| // Copyright 2012 The Chromium Authors | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "cc/base/math_util.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <limits> | 
 |  | 
 | #if defined(ARCH_CPU_X86_FAMILY) | 
 | #include <xmmintrin.h> | 
 | #endif | 
 |  | 
 | #include "base/numerics/angle_conversions.h" | 
 | #include "base/trace_event/traced_value.h" | 
 | #include "base/values.h" | 
 | #include "third_party/skia/include/core/SkPath.h" | 
 | #include "ui/gfx/geometry/linear_gradient.h" | 
 | #include "ui/gfx/geometry/quad_f.h" | 
 | #include "ui/gfx/geometry/rect.h" | 
 | #include "ui/gfx/geometry/rect_conversions.h" | 
 | #include "ui/gfx/geometry/rect_f.h" | 
 | #include "ui/gfx/geometry/rrect_f.h" | 
 | #include "ui/gfx/geometry/skia_conversions.h" | 
 | #include "ui/gfx/geometry/transform.h" | 
 | #include "ui/gfx/geometry/vector2d_conversions.h" | 
 | #include "ui/gfx/geometry/vector2d_f.h" | 
 | #include "ui/gfx/geometry/vector3d_f.h" | 
 |  | 
 | namespace cc { | 
 |  | 
 | static HomogeneousCoordinate ProjectHomogeneousPoint( | 
 |     const gfx::Transform& transform, | 
 |     const gfx::PointF& p) { | 
 |   SkScalar m22 = transform.rc(2, 2); | 
 |   // In this case, the layer we are trying to project onto is perpendicular to | 
 |   // ray (point p and z-axis direction) that we are trying to project. This | 
 |   // happens when the layer is rotated so that it is infinitesimally thin, or | 
 |   // when it is co-planar with the camera origin -- i.e. when the layer is | 
 |   // invisible anyway. Return an invalid point. | 
 |   if (!std::isnormal(m22)) { | 
 |     return HomogeneousCoordinate(0.0, 0.0, 0.0, 0.0); | 
 |   } | 
 |   SkScalar z = -(transform.rc(2, 0) * p.x() + transform.rc(2, 1) * p.y() + | 
 |                  transform.rc(2, 3)) / | 
 |                m22; | 
 |   // Same underlying condition as the previous early return. | 
 |   if (!std::isfinite(z)) { | 
 |     return HomogeneousCoordinate(0.0, 0.0, 0.0, 0.0); | 
 |   } | 
 |  | 
 |   HomogeneousCoordinate result(p.x(), p.y(), z, 1.0); | 
 |   transform.TransformVector4(result.vec); | 
 |   return result; | 
 | } | 
 |  | 
 | static HomogeneousCoordinate ProjectHomogeneousPoint( | 
 |     const gfx::Transform& transform, | 
 |     const gfx::PointF& p, | 
 |     bool* clipped) { | 
 |   HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p); | 
 |   *clipped = h.w() <= 0; | 
 |   return h; | 
 | } | 
 |  | 
 | static HomogeneousCoordinate MapHomogeneousPoint( | 
 |     const gfx::Transform& transform, | 
 |     const gfx::PointF& p) { | 
 |   HomogeneousCoordinate result(p.x(), p.y(), 0.0, 1.0); | 
 |   transform.TransformVector4(result.vec); | 
 |   return result; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | // This is the tolerance for detecting an eyepoint-aligned edge. | 
 | const float kStationaryPointEpsilon = 0.00001f; | 
 |  | 
 | }  // namespace | 
 |  | 
 | static void homogeneousLimitAtZero(SkScalar a1, | 
 |                                    SkScalar w1, | 
 |                                    SkScalar a2, | 
 |                                    SkScalar w2, | 
 |                                    float t, | 
 |                                    float* limit) { | 
 |   if (std::abs(a1 * w2 / w1 / a2 - 1.0f) > kStationaryPointEpsilon) { | 
 |     // We are going to explode towards an infinity, but we choose the one that | 
 |     // corresponds to the one on the positive side of w. | 
 |     if (((1.0f - t) * a1 + t * a2) > 0) { | 
 |       *limit = HomogeneousCoordinate::kInfiniteCoordinate; | 
 |     } else { | 
 |       *limit = -HomogeneousCoordinate::kInfiniteCoordinate; | 
 |     } | 
 |   } else { | 
 |     *limit = a1 / w1;  // (== a2 / w2) && == (1.0f - t) * a1 / w1 + t * a2 / w2 | 
 |   } | 
 | } | 
 |  | 
 | static gfx::PointF ComputeClippedCartesianPoint2dForEdge( | 
 |     const HomogeneousCoordinate& h1, | 
 |     const HomogeneousCoordinate& h2) { | 
 |   // Points h1 and h2 form a line in 4d, and any point on that line can be | 
 |   // represented as an interpolation between h1 and h2: | 
 |   //    p = (1-t) h1 + (t) h2 | 
 |   // | 
 |   // We want to compute the limit in 2 space of | 
 |   //    x = ((1-t) h1.x + (t) h2.x) / ((1-t) h1.w + (t) h2.w) | 
 |   //    y = ((1-t) h1.y + (t) h2.y) / ((1-t) h1.w + (t) h2.w) | 
 |   // as ((1-t) h1.w + (t) h2.w) -> 0+ | 
 |  | 
 |   // The only answers to this are h1.x/h1.w == h2.x/h2.w, +/- infinity | 
 |   // i.e., either the coordinate is not moving, or is trending to one | 
 |   // infinity or the other. | 
 |  | 
 |   // This assertion isn't really as strong as it looks because | 
 |   // std::isfinite(h1.w()) or std::isfinite(h2.w()) might not be true | 
 |   // (and they could be NaN). | 
 |   // TODO(crbug.com/40186138): We should be able to assert something | 
 |   // stronger here, and avoid dependencies on undefined floating point | 
 |   // behavior. | 
 |   DCHECK_NE(h1.w() <= 0, h2.w() <= 0); | 
 |  | 
 |   float t = h1.w() / (h1.w() - h2.w()); | 
 |   float x; | 
 |   float y; | 
 |  | 
 |   homogeneousLimitAtZero(h1.x(), h1.w(), h2.x(), h2.w(), t, &x); | 
 |   homogeneousLimitAtZero(h1.y(), h1.w(), h2.y(), h2.w(), t, &y); | 
 |  | 
 |   return gfx::PointF(x, y); | 
 | } | 
 |  | 
 | static void homogeneousLimitNearZero(SkScalar a1, | 
 |                                      SkScalar w1, | 
 |                                      SkScalar a2, | 
 |                                      SkScalar w2, | 
 |                                      float t, | 
 |                                      float* limit) { | 
 |   if (std::abs(a1 * w2 / w1 / a2 - 1.0f) > kStationaryPointEpsilon) { | 
 |     // t has been computed so that w is near but not at zero. | 
