|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "sandbox/linux/seccomp-bpf/syscall.h" | 
|  |  | 
|  | #include <asm/unistd.h> | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <stddef.h> | 
|  | #include <stdint.h> | 
|  | #include <sys/mman.h> | 
|  | #include <sys/syscall.h> | 
|  | #include <sys/types.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <vector> | 
|  |  | 
|  | #include "base/macros.h" | 
|  | #include "base/posix/eintr_wrapper.h" | 
|  | #include "build/build_config.h" | 
|  | #include "sandbox/linux/bpf_dsl/bpf_dsl.h" | 
|  | #include "sandbox/linux/bpf_dsl/policy.h" | 
|  | #include "sandbox/linux/seccomp-bpf/bpf_tests.h" | 
|  | #include "sandbox/linux/seccomp-bpf/sandbox_bpf.h" | 
|  | #include "sandbox/linux/tests/unit_tests.h" | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  |  | 
|  | using sandbox::bpf_dsl::Allow; | 
|  | using sandbox::bpf_dsl::ResultExpr; | 
|  | using sandbox::bpf_dsl::Trap; | 
|  |  | 
|  | namespace sandbox { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Different platforms use different symbols for the six-argument version | 
|  | // of the mmap() system call. Test for the correct symbol at compile time. | 
|  | #ifdef __NR_mmap2 | 
|  | const int kMMapNr = __NR_mmap2; | 
|  | #else | 
|  | const int kMMapNr = __NR_mmap; | 
|  | #endif | 
|  |  | 
|  | TEST(Syscall, InvalidCallReturnsENOSYS) { | 
|  | EXPECT_EQ(-ENOSYS, Syscall::InvalidCall()); | 
|  | } | 
|  |  | 
|  | TEST(Syscall, WellKnownEntryPoint) { | 
|  | // Test that Syscall::Call(-1) is handled specially. Don't do this on ARM, | 
|  | // where syscall(-1) crashes with SIGILL. Not running the test is fine, as we | 
|  | // are still testing ARM code in the next set of tests. | 
|  | #if !defined(__arm__) && !defined(__aarch64__) | 
|  | EXPECT_NE(Syscall::Call(-1), syscall(-1)); | 
|  | #endif | 
|  |  | 
|  | // If possible, test that Syscall::Call(-1) returns the address right | 
|  | // after | 
|  | // a kernel entry point. | 
|  | #if defined(__i386__) | 
|  | EXPECT_EQ(0x80CDu, ((uint16_t*)Syscall::Call(-1))[-1]);  // INT 0x80 | 
|  | #elif defined(__x86_64__) | 
|  | EXPECT_EQ(0x050Fu, ((uint16_t*)Syscall::Call(-1))[-1]);  // SYSCALL | 
|  | #elif defined(__arm__) | 
|  | #if defined(__thumb__) | 
|  | EXPECT_EQ(0xDF00u, ((uint16_t*)Syscall::Call(-1))[-1]);  // SWI 0 | 
|  | #else | 
|  | EXPECT_EQ(0xEF000000u, ((uint32_t*)Syscall::Call(-1))[-1]);  // SVC 0 | 
|  | #endif | 
|  | #elif defined(__mips__) | 
|  | // Opcode for MIPS sycall is in the lower 16-bits | 
|  | EXPECT_EQ(0x0cu, (((uint32_t*)Syscall::Call(-1))[-1]) & 0x0000FFFF); | 
|  | #elif defined(__aarch64__) | 
|  | EXPECT_EQ(0xD4000001u, ((uint32_t*)Syscall::Call(-1))[-1]);  // SVC 0 | 
|  | #else | 
|  | #warning Incomplete test case; need port for target platform | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(Syscall, TrivialSyscallNoArgs) { | 
|  | // Test that we can do basic system calls | 
|  | EXPECT_EQ(Syscall::Call(__NR_getpid), syscall(__NR_getpid)); | 
