* '*' */
#define CC_PERCENT 22 /* '%' */
#define CC_COMMA 23 /* ',' */
#define CC_AND 24 /* '&' */
#define CC_TILDA 25 /* '~' */
#define CC_DOT 26 /* '.' */
#define CC_ILLEGAL 27 /* Illegal character */
#define CC_NUL 28 /* 0x00 */
static const unsigned char aiClass[] = {
#ifdef SQLITE_ASCII
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */
/* 0x */ 28, 27, 27, 27, 27, 27, 27, 27, 27, 7, 7, 27, 7, 7, 27, 27,
/* 1x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
/* 2x */ 7, 15, 8, 5, 4, 22, 24, 8, 17, 18, 21, 20, 23, 11, 26, 16,
/* 3x */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 19, 12, 14, 13, 6,
/* 4x */ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
/* 5x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 9, 27, 27, 27, 1,
/* 6x */ 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
/* 7x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 27, 10, 27, 25, 27,
/* 8x */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
/* 9x */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
/* Ax */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
/* Bx */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
/* Cx */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
/* Dx */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
/* Ex */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
/* Fx */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
#endif
#ifdef SQLITE_EBCDIC
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */
/* 0x */ 27, 27, 27, 27, 27, 7, 27, 27, 27, 27, 27, 27, 7, 7, 27, 27,
/* 1x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
/* 2x */ 27, 27, 27, 27, 27, 7, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
/* 3x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
/* 4x */ 7, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 26, 12, 17, 20, 10,
/* 5x */ 24, 27, 27, 27, 27, 27, 27, 27, 27, 27, 15, 4, 21, 18, 19, 27,
/* 6x */ 11, 16, 27, 27, 27, 27, 27, 27, 27, 27, 27, 23, 22, 1, 13, 6,
/* 7x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 8, 5, 5, 5, 8, 14, 8,
/* 8x */ 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 27, 27, 27, 27, 27,
/* 9x */ 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 27, 27, 27, 27, 27,
/* Ax */ 27, 25, 1, 1, 1, 1, 1, 0, 1, 1, 27, 27, 27, 27, 27, 27,
/* Bx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 9, 27, 27, 27, 27, 27,
/* Cx */ 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 27, 27, 27, 27, 27,
/* Dx */ 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 27, 27, 27, 27, 27,
/* Ex */ 27, 27, 1, 1, 1, 1, 1, 0, 1, 1, 27, 27, 27, 27, 27, 27,
/* Fx */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 27, 27, 27, 27, 27, 27,
#endif
};
/*
** The charMap() macro maps alphabetic characters (only) into their
** lower-case ASCII equivalent. On ASCII machines, this is just
** an upper-to-lower case map. On EBCDIC machines we also need
** to adjust the encoding. The mapping is only valid for alphabetics
** which are the only characters for which this feature is used.
**
** Used by keywordhash.h
*/
#ifdef SQLITE_ASCII
# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
#endif
#ifdef SQLITE_EBCDIC
# define charMap(X) ebcdicToAscii[(unsigned char)X]
const unsigned char ebcdicToAscii[] = {
/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */
0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */
0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */
0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */
0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */
0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */
};
#endif
/*
** The sqlite3KeywordCode function looks up an identifier to determine if
** it is a keyword. If it is a keyword, the token code of that keyword is
** returned. If the input is not a keyword, TK_ID is returned.
**
** The implementation of this routine was generated by a program,
** mkkeywordhash.c, located in the tool subdirectory of the distribution.
** The output of the mkkeywordhash.c program is written into a file
** named keywordhash.h and then included into this source file by
** the #include below.
*/
#include "keywordhash.h"