 |     *limit = ((1.0f - t) * a1 + t * a2) / ((1.0f - t) * w1 + t * w2); | 
 |     // std::abs(*limit) should now be somewhere near | 
 |     // HomogeneousCoordinate::kInfiniteCoordinate, preferably smaller than it, | 
 |     // but there are edge cases where it will be larger (for example, if the | 
 |     // point where a crosses 0 is very close to the point where w crosses 0), | 
 |     // so it's hard to DCHECK() that this is the case. | 
 |   } else { | 
 |     *limit = a1 / w1;  // (== a2 / w2) && == (1.0f - t) * a1 / w1 + t * a2 / w2 | 
 |   } | 
 | } | 
 |  | 
 | static gfx::Point3F ComputeClippedCartesianPoint3dForEdge( | 
 |     const HomogeneousCoordinate& h1, | 
 |     const HomogeneousCoordinate& h2) { | 
 |   // Points h1 and h2 form a line in 4d, and any point on that line can be | 
 |   // represented as an interpolation between h1 and h2: | 
 |   //    p = (1-t) h1 + (t) h2 | 
 |   // | 
 |   // We want to compute the limit in 3 space of | 
 |   //    x = ((1-t) h1.x + (t) h2.x) / ((1-t) h1.w + (t) h2.w) | 
 |   //    y = ((1-t) h1.y + (t) h2.y) / ((1-t) h1.w + (t) h2.w) | 
 |   //    z = ((1-t) h1.z + (t) h2.z) / ((1-t) h1.w + (t) h2.w) | 
 |   // as ((1-t) h1.w + (t) h2.w) -> 0+ | 
 |  | 
 |   // The only answers to this are h1.x/h1.w == h2.x/h2.w, +/- infinity | 
 |   // i.e., either the coordinate is not moving, or is trending to one | 
 |   // infinity or the other. | 
 |  | 
 |   // When we clamp to HomogeneousCoordinate::kInfiniteCoordinate we want | 
 |   // to keep the result in the correct plane, which we do by computing | 
 |   // a t that will result in the largest (in absolute value) of x, y, or | 
 |   // z being HomogeneousCoordinate::kInfiniteCoordinate | 
 |  | 
 |   // This assertion isn't really as strong as it looks because | 
 |   // std::isfinite(h1.w()) or std::isfinite(h2.w()) might not be true | 
 |   // (and they could be NaN). | 
 |   // TODO(crbug.com/40186138): We should be able to assert something | 
 |   // stronger here, and avoid dependencies on undefined floating point | 
 |   // behavior. | 
 |   DCHECK_NE(h1.w() <= 0, h2.w() <= 0); | 
 |  | 
 |   float w_diff = h1.w() - h2.w(); | 
 |   float t = h1.w() / w_diff; | 
 |   float max_numerator = std::max({std::abs((1.0f - t) * h1.x() + t * h2.x()), | 
 |                                   std::abs((1.0f - t) * h1.y() + t * h2.y()), | 
 |                                   std::abs((1.0f - t) * h1.z() + t * h2.z())}); | 
 |  | 
 |   // Shift t away from the point where w is zero, far enough so that the | 
 |   // largest of the resulting x, y, and z will be about | 
 |   // kInfiniteCoordinate.  Add an extra epsilon() / 2.0 so that there's | 
 |   // always enough movement (in case t_shift is very small, which it | 
 |   // often is). | 
 |   const float t_shift = | 
 |       max_numerator / w_diff / HomogeneousCoordinate::kInfiniteCoordinate; | 
 |   constexpr float half_epsilon = std::numeric_limits<float>::epsilon() / 2.0f; | 
 |   DCHECK_EQ(w_diff > 0, t_shift > 0); | 
 |   if (w_diff > 0) { | 
 |     t = std::max(0.0f, t - (t_shift + half_epsilon)); | 
 |   } else { | 
 |     t = std::min(1.0f, t - (t_shift - half_epsilon)); | 
 |   } | 
 |  | 
 |   float x; | 
 |   float y; | 
 |   float z; | 
 |  | 
 |   homogeneousLimitNearZero(h1.x(), h1.w(), h2.x(), h2.w(), t, &x); | 
 |   homogeneousLimitNearZero(h1.y(), h1.w(), h2.y(), h2.w(), t, &y); | 
 |   homogeneousLimitNearZero(h1.z(), h1.w(), h2.z(), h2.w(), t, &z); | 
 |  | 
 |   return gfx::Point3F(x, y, z); | 
 | } | 
 |  | 
 | static inline void ExpandBoundsToIncludePoint(float* xmin, | 
 |                                               float* xmax, | 
 |                                               float* ymin, | 
 |                                               float* ymax, | 
 |                                               const gfx::PointF& p) { | 
 |   *xmin = std::min(p.x(), *xmin); | 
 |   *xmax = std::max(p.x(), *xmax); | 
 |   *ymin = std::min(p.y(), *ymin); | 
 |   *ymax = std::max(p.y(), *ymax); | 
 | } | 
 |  | 
 | static inline bool IsNearlyTheSame(float f, float g) { | 
 |   // The idea behind this is to use this fraction of the larger of the | 
 |   // two numbers as the limit of the difference.  This breaks down near | 
 |   // zero, so we reuse this as the minimum absolute size we will use | 
 |   // for the base of the scale too. | 
 |   static const float epsilon_scale = 0.00001f; | 
 |   return std::abs(f - g) < | 
 |          epsilon_scale * std::max({std::abs(f), std::abs(g), epsilon_scale}); | 
 | } | 
 |  | 
 | static inline bool IsNearlyTheSame(const gfx::PointF& lhs, | 
 |                                    const gfx::PointF& rhs) { | 
 |   return IsNearlyTheSame(lhs.x(), rhs.x()) && IsNearlyTheSame(lhs.y(), rhs.y()); | 
 | } | 
 |  | 
 | static inline bool IsNearlyTheSame(const gfx::Point3F& lhs, | 
 |                                    const gfx::Point3F& rhs) { | 
 |   return IsNearlyTheSame(lhs.x(), rhs.x()) && | 
 |          IsNearlyTheSame(lhs.y(), rhs.y()) && IsNearlyTheSame(lhs.z(), rhs.z()); | 
 | } | 
 |  | 
 | static inline void AddVertexToClippedQuad3d( | 
 |     const gfx::Point3F& new_vertex, | 
 |     base::span<gfx::Point3F, 6> clipped_quad, | 
 |     int* num_vertices_in_clipped_quad, | 
 |     bool* need_to_clamp) { | 
 |   CHECK(num_vertices_in_clipped_quad); | 
 |   CHECK_GE(*num_vertices_in_clipped_quad, 0); | 
 |   if (*num_vertices_in_clipped_quad > 0 && | 
 |       IsNearlyTheSame( | 
 |           clipped_quad[static_cast<size_t>(*num_vertices_in_clipped_quad - 1)], | 
 |           new_vertex)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   CHECK_LT(*num_vertices_in_clipped_quad, 6); | 
 |   clipped_quad[static_cast<size_t>(*num_vertices_in_clipped_quad)] = new_vertex; | 
