| // Copyright 2018 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "media/cdm/cbcs_decryptor.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <memory> |
| |
| #include "base/containers/span.h" |
| #include "base/optional.h" |
| #include "base/stl_util.h" |
| #include "base/time/time.h" |
| #include "crypto/encryptor.h" |
| #include "crypto/symmetric_key.h" |
| #include "media/base/decoder_buffer.h" |
| #include "media/base/decrypt_config.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| namespace media { |
| |
| namespace { |
| |
| // Pattern decryption uses 16-byte blocks. |
| constexpr size_t kBlockSize = 16; |
| |
| // Keys and IVs have to be 128 bits. |
| const std::array<uint8_t, 16> kKey = {0x04, 0x05, 0x06, 0x07, 0x08, 0x09, |
| 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
| 0x10, 0x11, 0x12, 0x13}; |
| |
| const std::array<uint8_t, 16> kIv = {0x20, 0x21, 0x22, 0x23, 0x24, 0x25, |
| 0x26, 0x27, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00}; |
| |
| const std::array<uint8_t, kBlockSize> kOneBlock = {'a', 'b', 'c', 'd', 'e', 'f', |
| 'g', 'h', 'i', 'j', 'k', 'l', |
| 'm', 'n', 'o', 'p'}; |
| |
| const std::array<uint8_t, 6> kPartialBlock = {'a', 'b', 'c', 'd', 'e', 'f'}; |
| static_assert(base::size(kPartialBlock) != kBlockSize, "kPartialBlock wrong"); |
| |
| std::string MakeString(const std::vector<uint8_t>& chars) { |
| return std::string(chars.begin(), chars.end()); |
| } |
| |
| // Combine multiple std::vector<uint8_t> into one. |
| std::vector<uint8_t> Combine(const std::vector<std::vector<uint8_t>>& inputs) { |
| std::vector<uint8_t> result; |
| for (const auto& input : inputs) |
| result.insert(result.end(), input.begin(), input.end()); |
| |
| return result; |
| } |
| |
| // Extract the |n|th block of |input|. The first block is number 1. |
| std::vector<uint8_t> GetBlock(size_t n, const std::vector<uint8_t>& input) { |
| DCHECK_LE(n, input.size() / kBlockSize); |
| auto it = input.begin() + ((n - 1) * kBlockSize); |
| return std::vector<uint8_t>(it, it + kBlockSize); |
| } |
| |
| // Returns a std::vector<uint8_t> containing |count| copies of |input|. |
| std::vector<uint8_t> Repeat(const std::vector<uint8_t>& input, size_t count) { |
| std::vector<uint8_t> result; |
| for (size_t i = 0; i < count; ++i) |
| result.insert(result.end(), input.begin(), input.end()); |
| return result; |
| } |
| |
| } // namespace |
| |
| class CbcsDecryptorTest : public testing::Test { |
| public: |
| CbcsDecryptorTest() |
| : key_(crypto::SymmetricKey::Import( |
| crypto::SymmetricKey::AES, |
| std::string(std::begin(kKey), std::end(kKey)))), |
| iv_(std::begin(kIv), std::end(kIv)), |
| one_block_(std::begin(kOneBlock), std::end(kOneBlock)), |
| partial_block_(std::begin(kPartialBlock), std::end(kPartialBlock)) {} |
| |
| // Excrypt |original| using AES-CBC encryption with |key| and |iv|. |
| std::vector<uint8_t> Encrypt(const std::vector<uint8_t>& original, |
| const crypto::SymmetricKey& key, |
| const std::string& iv) { |
| // This code uses crypto::Encryptor to encrypt |original| rather than |
| // calling EVP_EncryptInit_ex() / EVP_EncryptUpdate() / etc. This is done |
| // for simplicity, as the crypto:: code wraps all the calls up nicely. |
| // However, for AES-CBC encryption, the crypto:: code does add padding to |
| // the output, which is simply stripped off. |
| crypto::Encryptor encryptor; |
| EXPECT_TRUE(encryptor.Init(&key, crypto::Encryptor::CBC, iv)); |
| |
| std::string ciphertext; |
| EXPECT_TRUE(encryptor.Encrypt(MakeString(original), &ciphertext)); |
| |
| // CBC encyption adds a block of padding at the end, so discard it. |
| DCHECK_GT(ciphertext.size(), original.size()); |
| ciphertext.resize(original.size()); |
| |
| return std::vector<uint8_t>(ciphertext.begin(), ciphertext.end()); |
| } |
| |
| // Returns a 'cbcs' DecoderBuffer using the data and other parameters. |