/*
** If X is a character that can be used in an identifier then
** IdChar(X) will be true. Otherwise it is false.
**
** For ASCII, any character with the high-order bit set is
** allowed in an identifier. For 7-bit characters,
** sqlite3IsIdChar[X] must be 1.
**
** For EBCDIC, the rules are more complex but have the same
** end result.
**
** Ticket #1066. the SQL standard does not allow '$' in the
** middle of identifiers. But many SQL implementations do.
** SQLite will allow '$' in identifiers for compatibility.
** But the feature is undocumented.
*/
#ifdef SQLITE_ASCII
#define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
#endif
#ifdef SQLITE_EBCDIC
const char sqlite3IsEbcdicIdChar[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
};
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
#endif
/* Make the IdChar function accessible from ctime.c and alter.c */
int sqlite3IsIdChar(u8 c){ return IdChar(c); }
#ifndef SQLITE_OMIT_WINDOWFUNC
/*
** Return the id of the next token in string (*pz). Before returning, set
** (*pz) to point to the byte following the parsed token.
*/
static int getToken(const unsigned char **pz){
const unsigned char *z = *pz;
int t; /* Token type to return */
do {
z += sqlite3GetToken(z, &t);
}while( t==TK_SPACE );
if( t==TK_ID
|| t==TK_STRING
|| t==TK_JOIN_KW
|| t==TK_WINDOW
|| t==TK_OVER
|| sqlite3ParserFallback(t)==TK_ID
){
t = TK_ID;
}
*pz = z;
return t;
}
/*
** The following three functions are called immediately after the tokenizer
** reads the keywords WINDOW, OVER and FILTER, respectively, to determine
** whether the token should be treated as a keyword or an SQL identifier.
** This cannot be handled by the usual lemon %fallback method, due to
** the ambiguity in some constructions. e.g.
**
** SELECT sum(x) OVER ...
**
** In the above, "OVER" might be a keyword, or it might be an alias for the
** sum(x) expression. If a "%fallback ID OVER" directive were added to
** grammar, then SQLite would always treat "OVER" as an alias, making it
** impossible to call a window-function without a FILTER clause.
**
** WINDOW is treated as a keyword if:
**
** * the following token is an identifier, or a keyword that can fallback
** to being an identifier, and
** * the token after than one is TK_AS.
**
** OVER is a keyword if:
**
** * the previous token was TK_RP, and
** * the next token is either TK_LP or an identifier.
**
** FILTER is a keyword if:
**
** * the previous token was TK_RP, and
** * the next token is TK_LP.
*/
static int analyzeWindowKeyword(const unsigned char *z){
int t;
t = getToken(&z);
if( t!=TK_ID ) return TK_ID;
t = getToken(&z);
if( t!=TK_AS ) return TK_ID;
return TK_WINDOW;
}
static int analyzeOverKeyword(const unsigned char *z, int lastToken){
if( lastToken==TK_RP ){
int t = getToken(&z);
if( t==TK_LP || t==TK_ID ) return TK_OVER;
}
return TK_ID;
}
static int analyzeFilterKeyword(const unsigned char *z, int lastToken){
if( lastToken==TK_RP && getToken(&z)==TK_LP ){
return TK_FILTER;
}
return TK_ID;