 |   ++*num_vertices_in_clipped_quad; | 
 |   if (new_vertex.x() < -HomogeneousCoordinate::kInfiniteCoordinate || | 
 |       new_vertex.x() > HomogeneousCoordinate::kInfiniteCoordinate || | 
 |       new_vertex.y() < -HomogeneousCoordinate::kInfiniteCoordinate || | 
 |       new_vertex.y() > HomogeneousCoordinate::kInfiniteCoordinate || | 
 |       new_vertex.z() < -HomogeneousCoordinate::kInfiniteCoordinate || | 
 |       new_vertex.z() > HomogeneousCoordinate::kInfiniteCoordinate) { | 
 |     *need_to_clamp = true; | 
 |   } | 
 | } | 
 |  | 
 | gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform, | 
 |                                             const gfx::Rect& src_rect) { | 
 |   return MapEnclosingClippedRectIgnoringError(transform, src_rect, 0.f); | 
 | } | 
 |  | 
 | gfx::Rect MathUtil::MapEnclosingClippedRectIgnoringError( | 
 |     const gfx::Transform& transform, | 
 |     const gfx::Rect& src_rect, | 
 |     float ignore_error) { | 
 |   if (transform.IsIdentityOrIntegerTranslation()) | 
 |     return src_rect + gfx::ToFlooredVector2d(transform.To2dTranslation()); | 
 |  | 
 |   gfx::RectF mapped_rect = MapClippedRect(transform, gfx::RectF(src_rect)); | 
 |   return gfx::ToEnclosingRectIgnoringError(mapped_rect, ignore_error); | 
 | } | 
 |  | 
 | gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform, | 
 |                                     const gfx::RectF& src_rect) { | 
 |   if (transform.IsIdentityOrTranslation()) | 
 |     return src_rect + transform.To2dTranslation(); | 
 |  | 
 |   // Apply the transform, but retain the result in homogeneous coordinates. | 
 |   HomogeneousCoordinate hc0 = MapHomogeneousPoint(transform, src_rect.origin()); | 
 |   HomogeneousCoordinate hc1 = | 
 |       MapHomogeneousPoint(transform, src_rect.top_right()); | 
 |   HomogeneousCoordinate hc2 = | 
 |       MapHomogeneousPoint(transform, src_rect.bottom_right()); | 
 |   HomogeneousCoordinate hc3 = | 
 |       MapHomogeneousPoint(transform, src_rect.bottom_left()); | 
 |  | 
 |   return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3); | 
 | } | 
 |  | 
 | gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform, | 
 |                                                 const gfx::Rect& src_rect) { | 
 |   if (transform.IsIdentityOrIntegerTranslation()) | 
 |     return src_rect + gfx::ToFlooredVector2d(transform.To2dTranslation()); | 
 |  | 
 |   gfx::RectF projected_rect = | 
 |       ProjectClippedRect(transform, gfx::RectF(src_rect)); | 
 |  | 
 |   // gfx::ToEnclosingRect crashes if called on a RectF with any NaN coordinate. | 
 |   if (std::isnan(projected_rect.x()) || std::isnan(projected_rect.y()) || | 
 |       std::isnan(projected_rect.right()) || std::isnan(projected_rect.bottom())) | 
 |     return gfx::Rect(); | 
 |  | 
 |   return gfx::ToEnclosingRect(projected_rect); | 
 | } | 
 |  | 
 | gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform, | 
 |                                         const gfx::RectF& src_rect) { | 
 |   if (transform.IsIdentityOrTranslation()) | 
 |     return src_rect + transform.To2dTranslation(); | 
 |  | 
 |   // Perform the projection, but retain the result in homogeneous coordinates. | 
 |   gfx::QuadF q = gfx::QuadF(src_rect); | 
 |   HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1()); | 
 |   HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2()); | 
 |   HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3()); | 
 |   HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4()); | 
 |  | 
 |   return ComputeEnclosingClippedRect(h1, h2, h3, h4); | 
 | } | 
 |  | 
 | gfx::QuadF MathUtil::InverseMapQuadToLocalSpace( | 
 |     const gfx::Transform& device_transform, | 
 |     const gfx::QuadF& device_quad) { | 
 |   DCHECK(device_transform.IsFlat()); | 
 |   gfx::Transform inverse_device_transform = | 
 |       device_transform.GetCheckedInverse(); | 
 |   bool clipped = false; | 
 |   gfx::QuadF local_quad = | 
 |       MathUtil::MapQuad(inverse_device_transform, device_quad, &clipped); | 
 |   // We should not DCHECK(!clipped) here, because anti-aliasing inflation may | 
 |   // cause device_quad to become clipped. To our knowledge this scenario does | 
 |   // not need to be handled differently than the unclipped case. | 
 |   return local_quad; | 
 | } | 
 |  | 
 | gfx::Rect MathUtil::MapEnclosedRectWith2dAxisAlignedTransform( | 
 |     const gfx::Transform& transform, | 
 |     const gfx::Rect& rect) { | 
 |   DCHECK(transform.Preserves2dAxisAlignment()); | 
 |   DCHECK_GT(transform.rc(3, 3), 0); | 
 |   DCHECK(std::isnormal(transform.rc(3, 3))); | 
 |  | 
 |   if (transform.IsIdentityOrIntegerTranslation()) | 
 |     return rect + gfx::ToFlooredVector2d(transform.To2dTranslation()); | 
 |   if (transform.IsIdentityOrTranslation()) { | 
 |     gfx::Vector2dF offset = transform.To2dTranslation(); | 
 |     return gfx::ToEnclosedRect(gfx::RectF(rect) + offset); | 
 |   } | 
 |  | 
 |   HomogeneousCoordinate hc0 = | 
 |       MapHomogeneousPoint(transform, gfx::PointF(rect.origin())); | 
 |   HomogeneousCoordinate hc1 = | 
 |       MapHomogeneousPoint(transform, gfx::PointF(rect.bottom_right())); | 
 |   DCHECK(!hc0.ShouldBeClipped()); | 
 |   DCHECK(!hc1.ShouldBeClipped()); | 
 |  | 
 |   gfx::PointF top_left(hc0.CartesianPoint2d()); | 
 |   gfx::PointF bottom_right(hc1.CartesianPoint2d()); | 
 |   return gfx::ToEnclosedRect(gfx::BoundingRect(top_left, bottom_right)); | 
 | } | 
 |  | 
 | bool MathUtil::MapClippedQuad3d(const gfx::Transform& transform, | 
 |                                 const gfx::QuadF& src_quad, | 
 |                                 base::span<gfx::Point3F, 6> clipped_quad, | 
 |                                 int* num_vertices_in_clipped_quad) { | 