| scoped_refptr<DecoderBuffer> CreateEncryptedBuffer( |
| const std::vector<uint8_t>& data, |
| const std::string& iv, |
| const std::vector<SubsampleEntry>& subsample_entries, |
| base::Optional<EncryptionPattern> encryption_pattern) { |
| EXPECT_FALSE(data.empty()); |
| EXPECT_FALSE(iv.empty()); |
| |
| auto encrypted_buffer = DecoderBuffer::CopyFrom(data.data(), data.size()); |
| |
| // Key_ID is never used. |
| encrypted_buffer->set_decrypt_config(DecryptConfig::CreateCbcsConfig( |
| "key_id", iv, subsample_entries, encryption_pattern)); |
| return encrypted_buffer; |
| } |
| |
| // Calls DecryptCbcsBuffer() to decrypt |encrypted| using |key|, |
| // and then returns the data in the decrypted buffer. |
| std::vector<uint8_t> DecryptWithKey(scoped_refptr<DecoderBuffer> encrypted, |
| const crypto::SymmetricKey& key) { |
| auto decrypted = DecryptCbcsBuffer(*encrypted, key); |
| |
| std::vector<uint8_t> decrypted_data; |
| if (decrypted.get()) { |
| EXPECT_TRUE(decrypted->data_size()); |
| decrypted_data.assign(decrypted->data(), |
| decrypted->data() + decrypted->data_size()); |
| } |
| |
| return decrypted_data; |
| } |
| |
| // Constants for testing. |
| std::unique_ptr<crypto::SymmetricKey> key_; |
| const std::string iv_; |
| const std::vector<uint8_t> one_block_; |
| const std::vector<uint8_t> partial_block_; |
| }; |
| |
| TEST_F(CbcsDecryptorTest, OneBlock) { |
| auto encrypted_block = Encrypt(one_block_, *key_, iv_); |
| DCHECK_EQ(kBlockSize, encrypted_block.size()); |
| |
| // Only 1 subsample, all encrypted data. |
| std::vector<SubsampleEntry> subsamples = {{0, encrypted_block.size()}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer( |
| encrypted_block, iv_, subsamples, EncryptionPattern(1, 9)); |
| EXPECT_EQ(one_block_, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, AdditionalData) { |
| auto encrypted_block = Encrypt(one_block_, *key_, iv_); |
| DCHECK_EQ(kBlockSize, encrypted_block.size()); |
| |
| // Only 1 subsample, all encrypted data. |
| std::vector<SubsampleEntry> subsamples = {{0, encrypted_block.size()}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer( |
| encrypted_block, iv_, subsamples, EncryptionPattern(1, 9)); |
| encrypted_buffer->set_timestamp(base::TimeDelta::FromDays(2)); |
| encrypted_buffer->set_duration(base::TimeDelta::FromMinutes(5)); |
| encrypted_buffer->set_is_key_frame(true); |
| encrypted_buffer->CopySideDataFrom(encrypted_block.data(), |
| encrypted_block.size()); |
| |
| auto decrypted_buffer = DecryptCbcsBuffer(*encrypted_buffer, *key_); |
| EXPECT_EQ(encrypted_buffer->timestamp(), decrypted_buffer->timestamp()); |
| EXPECT_EQ(encrypted_buffer->duration(), decrypted_buffer->duration()); |
| EXPECT_EQ(encrypted_buffer->end_of_stream(), |
| decrypted_buffer->end_of_stream()); |
| EXPECT_EQ(encrypted_buffer->is_key_frame(), decrypted_buffer->is_key_frame()); |
| EXPECT_EQ(encrypted_buffer->side_data_size(), |
| decrypted_buffer->side_data_size()); |
| EXPECT_TRUE(std::equal( |
| encrypted_buffer->side_data(), |
| encrypted_buffer->side_data() + encrypted_buffer->side_data_size(), |
| decrypted_buffer->side_data(), |
| decrypted_buffer->side_data() + encrypted_buffer->side_data_size())); |
| } |
| |
| TEST_F(CbcsDecryptorTest, DifferentPattern) { |
| auto encrypted_block = Encrypt(one_block_, *key_, iv_); |
| DCHECK_EQ(kBlockSize, encrypted_block.size()); |
| |
| // Only 1 subsample, all encrypted data. |
| std::vector<SubsampleEntry> subsamples = {{0, encrypted_block.size()}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer( |
| encrypted_block, iv_, subsamples, EncryptionPattern(1, 0)); |
| EXPECT_EQ(one_block_, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, EmptyPattern) { |
| auto encrypted_block = Encrypt(one_block_, *key_, iv_); |
| DCHECK_EQ(kBlockSize, encrypted_block.size()); |
| |