}
#endif /* SQLITE_OMIT_WINDOWFUNC */
/*
** Return the length (in bytes) of the token that begins at z[0].
** Store the token type in *tokenType before returning.
*/
int sqlite3GetToken(const unsigned char *z, int *tokenType){
int i, c;
switch( aiClass[*z] ){ /* Switch on the character-class of the first byte
** of the token. See the comment on the CC_ defines
** above. */
case CC_SPACE: {
testcase( z[0]==' ' );
testcase( z[0]=='\t' );
testcase( z[0]=='\n' );
testcase( z[0]=='\f' );
testcase( z[0]=='\r' );
for(i=1; sqlite3Isspace(z[i]); i++){}
*tokenType = TK_SPACE;
return i;
}
case CC_MINUS: {
if( z[1]=='-' ){
for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
*tokenType = TK_SPACE; /* IMP: R-22934-25134 */
return i;
}
*tokenType = TK_MINUS;
return 1;
}
case CC_LP: {
*tokenType = TK_LP;
return 1;
}
case CC_RP: {
*tokenType = TK_RP;
return 1;
}
case CC_SEMI: {
*tokenType = TK_SEMI;
return 1;
}
case CC_PLUS: {
*tokenType = TK_PLUS;
return 1;
}
case CC_STAR: {
*tokenType = TK_STAR;
return 1;
}
case CC_SLASH: {
if( z[1]!='*' || z[2]==0 ){
*tokenType = TK_SLASH;
return 1;
}
for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
if( c ) i++;
*tokenType = TK_SPACE; /* IMP: R-22934-25134 */
return i;
}
case CC_PERCENT: {
*tokenType = TK_REM;
return 1;
}
case CC_EQ: {
*tokenType = TK_EQ;
return 1 + (z[1]=='=');
}
case CC_LT: {
if( (c=z[1])=='=' ){
*tokenType = TK_LE;
return 2;
}else if( c=='>' ){
*tokenType = TK_NE;
return 2;
}else if( c=='<' ){
*tokenType = TK_LSHIFT;
return 2;
}else{
*tokenType = TK_LT;
return 1;
}
}
case CC_GT: {
if( (c=z[1])=='=' ){
*tokenType = TK_GE;
return 2;
}else if( c=='>' ){
*tokenType = TK_RSHIFT;
return 2;
}else{
*tokenType = TK_GT;
return 1;
}
}
case CC_BANG: {
if( z[1]!='=' ){
*tokenType = TK_ILLEGAL;
return 1;
}else{
*tokenType = TK_NE;
return 2;
}
}
case CC_PIPE: {
if( z[1]!='|' ){
*tokenType = TK_BITOR;
return 1;
}else{
*tokenType = TK_CONCAT;
return 2;
}
}
case CC_COMMA: {
*tokenType = TK_COMMA;
return 1;
}
case CC_AND: {
*tokenType = TK_BITAND;
return 1;
}
case CC_TILDA: {
*tokenType = TK_BITNOT;
return 1;
}
case CC_QUOTE: {
int delim = z[0];
testcase( delim=='`' );
testcase( delim=='\'' );
testcase( delim=='"' );
for(i=1; (c=z[i])!=0; i++){
if( c==delim ){
if( z[i+1]==delim ){
i++;
}else{
break;
}
}
}
if( c=='\'' ){
*tokenType = TK_STRING;
return i+1;
}else if( c!=0 ){
*tokenType = TK_ID;
return i+1;
}else{
*tokenType = TK_ILLEGAL;
return i;
}
}
case CC_DOT: {
#ifndef SQLITE_OMIT_FLOATING_POINT
if( !sqlite3Isdigit(z[1]) )
#endif
{
*tokenType = TK_DOT;
return 1;
}
/* If the next character is a digit, this is a floating point
** number that begins with ".". Fall thru into the next case */
}
case CC_DIGIT: {
testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' );
testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' );
testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' );
testcase( z[0]=='9' );
*tokenType = TK_INTEGER;
#ifndef SQLITE_OMIT_HEX_INTEGER
if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){
for(i=3; sqlite3Isxdigit(z[i]); i++){}
return i;
}
#endif
for(i=0; sqlite3Isdigit(z[i]); i++){}
#ifndef SQLITE_OMIT_FLOATING_POINT
if( z[i]=='.' ){
i++;
while( sqlite3Isdigit(z[i]) ){ i++; }
*tokenType = TK_FLOAT;
}
if( (z[i]=='e' || z[i]=='E') &&
( sqlite3Isdigit(z[i+1])
|| ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2]))