 |   // This is different from the 2D version because, when we clamp | 
 |   // coordinates to [-HomogeneousCoordinate::kInfiniteCoordinate, | 
 |   // HomogeneousCoordinate::kInfiniteCoordinate], we need to do the | 
 |   // clamping while keeping the points coplanar. | 
 |  | 
 |   HomogeneousCoordinate h1 = MapHomogeneousPoint(transform, src_quad.p1()); | 
 |   HomogeneousCoordinate h2 = MapHomogeneousPoint(transform, src_quad.p2()); | 
 |   HomogeneousCoordinate h3 = MapHomogeneousPoint(transform, src_quad.p3()); | 
 |   HomogeneousCoordinate h4 = MapHomogeneousPoint(transform, src_quad.p4()); | 
 |  | 
 |   // The order of adding the vertices to the array is chosen so that | 
 |   // clockwise / counter-clockwise orientation is retained. | 
 |  | 
 |   *num_vertices_in_clipped_quad = 0; | 
 |   bool need_to_clamp = false; | 
 |  | 
 |   if (!h1.ShouldBeClipped()) { | 
 |     AddVertexToClippedQuad3d(h1.CartesianPoint3dUnclamped(), clipped_quad, | 
 |                              num_vertices_in_clipped_quad, &need_to_clamp); | 
 |   } | 
 |  | 
 |   if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) { | 
 |     AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h1, h2), | 
 |                              clipped_quad, num_vertices_in_clipped_quad, | 
 |                              &need_to_clamp); | 
 |   } | 
 |  | 
 |   if (!h2.ShouldBeClipped()) { | 
 |     AddVertexToClippedQuad3d(h2.CartesianPoint3dUnclamped(), clipped_quad, | 
 |                              num_vertices_in_clipped_quad, &need_to_clamp); | 
 |   } | 
 |  | 
 |   if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) { | 
 |     AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h2, h3), | 
 |                              clipped_quad, num_vertices_in_clipped_quad, | 
 |                              &need_to_clamp); | 
 |   } | 
 |  | 
 |   if (!h3.ShouldBeClipped()) { | 
 |     AddVertexToClippedQuad3d(h3.CartesianPoint3dUnclamped(), clipped_quad, | 
 |                              num_vertices_in_clipped_quad, &need_to_clamp); | 
 |   } | 
 |  | 
 |   if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) { | 
 |     AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h3, h4), | 
 |                              clipped_quad, num_vertices_in_clipped_quad, | 
 |                              &need_to_clamp); | 
 |   } | 
 |  | 
 |   if (!h4.ShouldBeClipped()) { | 
 |     AddVertexToClippedQuad3d(h4.CartesianPoint3dUnclamped(), clipped_quad, | 
 |                              num_vertices_in_clipped_quad, &need_to_clamp); | 
 |   } | 
 |  | 
 |   if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) { | 
 |     AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h4, h1), | 
 |                              clipped_quad, num_vertices_in_clipped_quad, | 
 |                              &need_to_clamp); | 
 |   } | 
 |  | 
 |   if (*num_vertices_in_clipped_quad > 2 && | 
 |       IsNearlyTheSame(clipped_quad[0], | 
 |                       clipped_quad[static_cast<size_t>( | 
 |                           *num_vertices_in_clipped_quad - 1)])) { | 
 |     --*num_vertices_in_clipped_quad; | 
 |   } | 
 |  | 
 |   if (need_to_clamp) { | 
 |     // Some of the values need to be clamped, but we need to keep them | 
 |     // coplanar while doing so. | 
 |  | 
 |     // First, build a normal vector to the plane by averaging the | 
 |     // cross products of adjacent edges. | 
 |     gfx::Vector3dF normal(0.0f, 0.0f, 0.0f); | 
 |     if (*num_vertices_in_clipped_quad > 2) { | 
 |       gfx::Vector3dF loop_vector = | 
 |           clipped_quad[0] - | 
 |           clipped_quad[static_cast<size_t>(*num_vertices_in_clipped_quad - 1)]; | 
 |       gfx::Vector3dF prev_vector(loop_vector); | 
 |       for (size_t i = 1; i < static_cast<size_t>(*num_vertices_in_clipped_quad); | 
 |            ++i) { | 
 |         gfx::Vector3dF cur_vector = clipped_quad[i] - clipped_quad[i - 1]; | 
 |         normal += CrossProduct(prev_vector, cur_vector); | 
 |         prev_vector = cur_vector; | 
 |       } | 
 |       normal += CrossProduct(prev_vector, loop_vector); | 
 |     } | 
 |  | 
 |     bool clamp_by_points = false; | 
 |     float length = normal.Length(); | 
 |     if (std::isnormal(length)) {  // exclude 0, denormals, +/- inf, NaN | 
 |       normal.InvScale(length); | 
 |  | 
 |       // Find the vector to the point in the plane closest to (0,0,0). | 
 |       gfx::Vector3dF shortest_from_zero(normal); | 
 |       shortest_from_zero.Scale( | 
 |           DotProduct(normal, clipped_quad[0] - gfx::Point3F(0.0f, 0.0f, 0.0f))); | 
 |  | 
 |       // Find the the point in the plane that is at x=0 and y=0 | 
 |       float z_at_xy_zero = 0.0f; | 
 |       if (shortest_from_zero.x() == 0.0f && shortest_from_zero.y() == 0.0f) { | 
 |         z_at_xy_zero = shortest_from_zero.z(); | 
 |       } else if (shortest_from_zero.z() != 0) { | 
 |         // Compute the vector v pointing from the shortest_from_zero | 
 |         // point to the point with x=0 and y=0.  If both v and normal | 
 |         // are projected into the x/y plane, they should point in | 
 |         // opposite directions. | 
 |         gfx::Vector3dF v = CrossProduct( | 
 |             normal, CrossProduct(gfx::Vector3dF(0.0f, 0.0f, 1.0f), normal)); | 
 |         DCHECK(std::abs(normal.x() * v.y() - normal.y() * v.x()) < 0.00001f); | 
 |         // It doesn't matter whether we use x or y, unless one of them | 
 |         // is zero or very close to it. | 
 |         float r = std::abs(v.x()) > std::abs(v.y()) | 
 |                       ? shortest_from_zero.x() / v.x() | 
 |                       : shortest_from_zero.y() / v.y(); | 
 |         z_at_xy_zero = shortest_from_zero.z() - v.z() * r; | 
 |       } else { | 
 |         // Plane is parallel to the z axis.  This means it's not | 