| // Only 1 subsample, all encrypted data. |
| std::vector<SubsampleEntry> subsamples = {{0, encrypted_block.size()}}; |
| |
| // Pattern 0:0 treats the buffer as all encrypted. |
| auto encrypted_buffer = CreateEncryptedBuffer( |
| encrypted_block, iv_, subsamples, EncryptionPattern(0, 0)); |
| EXPECT_EQ(one_block_, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, PatternTooLarge) { |
| auto encrypted_block = Encrypt(one_block_, *key_, iv_); |
| DCHECK_EQ(kBlockSize, encrypted_block.size()); |
| |
| // Only 1 subsample, all encrypted data. |
| std::vector<SubsampleEntry> subsamples = {{0, encrypted_block.size()}}; |
| |
| // Pattern 100:0 is too large, so decryption will fail. |
| auto encrypted_buffer = CreateEncryptedBuffer( |
| encrypted_block, iv_, subsamples, EncryptionPattern(100, 0)); |
| EXPECT_EQ(std::vector<uint8_t>(), DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, NoSubsamples) { |
| auto encrypted_block = Encrypt(one_block_, *key_, iv_); |
| DCHECK_EQ(kBlockSize, encrypted_block.size()); |
| |
| std::vector<SubsampleEntry> subsamples = {}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer( |
| encrypted_block, iv_, subsamples, EncryptionPattern(1, 9)); |
| EXPECT_EQ(one_block_, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, BadSubsamples) { |
| auto encrypted_block = Encrypt(one_block_, *key_, iv_); |
| |
| // Subsample size > data size. |
| std::vector<SubsampleEntry> subsamples = {{0, encrypted_block.size() + 1}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer( |
| encrypted_block, iv_, subsamples, EncryptionPattern(1, 0)); |
| EXPECT_EQ(std::vector<uint8_t>(), DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, InvalidIv) { |
| auto encrypted_block = Encrypt(one_block_, *key_, iv_); |
| |
| std::vector<SubsampleEntry> subsamples = {{0, encrypted_block.size()}}; |
| |
| // Use an invalid IV for decryption. Call should succeed, but return |
| // something other than the original data. |
| std::string invalid_iv(iv_.size(), 'a'); |
| auto encrypted_buffer = CreateEncryptedBuffer( |
| encrypted_block, invalid_iv, subsamples, EncryptionPattern(1, 0)); |
| EXPECT_NE(one_block_, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, InvalidKey) { |
| auto encrypted_block = Encrypt(one_block_, *key_, iv_); |
| |
| std::vector<SubsampleEntry> subsamples = {{0, encrypted_block.size()}}; |
| |
| // Use a different key for decryption. Call should succeed, but return |
| // something other than the original data. |
| std::unique_ptr<crypto::SymmetricKey> bad_key = crypto::SymmetricKey::Import( |
| crypto::SymmetricKey::AES, std::string(base::size(kKey), 'b')); |
| auto encrypted_buffer = CreateEncryptedBuffer( |
| encrypted_block, iv_, subsamples, EncryptionPattern(1, 0)); |
| EXPECT_NE(one_block_, DecryptWithKey(encrypted_buffer, *bad_key)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, PartialBlock) { |
| // Only 1 subsample, all "encrypted" data. However, as it's not a full block, |
| // it will be treated as unencrypted. |
| std::vector<SubsampleEntry> subsamples = {{0, partial_block_.size()}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer(partial_block_, iv_, subsamples, |
| EncryptionPattern(1, 0)); |
| EXPECT_EQ(partial_block_, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, SingleBlockWithExtraData) { |
| // Create some data that is longer than a single block. The full block will |
| // be encrypted, but the extra data at the end will be considered unencrypted. |
| auto encrypted_block = |
| Combine({Encrypt(one_block_, *key_, iv_), partial_block_}); |
| auto expected_result = Combine({one_block_, partial_block_}); |
| |
| // Only 1 subsample, all "encrypted" data. |
| std::vector<SubsampleEntry> subsamples = {{0, encrypted_block.size()}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer( |
| encrypted_block, iv_, subsamples, EncryptionPattern(1, 0)); |