)
){
i += 2;
while( sqlite3Isdigit(z[i]) ){ i++; }
*tokenType = TK_FLOAT;
}
#endif
while( IdChar(z[i]) ){
*tokenType = TK_ILLEGAL;
i++;
}
return i;
}
case CC_QUOTE2: {
for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
*tokenType = c==']' ? TK_ID : TK_ILLEGAL;
return i;
}
case CC_VARNUM: {
*tokenType = TK_VARIABLE;
for(i=1; sqlite3Isdigit(z[i]); i++){}
return i;
}
case CC_DOLLAR:
case CC_VARALPHA: {
int n = 0;
testcase( z[0]=='$' ); testcase( z[0]=='@' );
testcase( z[0]==':' ); testcase( z[0]=='#' );
*tokenType = TK_VARIABLE;
for(i=1; (c=z[i])!=0; i++){
if( IdChar(c) ){
n++;
#ifndef SQLITE_OMIT_TCL_VARIABLE
}else if( c=='(' && n>0 ){
do{
i++;
}while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' );
if( c==')' ){
i++;
}else{
*tokenType = TK_ILLEGAL;
}
break;
}else if( c==':' && z[i+1]==':' ){
i++;
#endif
}else{
break;
}
}
if( n==0 ) *tokenType = TK_ILLEGAL;
return i;
}
case CC_KYWD: {
for(i=1; aiClass[z[i]]<=CC_KYWD; i++){}
if( IdChar(z[i]) ){
/* This token started out using characters that can appear in keywords,
** but z[i] is a character not allowed within keywords, so this must
** be an identifier instead */
i++;
break;
}
*tokenType = TK_ID;
return keywordCode((char*)z, i, tokenType);
}
case CC_X: {
#ifndef SQLITE_OMIT_BLOB_LITERAL
testcase( z[0]=='x' ); testcase( z[0]=='X' );
if( z[1]=='\'' ){
*tokenType = TK_BLOB;
for(i=2; sqlite3Isxdigit(z[i]); i++){}
if( z[i]!='\'' || i%2 ){
*tokenType = TK_ILLEGAL;
while( z[i] && z[i]!='\'' ){ i++; }
}
if( z[i] ) i++;
return i;
}
#endif
/* If it is not a BLOB literal, then it must be an ID, since no
** SQL keywords start with the letter 'x'. Fall through */
}
case CC_ID: {
i = 1;
break;
}
case CC_NUL: {
*tokenType = TK_ILLEGAL;
return 0;
}
default: {
*tokenType = TK_ILLEGAL;
return 1;
}
}
while( IdChar(z[i]) ){ i++; }
*tokenType = TK_ID;
return i;
}
/*
** Run the parser on the given SQL string. The parser structure is
** passed in. An SQLITE_ status code is returned. If an error occurs
** then an and attempt is made to write an error message into
** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
** error message.
*/
int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
int nErr = 0; /* Number of errors encountered */
void *pEngine; /* The LEMON-generated LALR(1) parser */
int n = 0; /* Length of the next token token */
int tokenType; /* type of the next token */
int lastTokenParsed = -1; /* type of the previous token */
sqlite3 *db = pParse->db; /* The database connection */
int mxSqlLen; /* Max length of an SQL string */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
yyParser sEngine; /* Space to hold the Lemon-generated Parser object */
#endif
assert( zSql!=0 );
mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
if( db->nVdbeActive==0 ){
db->u1.isInterrupted = 0;
}
pParse->rc = SQLITE_OK;
pParse->zTail = zSql;
assert( pzErrMsg!=0 );
/* sqlite3ParserTrace(stdout, "parser: "); */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
pEngine = &sEngine;
sqlite3ParserInit(pEngine, pParse);
#else
pEngine = sqlite3ParserAlloc(sqlite3Malloc, pParse);
if( pEngine==0 ){
sqlite3OomFault(db);
return SQLITE_NOMEM_BKPT;
}
#endif
assert( pParse->pNewTable==0 );
assert( pParse->pNewTrigger==0 );
assert( pParse->nVar==0 );
assert( pParse->pVList==0 );
while( 1 ){
n = sqlite3GetToken((u8*)zSql, &tokenType);