 |         // visible, so just fall back to clamping by points. | 
 |         clamp_by_points = true; | 
 |       } | 
 |  | 
 |       if (!clamp_by_points) { | 
 |         // If z_at_xy_zero is more than 3/4 of kInfiniteCoordinate | 
 |         // distance from zero, move everything in the z axis so | 
 |         // z_at_xy_zero is that distance from zero, so that we don't end | 
 |         // up clamping away the parts that fit within what's likely to | 
 |         // be the visible area. | 
 |         constexpr float max_distance = | 
 |             0.75 * HomogeneousCoordinate::kInfiniteCoordinate; | 
 |         if (std::abs(z_at_xy_zero) > max_distance) { | 
 |           float z_delta; | 
 |           if (z_at_xy_zero > 0) { | 
 |             z_delta = max_distance - z_at_xy_zero; | 
 |           } else { | 
 |             z_delta = -max_distance - z_at_xy_zero; | 
 |           } | 
 |           for (size_t i = 0; | 
 |                i < static_cast<size_t>(*num_vertices_in_clipped_quad); ++i) { | 
 |             clipped_quad[i].set_z(clipped_quad[i].z() + z_delta); | 
 |           } | 
 |           z_at_xy_zero += z_delta; | 
 |         } | 
 |  | 
 |         // Move all the points towards (0, 0, z_at_xy_zero) until all | 
 |         // their coordinates are less than kInfiniteCoordinate. | 
 |         for (size_t i = 0; | 
 |              i < static_cast<size_t>(*num_vertices_in_clipped_quad); ++i) { | 
 |           gfx::Point3F& point = clipped_quad[i]; | 
 |           float t = 1.0f; | 
 |  | 
 |           float x_abs = std::abs(point.x()); | 
 |           if (x_abs > HomogeneousCoordinate::kInfiniteCoordinate) { | 
 |             t = std::min(t, HomogeneousCoordinate::kInfiniteCoordinate / x_abs); | 
 |           } | 
 |  | 
 |           float y_abs = std::abs(point.y()); | 
 |           if (y_abs > HomogeneousCoordinate::kInfiniteCoordinate) { | 
 |             t = std::min(t, HomogeneousCoordinate::kInfiniteCoordinate / y_abs); | 
 |           } | 
 |  | 
 |           float z = point.z(); | 
 |           if (std::abs(z) > HomogeneousCoordinate::kInfiniteCoordinate) { | 
 |             // From the clamping to max_distance above, we should have | 
 |             // made std::abs(z_at_xy_zero) < kInfiniteCoordinate. | 
 |             // However, if it started off very large we might not have. | 
 |             float z_at_xy_zero_clamped = | 
 |                 std::min(float{HomogeneousCoordinate::kInfiniteCoordinate}, | 
 |                          std::max(-HomogeneousCoordinate::kInfiniteCoordinate, | 
 |                                   z_at_xy_zero)); | 
 |             float z_offset = z - z_at_xy_zero_clamped; | 
 |             float z_space = | 
 |                 (z > 0 ? HomogeneousCoordinate::kInfiniteCoordinate | 
 |                        : -HomogeneousCoordinate::kInfiniteCoordinate) - | 
 |                 z_at_xy_zero_clamped; | 
 |             DCHECK_NE(z_offset, 0.0f); | 
 |             DCHECK_NE(z_space, 0.0f); | 
 |             DCHECK_EQ(z_offset > 0, z_space > 0); | 
 |             t = std::min(t, z_space / z_offset); | 
 |           } | 
 |  | 
 |           if (t != 1.0f) { | 
 |             DCHECK(0.0f <= t && t < 1.0f); | 
 |             point.set_x(t * point.x()); | 
 |             point.set_y(t * point.y()); | 
 |             point.set_z((1.0f - t) * z_at_xy_zero + t * point.z()); | 
 |           } | 
 |         } | 
 |       } | 
 |     } else { | 
 |       // Our points were colinear, so there's no plane to maintain. | 
 |       clamp_by_points = true; | 
 |     } | 
 |  | 
 |     if (clamp_by_points) { | 
 |       // Just clamp each point separately in each axis, just like we do | 
 |       // for 2D. | 
 |       for (size_t i = 0; i < static_cast<size_t>(*num_vertices_in_clipped_quad); | 
 |            ++i) { | 
 |         gfx::Point3F& point = clipped_quad[i]; | 
 |         point.set_x( | 
 |             std::clamp(point.x(), -HomogeneousCoordinate::kInfiniteCoordinate, | 
 |                        float{HomogeneousCoordinate::kInfiniteCoordinate})); | 
 |         point.set_y( | 
 |             std::clamp(point.y(), -HomogeneousCoordinate::kInfiniteCoordinate, | 
 |                        float{HomogeneousCoordinate::kInfiniteCoordinate})); | 
 |         point.set_z( | 
 |             std::clamp(point.z(), -HomogeneousCoordinate::kInfiniteCoordinate, | 
 |                        float{HomogeneousCoordinate::kInfiniteCoordinate})); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   DCHECK_LE(*num_vertices_in_clipped_quad, 6); | 
 |   return *num_vertices_in_clipped_quad >= 4; | 
 | } | 
 |  | 
 | gfx::RectF MathUtil::ComputeEnclosingRectOfVertices( | 
 |     base::span<const gfx::PointF> vertices) { | 
 |   if (vertices.size() < 2) { | 
 |     return gfx::RectF(); | 
 |   } | 
 |  | 
 |   float xmin = std::numeric_limits<float>::max(); | 
 |   float xmax = -std::numeric_limits<float>::max(); | 
 |   float ymin = std::numeric_limits<float>::max(); | 
 |   float ymax = -std::numeric_limits<float>::max(); | 
 |  | 
 |   for (auto& vertex : vertices) { | 
 |     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertex); | 
 |   } | 
 |  | 
 |   return gfx::RectF(gfx::PointF(xmin, ymin), | 
 |                     gfx::SizeF(xmax - xmin, ymax - ymin)); | 
 | } | 
 |  | 
 | gfx::RectF MathUtil::ComputeEnclosingClippedRect( | 
 |     const HomogeneousCoordinate& h1, | 
 |     const HomogeneousCoordinate& h2, | 
 |     const HomogeneousCoordinate& h3, | 
 |     const HomogeneousCoordinate& h4) { | 
 |   // This function performs clipping as necessary and computes the enclosing 2d | 
 |   // gfx::RectF of the vertices. Doing these two steps simultaneously allows us | 