|  | } | 
|  |  | 
|  | TEST(Syscall, TrivialSyscallOneArg) { | 
|  | int new_fd; | 
|  | // Duplicate standard error and close it. | 
|  | ASSERT_GE(new_fd = Syscall::Call(__NR_dup, 2), 0); | 
|  | int close_return_value = IGNORE_EINTR(Syscall::Call(__NR_close, new_fd)); | 
|  | ASSERT_EQ(close_return_value, 0); | 
|  | } | 
|  |  | 
|  | TEST(Syscall, TrivialFailingSyscall) { | 
|  | errno = -42; | 
|  | int ret = Syscall::Call(__NR_dup, -1); | 
|  | ASSERT_EQ(-EBADF, ret); | 
|  | // Verify that Syscall::Call does not touch errno. | 
|  | ASSERT_EQ(-42, errno); | 
|  | } | 
|  |  | 
|  | // SIGSYS trap handler that will be called on __NR_uname. | 
|  | intptr_t CopySyscallArgsToAux(const struct arch_seccomp_data& args, void* aux) { | 
|  | // |aux| is our BPF_AUX pointer. | 
|  | std::vector<uint64_t>* const seen_syscall_args = | 
|  | static_cast<std::vector<uint64_t>*>(aux); | 
|  | BPF_ASSERT(arraysize(args.args) == 6); | 
|  | seen_syscall_args->assign(args.args, args.args + arraysize(args.args)); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | class CopyAllArgsOnUnamePolicy : public bpf_dsl::Policy { | 
|  | public: | 
|  | explicit CopyAllArgsOnUnamePolicy(std::vector<uint64_t>* aux) : aux_(aux) {} | 
|  | ~CopyAllArgsOnUnamePolicy() override {} | 
|  |  | 
|  | ResultExpr EvaluateSyscall(int sysno) const override { | 
|  | DCHECK(SandboxBPF::IsValidSyscallNumber(sysno)); | 
|  | if (sysno == __NR_uname) { | 
|  | return Trap(CopySyscallArgsToAux, aux_); | 
|  | } else { | 
|  | return Allow(); | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | std::vector<uint64_t>* aux_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(CopyAllArgsOnUnamePolicy); | 
|  | }; | 
|  |  | 
|  | // We are testing Syscall::Call() by making use of a BPF filter that | 
|  | // allows us | 
|  | // to inspect the system call arguments that the kernel saw. | 
|  | BPF_TEST(Syscall, | 
|  | SyntheticSixArgs, | 
|  | CopyAllArgsOnUnamePolicy, | 
|  | std::vector<uint64_t> /* (*BPF_AUX) */) { | 
|  | const int kExpectedValue = 42; | 
|  | // In this test we only pass integers to the kernel. We might want to make | 
|  | // additional tests to try other types. What we will see depends on | 
|  | // implementation details of kernel BPF filters and we will need to document | 
|  | // the expected behavior very clearly. | 
|  | int syscall_args[6]; | 
|  | for (size_t i = 0; i < arraysize(syscall_args); ++i) { | 
|  | syscall_args[i] = kExpectedValue + i; | 
|  | } | 
|  |  | 
|  | // We could use pretty much any system call we don't need here. uname() is | 
|  | // nice because it doesn't have any dangerous side effects. | 
|  | BPF_ASSERT(Syscall::Call(__NR_uname, | 
|  | syscall_args[0], | 
|  | syscall_args[1], | 
|  | syscall_args[2], | 
|  | syscall_args[3], | 
|  | syscall_args[4], | 
|  | syscall_args[5]) == -ENOMEM); | 
|  |  | 
|  | // We expect the trap handler to have copied the 6 arguments. | 
|  | BPF_ASSERT(BPF_AUX->size() == 6); | 
|  |  | 