mxSqlLen -= n;
if( mxSqlLen<0 ){
pParse->rc = SQLITE_TOOBIG;
break;
}
#ifndef SQLITE_OMIT_WINDOWFUNC
if( tokenType>=TK_WINDOW ){
assert( tokenType==TK_SPACE || tokenType==TK_OVER || tokenType==TK_FILTER
|| tokenType==TK_ILLEGAL || tokenType==TK_WINDOW
);
#else
if( tokenType>=TK_SPACE ){
assert( tokenType==TK_SPACE || tokenType==TK_ILLEGAL );
#endif /* SQLITE_OMIT_WINDOWFUNC */
if( db->u1.isInterrupted ){
pParse->rc = SQLITE_INTERRUPT;
break;
}
if( tokenType==TK_SPACE ){
zSql += n;
continue;
}
if( zSql[0]==0 ){
/* Upon reaching the end of input, call the parser two more times
** with tokens TK_SEMI and 0, in that order. */
if( lastTokenParsed==TK_SEMI ){
tokenType = 0;
}else if( lastTokenParsed==0 ){
break;
}else{
tokenType = TK_SEMI;
}
n = 0;
#ifndef SQLITE_OMIT_WINDOWFUNC
}else if( tokenType==TK_WINDOW ){
assert( n==6 );
tokenType = analyzeWindowKeyword((const u8*)&zSql[6]);
}else if( tokenType==TK_OVER ){
assert( n==4 );
tokenType = analyzeOverKeyword((const u8*)&zSql[4], lastTokenParsed);
}else if( tokenType==TK_FILTER ){
assert( n==6 );
tokenType = analyzeFilterKeyword((const u8*)&zSql[6], lastTokenParsed);
#endif /* SQLITE_OMIT_WINDOWFUNC */
}else{
sqlite3ErrorMsg(pParse, "unrecognized token: \"%.*s\"", n, zSql);
break;
}
}
pParse->sLastToken.z = zSql;
pParse->sLastToken.n = n;
sqlite3Parser(pEngine, tokenType, pParse->sLastToken);
lastTokenParsed = tokenType;
zSql += n;
if( pParse->rc!=SQLITE_OK || db->mallocFailed ) break;
}
assert( nErr==0 );
#ifdef YYTRACKMAXSTACKDEPTH
sqlite3_mutex_enter(sqlite3MallocMutex());
sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK,
sqlite3ParserStackPeak(pEngine)
);
sqlite3_mutex_leave(sqlite3MallocMutex());
#endif /* YYDEBUG */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
sqlite3ParserFinalize(pEngine);
#else
sqlite3ParserFree(pEngine, sqlite3_free);
#endif
if( db->mallocFailed ){
pParse->rc = SQLITE_NOMEM_BKPT;
}
if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
pParse->zErrMsg = sqlite3MPrintf(db, "%s", sqlite3ErrStr(pParse->rc));
}
assert( pzErrMsg!=0 );
if( pParse->zErrMsg ){
*pzErrMsg = pParse->zErrMsg;
sqlite3_log(pParse->rc, "%s in \"%s\"",
*pzErrMsg, pParse->zTail);
pParse->zErrMsg = 0;
nErr++;
}
pParse->zTail = zSql;
if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
sqlite3VdbeDelete(pParse->pVdbe);
pParse->pVdbe = 0;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
if( pParse->nested==0 ){
sqlite3DbFree(db, pParse->aTableLock);
pParse->aTableLock = 0;
pParse->nTableLock = 0;
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
sqlite3_free(pParse->apVtabLock);
#endif
if( !IN_SPECIAL_PARSE ){
/* If the pParse->declareVtab flag is set, do not delete any table
** structure built up in pParse->pNewTable. The calling code (see vtab.c)
** will take responsibility for freeing the Table structure.
*/
sqlite3DeleteTable(db, pParse->pNewTable);
}
if( !IN_RENAME_OBJECT ){
sqlite3DeleteTrigger(db, pParse->pNewTrigger);
}
if( pParse->pWithToFree ) sqlite3WithDelete(db, pParse->pWithToFree);
sqlite3DbFree(db, pParse->pVList);
while( pParse->pAinc ){
AutoincInfo *p = pParse->pAinc;
pParse->pAinc = p->pNext;
sqlite3DbFreeNN(db, p);
}
while( pParse->pZombieTab ){
Table *p = pParse->pZombieTab;
pParse->pZombieTab = p->pNextZombie;
sqlite3DeleteTable(db, p);
}
assert( nErr==0 || pParse->rc!=SQLITE_OK );
return nErr;
}