 |   // to avoid the overhead of storing an unknown number of clipped vertices. | 
 |  | 
 |   // If no vertices on the quad are clipped, then we can simply return the | 
 |   // enclosing rect directly. | 
 |   bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() || | 
 |                            h3.ShouldBeClipped() || h4.ShouldBeClipped(); | 
 |   if (!something_clipped) { | 
 |     gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(), | 
 |                                         h2.CartesianPoint2d(), | 
 |                                         h3.CartesianPoint2d(), | 
 |                                         h4.CartesianPoint2d()); | 
 |     return mapped_quad.BoundingBox(); | 
 |   } | 
 |  | 
 |   bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() && | 
 |                             h3.ShouldBeClipped() && h4.ShouldBeClipped(); | 
 |   if (everything_clipped) | 
 |     return gfx::RectF(); | 
 |  | 
 |   float xmin = std::numeric_limits<float>::max(); | 
 |   float xmax = -std::numeric_limits<float>::max(); | 
 |   float ymin = std::numeric_limits<float>::max(); | 
 |   float ymax = -std::numeric_limits<float>::max(); | 
 |  | 
 |   if (!h1.ShouldBeClipped()) | 
 |     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, | 
 |                                h1.CartesianPoint2d()); | 
 |  | 
 |   if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) | 
 |     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, | 
 |                                ComputeClippedCartesianPoint2dForEdge(h1, h2)); | 
 |  | 
 |   if (!h2.ShouldBeClipped()) | 
 |     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, | 
 |                                h2.CartesianPoint2d()); | 
 |  | 
 |   if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) | 
 |     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, | 
 |                                ComputeClippedCartesianPoint2dForEdge(h2, h3)); | 
 |  | 
 |   if (!h3.ShouldBeClipped()) | 
 |     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, | 
 |                                h3.CartesianPoint2d()); | 
 |  | 
 |   if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) | 
 |     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, | 
 |                                ComputeClippedCartesianPoint2dForEdge(h3, h4)); | 
 |  | 
 |   if (!h4.ShouldBeClipped()) | 
 |     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, | 
 |                                h4.CartesianPoint2d()); | 
 |  | 
 |   if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) | 
 |     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, | 
 |                                ComputeClippedCartesianPoint2dForEdge(h4, h1)); | 
 |  | 
 |   return gfx::RectF(gfx::PointF(xmin, ymin), | 
 |                     gfx::SizeF(xmax - xmin, ymax - ymin)); | 
 | } | 
 |  | 
 | gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform, | 
 |                              const gfx::QuadF& q, | 
 |                              bool* clipped) { | 
 |   if (transform.IsIdentityOrTranslation()) { | 
 |     gfx::QuadF mapped_quad(q); | 
 |     mapped_quad += transform.To2dTranslation(); | 
 |     *clipped = false; | 
 |     return mapped_quad; | 
 |   } | 
 |  | 
 |   HomogeneousCoordinate h1 = MapHomogeneousPoint(transform, q.p1()); | 
 |   HomogeneousCoordinate h2 = MapHomogeneousPoint(transform, q.p2()); | 
 |   HomogeneousCoordinate h3 = MapHomogeneousPoint(transform, q.p3()); | 
 |   HomogeneousCoordinate h4 = MapHomogeneousPoint(transform, q.p4()); | 
 |  | 
 |   *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() || | 
 |             h3.ShouldBeClipped() || h4.ShouldBeClipped(); | 
 |  | 
 |   // Result will be invalid if clipped == true. But, compute it anyway just in | 
 |   // case, to emulate existing behavior. | 
 |   return gfx::QuadF(h1.CartesianPoint2d(), | 
 |                     h2.CartesianPoint2d(), | 
 |                     h3.CartesianPoint2d(), | 
 |                     h4.CartesianPoint2d()); | 
 | } | 
 |  | 
 | gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform, | 
 |                                const gfx::PointF& p, | 
 |                                bool* clipped) { | 
 |   HomogeneousCoordinate h = MapHomogeneousPoint(transform, p); | 
 |  | 
 |   if (h.w() > 0) { | 
 |     *clipped = false; | 
 |     return h.CartesianPoint2d(); | 
 |   } | 
 |  | 
 |   // The cartesian coordinates will be invalid after dividing by w. | 
 |   *clipped = true; | 
 |  | 
 |   // Avoid dividing by w if w == 0. | 
 |   if (!h.w()) | 
 |     return gfx::PointF(); | 
 |  | 
 |   // This return value will be invalid because clipped == true, but (1) users of | 
 |   // this code should be ignoring the return value when clipped == true anyway, | 
 |   // and (2) this behavior is more consistent with existing behavior of WebKit | 
 |   // transforms if the user really does not ignore the return value. | 
 |   return h.CartesianPoint2d(); | 
 | } | 
 |  | 
 | gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform, | 
 |                                    const gfx::PointF& p, | 
 |                                    bool* clipped) { | 
 |   HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped); | 
 |   // Avoid dividing by w if w == 0. | 
 |   if (!h.w()) | 
 |     return gfx::PointF(); | 
 |  | 
 |   // This return value will be invalid if clipped == true, but (1) users of | 
 |   // this code should be ignoring the return value when clipped == true anyway, | 
 |   // and (2) this behavior is more consistent with existing behavior of WebKit | 
 |   // transforms if the user really does not ignore the return value. | 
 |   return h.CartesianPoint2d(); | 
 | } | 
 |  | 
 | gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect, | 