|  | // Don't loop here so that we can see which argument does cause the failure | 
|  | // easily from the failing line. | 
|  | // uint64_t is the type passed to our SIGSYS handler. | 
|  | BPF_ASSERT((*BPF_AUX)[0] == static_cast<uint64_t>(syscall_args[0])); | 
|  | BPF_ASSERT((*BPF_AUX)[1] == static_cast<uint64_t>(syscall_args[1])); | 
|  | BPF_ASSERT((*BPF_AUX)[2] == static_cast<uint64_t>(syscall_args[2])); | 
|  | BPF_ASSERT((*BPF_AUX)[3] == static_cast<uint64_t>(syscall_args[3])); | 
|  | BPF_ASSERT((*BPF_AUX)[4] == static_cast<uint64_t>(syscall_args[4])); | 
|  | BPF_ASSERT((*BPF_AUX)[5] == static_cast<uint64_t>(syscall_args[5])); | 
|  | } | 
|  |  | 
|  | TEST(Syscall, ComplexSyscallSixArgs) { | 
|  | int fd; | 
|  | ASSERT_LE(0, | 
|  | fd = Syscall::Call(__NR_openat, AT_FDCWD, "/dev/null", O_RDWR, 0L)); | 
|  |  | 
|  | // Use mmap() to allocate some read-only memory | 
|  | char* addr0; | 
|  | ASSERT_NE( | 
|  | (char*)NULL, | 
|  | addr0 = reinterpret_cast<char*>(Syscall::Call(kMMapNr, | 
|  | (void*)NULL, | 
|  | 4096, | 
|  | PROT_READ, | 
|  | MAP_PRIVATE | MAP_ANONYMOUS, | 
|  | fd, | 
|  | 0L))); | 
|  |  | 
|  | // Try to replace the existing mapping with a read-write mapping | 
|  | char* addr1; | 
|  | ASSERT_EQ(addr0, | 
|  | addr1 = reinterpret_cast<char*>( | 
|  | Syscall::Call(kMMapNr, | 
|  | addr0, | 
|  | 4096L, | 
|  | PROT_READ | PROT_WRITE, | 
|  | MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, | 
|  | fd, | 
|  | 0L))); | 
|  | ++*addr1;  // This should not seg fault | 
|  |  | 
|  | // Clean up | 
|  | EXPECT_EQ(0, Syscall::Call(__NR_munmap, addr1, 4096L)); | 
|  | EXPECT_EQ(0, IGNORE_EINTR(Syscall::Call(__NR_close, fd))); | 
|  |  | 
|  | // Check that the offset argument (i.e. the sixth argument) is processed | 
|  | // correctly. | 
|  | ASSERT_GE( | 
|  | fd = Syscall::Call(__NR_openat, AT_FDCWD, "/proc/self/exe", O_RDONLY, 0L), | 
|  | 0); | 
|  | char* addr2, *addr3; | 
|  | ASSERT_NE((char*)NULL, | 
|  | addr2 = reinterpret_cast<char*>(Syscall::Call( | 
|  | kMMapNr, (void*)NULL, 8192L, PROT_READ, MAP_PRIVATE, fd, 0L))); | 
|  | ASSERT_NE((char*)NULL, | 
|  | addr3 = reinterpret_cast<char*>(Syscall::Call(kMMapNr, | 
|  | (void*)NULL, | 
|  | 4096L, | 
|  | PROT_READ, | 
|  | MAP_PRIVATE, | 
|  | fd, | 
|  | #if defined(__NR_mmap2) | 
|  | 1L | 
|  | #else | 
|  | 4096L | 
|  | #endif | 
|  | ))); | 
|  | EXPECT_EQ(0, memcmp(addr2 + 4096, addr3, 4096)); | 
|  |  | 
|  | // Just to be absolutely on the safe side, also verify that the file | 
|  | // contents matches what we are getting from a read() operation. | 
|  | char buf[8192]; | 
|  | EXPECT_EQ(8192, Syscall::Call(__NR_read, fd, buf, 8192L)); | 
|  | EXPECT_EQ(0, memcmp(addr2, buf, 8192)); | 
|  |  | 
|  | // Clean up | 
|  | EXPECT_EQ(0, Syscall::Call(__NR_munmap, addr2, 8192L)); | 
|  | EXPECT_EQ(0, Syscall::Call(__NR_munmap, addr3, 4096L)); | 
|  | EXPECT_EQ(0, IGNORE_EINTR(Syscall::Call(__NR_close, fd))); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | }  // namespace sandbox |