 |                                            const gfx::RectF& scale_outer_rect, | 
 |                                            const gfx::RectF& scale_inner_rect) { | 
 |   gfx::RectF output_inner_rect = input_outer_rect; | 
 |   float scale_rect_to_input_scale_x = | 
 |       scale_outer_rect.width() / input_outer_rect.width(); | 
 |   float scale_rect_to_input_scale_y = | 
 |       scale_outer_rect.height() / input_outer_rect.height(); | 
 |  | 
 |   gfx::Vector2dF top_left_diff = | 
 |       scale_inner_rect.origin() - scale_outer_rect.origin(); | 
 |   gfx::Vector2dF bottom_right_diff = | 
 |       scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right(); | 
 |   output_inner_rect.Inset( | 
 |       gfx::InsetsF::TLBR(top_left_diff.y() / scale_rect_to_input_scale_y, | 
 |                          top_left_diff.x() / scale_rect_to_input_scale_x, | 
 |                          -bottom_right_diff.y() / scale_rect_to_input_scale_y, | 
 |                          -bottom_right_diff.x() / scale_rect_to_input_scale_x)); | 
 |   return output_inner_rect; | 
 | } | 
 |  | 
 | float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1, | 
 |                                             const gfx::Vector2dF& v2) { | 
 |   double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length(); | 
 |   // Clamp to compensate for rounding errors. | 
 |   dot_product = std::clamp(dot_product, -1.0, 1.0); | 
 |   return static_cast<float>(base::RadToDeg(std::acos(dot_product))); | 
 | } | 
 |  | 
 | gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source, | 
 |                                        const gfx::Vector2dF& destination) { | 
 |   float projected_length = | 
 |       gfx::DotProduct(source, destination) / destination.LengthSquared(); | 
 |   return gfx::Vector2dF(projected_length * destination.x(), | 
 |                         projected_length * destination.y()); | 
 | } | 
 |  | 
 | bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) { | 
 |   if (!raw_value->is_list()) | 
 |     return false; | 
 |  | 
 |   const base::Value::List& list = raw_value->GetList(); | 
 |  | 
 |   if (list.size() != 4) | 
 |     return false; | 
 |  | 
 |   for (const auto& val : list) { | 
 |     if (!val.is_int()) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   int x = list[0].GetInt(); | 
 |   int y = list[1].GetInt(); | 
 |   int w = list[2].GetInt(); | 
 |   int h = list[3].GetInt(); | 
 |  | 
 |   *out_rect = gfx::Rect(x, y, w, h); | 
 |   return true; | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::Size& s, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginDictionary(name); | 
 |   res->SetDouble("width", s.width()); | 
 |   res->SetDouble("height", s.height()); | 
 |   res->EndDictionary(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::SizeF& s, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginDictionary(name); | 
 |   res->SetDouble("width", s.width()); | 
 |   res->SetDouble("height", s.height()); | 
 |   res->EndDictionary(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::Rect& r, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendInteger(r.x()); | 
 |   res->AppendInteger(r.y()); | 
 |   res->AppendInteger(r.width()); | 
 |   res->AppendInteger(r.height()); | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::Point& pt, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendInteger(pt.x()); | 
 |   res->AppendInteger(pt.y()); | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::PointF& pt, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendDouble(pt.x()); | 
 |   res->AppendDouble(pt.y()); | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::Point3F& pt, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendDouble(pt.x()); | 
 |   res->AppendDouble(pt.y()); | 
 |   res->AppendDouble(pt.z()); | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::Vector2d& v, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendInteger(v.x()); | 
 |   res->AppendInteger(v.y()); | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::Vector2dF& v, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendDouble(v.x()); | 
 |   res->AppendDouble(v.y()); | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::QuadF& q, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendDouble(q.p1().x()); | 
 |   res->AppendDouble(q.p1().y()); | 
 |   res->AppendDouble(q.p2().x()); | 
 |   res->AppendDouble(q.p2().y()); | 
 |   res->AppendDouble(q.p3().x()); | 
 |   res->AppendDouble(q.p3().y()); | 
 |   res->AppendDouble(q.p4().x()); | 
 |   res->AppendDouble(q.p4().y()); | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::RectF& rect, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendDouble(rect.x()); | 
 |   res->AppendDouble(rect.y()); | 
 |   res->AppendDouble(rect.width()); | 
 |   res->AppendDouble(rect.height()); | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::Transform& transform, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   for (int row = 0; row < 4; ++row) { | 
 |     for (int col = 0; col < 4; ++col) | 
 |       res->AppendDouble(transform.rc(row, col)); | 
 |   } | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::BoxF& box, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendInteger(box.x()); | 
 |   res->AppendInteger(box.y()); | 
 |   res->AppendInteger(box.z()); | 
 |   res->AppendInteger(box.width()); | 
 |   res->AppendInteger(box.height()); | 
 |   res->AppendInteger(box.depth()); | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::RRectF& rect, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendDouble(rect.rect().x()); | 
 |   res->AppendDouble(rect.rect().y()); | 
 |   res->AppendDouble(rect.rect().width()); | 
 |   res->AppendDouble(rect.rect().height()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).x()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).y()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).x()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).y()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).x()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).y()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).x()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).y()); | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const SkPath& path, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   SkRRect rrect; | 
 |   if (path.isRRect(&rrect)) { | 
 |     AddToTracedValue(name, gfx::RRectF(rrect), res); | 
 |   } else { | 
 |     res->BeginDictionary(name); | 
 |     AddToTracedValue("bounds", gfx::SkRectToRectF(path.getBounds()), res); | 
 |     res->SetInteger("num_points", path.countPoints()); | 
 |     res->SetInteger("num_verbs", path.countVerbs()); | 
 |     res->EndDictionary(); | 
 |   } | 
 | } | 
 |  | 
 | void MathUtil::AddCornerRadiiToTracedValue( | 
 |     const char* name, | 
 |     const gfx::RRectF& rect, | 
 |     base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).x()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).y()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).x()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).y()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).x()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).y()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).x()); | 
 |   res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).y()); | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | void MathUtil::AddToTracedValue(const char* name, | 
 |                                 const gfx::LinearGradient& gradient, | 
 |                                 base::trace_event::TracedValue* res) { | 
 |   res->BeginArray(name); | 
 |   res->AppendInteger(gradient.angle()); | 
 |   res->AppendInteger(gradient.step_count()); | 
 |   for (size_t i = 0; i < gradient.step_count(); i++) { | 
 |     res->AppendDouble(gradient.steps()[i].fraction); | 
 |     res->AppendInteger(gradient.steps()[i].alpha); | 
 |   } | 
 |   res->EndArray(); | 
 | } | 
 |  | 
 | double MathUtil::AsDoubleSafely(double value) { | 
 |   return std::min(value, std::numeric_limits<double>::max()); | 
 | } | 
 |  | 
 | float MathUtil::AsFloatSafely(float value) { | 
 |   return std::min(value, std::numeric_limits<float>::max()); | 
 | } | 
 |  | 
 | gfx::Vector3dF MathUtil::GetXAxis(const gfx::Transform& transform) { | 
 |   if (transform.IsScaleOrTranslation()) { | 
 |     return gfx::Vector3dF(transform.To2dScale().x(), 0, 0); | 
 |   } | 
 |  | 
 |   return gfx::Vector3dF(transform.rc(0, 0), transform.rc(1, 0), | 
 |                         transform.rc(2, 0)); | 
 | } | 
 |  | 
 | gfx::Vector3dF MathUtil::GetYAxis(const gfx::Transform& transform) { | 
 |   if (transform.IsScaleOrTranslation()) { | 
 |     return gfx::Vector3dF(0, transform.To2dScale().y(), 0); | 
 |   } | 
 |   return gfx::Vector3dF(transform.rc(0, 1), transform.rc(1, 1), | 
 |                         transform.rc(2, 1)); | 
 | } | 
 |  | 
 | ScopedSubnormalFloatDisabler::ScopedSubnormalFloatDisabler() { | 
 | #if defined(ARCH_CPU_X86_FAMILY) | 
 |   // Turn on "subnormals are zero" and "flush to zero" CSR flags. | 
 |   orig_state_ = _mm_getcsr(); | 
 |   _mm_setcsr(orig_state_ | 0x8040); | 
 | #endif | 
 | } | 
 |  | 
 | ScopedSubnormalFloatDisabler::~ScopedSubnormalFloatDisabler() { | 
 | #if defined(ARCH_CPU_X86_FAMILY) | 
 |   _mm_setcsr(orig_state_); | 
 | #endif | 
 | } | 
 |  | 
 | bool MathUtil::IsFloatNearlyTheSame(float left, float right) { | 
 |   return IsNearlyTheSame(left, right); | 
 | } | 
 |  | 
 | bool MathUtil::IsNearlyTheSameForTesting(const gfx::PointF& left, | 
 |                                          const gfx::PointF& right) { | 
 |   return IsNearlyTheSame(left, right); | 
 | } | 
 |  | 
 | bool MathUtil::IsNearlyTheSameForTesting(const gfx::Point3F& left, | 
 |                                          const gfx::Point3F& right) { | 
 |   return IsNearlyTheSame(left, right); | 
 | } | 
 |  | 
 | // Equivalent to SkMatrix::HasPerspective | 
 | bool MathUtil::SkM44HasPerspective(const SkM44& m) { | 
 |   return (m.rc(3, 0) != 0 || m.rc(3, 1) != 0 || m.rc(3, 2) != 0 || | 
 |           m.rc(3, 3) != 1); | 
 | } | 
 |  | 
 | // Since some operations assume a 2d transformation, check to make sure that | 
 | // is the case by seeing that the z-axis is identity | 
 | bool MathUtil::SkM44Is2D(const SkM44& m) { | 
 |   return (m.rc(0, 2) == 0 && m.rc(1, 2) == 0 && m.rc(2, 2) == 1 && | 
 |           m.rc(2, 0) == 0 && m.rc(2, 1) == 0 && m.rc(2, 3) == 0 && | 
 |           m.rc(3, 2) == 0); | 
 | } | 
 |  | 
 | // Equivalent to SkMatrix::PreservesAxisAlignment | 
 | // Checks if the transformation is a 90 degree rotation or scaling | 
 | // See SkMatrix::computeTypeMask | 
 | bool MathUtil::SkM44Preserves2DAxisAlignment(const SkM44& m) { | 
 |   // Conservatively assume that perspective transforms would not preserve | 
 |   // axis-alignment | 
 |   if (!SkM44Is2D(m) || SkM44HasPerspective(m)) | 
 |     return false; | 
 |  | 
 |   // Does the matrix have skew components | 
 |   if (m.rc(0, 1) != 0 || m.rc(1, 0) != 0) { | 
 |     // Rects only map to rects if both skews are non-zero and both scale | 
 |     // components are zero (i.e. it's a +/-90-degree rotation) | 
 |     return (m.rc(0, 0) == 0 && m.rc(1, 1) == 0 && m.rc(0, 1) != 0 && | 
 |             m.rc(1, 0) != 0); | 
 |   } | 
 |   // Since the matrix has no skewing, it maps to a rectangle so long as the | 
 |   // scale components are non-zero | 
 |   return (m.rc(0, 0) != 0 && m.rc(1, 1) != 0); | 
 | } | 
 |  | 
 | }  // namespace cc |