| EXPECT_EQ(expected_result, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, SkipBlock) { |
| // Only 1 subsample, but all unencrypted data. |
| std::vector<SubsampleEntry> subsamples = {{one_block_.size(), 0}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer(one_block_, iv_, subsamples, |
| EncryptionPattern(1, 0)); |
| EXPECT_EQ(one_block_, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, MultipleBlocks) { |
| // Encrypt 2 copies of |one_block_| together using kKey and kIv. |
| auto encrypted_block = Encrypt(Repeat(one_block_, 2), *key_, iv_); |
| DCHECK_EQ(2 * kBlockSize, encrypted_block.size()); |
| |
| // 1 subsample, 4 blocks in (1,1) pattern. |
| // Encrypted blocks come from |encrypted_block|. |
| // data: | enc1 | clear | enc2 | clear | |
| // subsamples: | subsample#1 | |
| // |eeeeeeeeeeeeeeeeeeeeeeeeeeeee| |
| auto input_data = Combine({GetBlock(1, encrypted_block), one_block_, |
| GetBlock(2, encrypted_block), one_block_}); |
| auto expected_result = Repeat(one_block_, 4); |
| std::vector<SubsampleEntry> subsamples = {{0, 4 * kBlockSize}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer(input_data, iv_, subsamples, |
| EncryptionPattern(1, 1)); |
| EXPECT_EQ(expected_result, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, PartialPattern) { |
| // Encrypt 4 copies of |one_block_| together using kKey and kIv. |
| auto encrypted_block = Encrypt(Repeat(one_block_, 4), *key_, iv_); |
| DCHECK_EQ(4 * kBlockSize, encrypted_block.size()); |
| |
| // 1 subsample, 4 blocks in (8,2) pattern. Even though there is not a full |
| // pattern (10 blocks), all 4 blocks should be decrypted. |
| auto expected_result = Repeat(one_block_, 4); |
| std::vector<SubsampleEntry> subsamples = {{0, 4 * kBlockSize}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer( |
| encrypted_block, iv_, subsamples, EncryptionPattern(8, 2)); |
| EXPECT_EQ(expected_result, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, SkipBlocks) { |
| // Encrypt 5 blocks together using kKey and kIv. |
| auto encrypted_block = Encrypt(Repeat(one_block_, 5), *key_, iv_); |
| DCHECK_EQ(5 * kBlockSize, encrypted_block.size()); |
| |
| // 1 subsample, 1 unencrypted block followed by 7 blocks in (2,1) pattern. |
| // Encrypted blocks come from |encrypted_block|. |
| // data: | clear | enc1 | enc2 | clear | enc3 | enc4 | clear | enc5 | |
| // subsamples: | subsample#1 | |
| // |uuuuuuu eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee| |
| auto input_data = Combine( |
| {one_block_, GetBlock(1, encrypted_block), GetBlock(2, encrypted_block), |
| one_block_, GetBlock(3, encrypted_block), GetBlock(4, encrypted_block), |
| one_block_, GetBlock(5, encrypted_block)}); |
| auto expected_result = Repeat(one_block_, 8); |
| std::vector<SubsampleEntry> subsamples = {{kBlockSize, 7 * kBlockSize}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer(input_data, iv_, subsamples, |
| EncryptionPattern(2, 1)); |
| EXPECT_EQ(expected_result, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, MultipleSubsamples) { |
| // Encrypt |one_block_| using kKey and kIv. |
| auto encrypted_block = Encrypt(one_block_, *key_, iv_); |
| DCHECK_EQ(kBlockSize, encrypted_block.size()); |
| |
| // 3 subsamples, each 1 block of |encrypted_block|. |
| // data: | encrypted | encrypted | encrypted | |
| // subsamples: | subsample#1 | subsample#2 | subsample#3 | |
| // |eeeeeeeeeeeee|eeeeeeeeeeeee|eeeeeeeeeeeee| |
| auto input_data = Repeat(encrypted_block, 3); |
| auto expected_result = Repeat(one_block_, 3); |
| std::vector<SubsampleEntry> subsamples = { |
| {0, kBlockSize}, {0, kBlockSize}, {0, kBlockSize}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer(input_data, iv_, subsamples, |
| EncryptionPattern(1, 0)); |
| EXPECT_EQ(expected_result, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| TEST_F(CbcsDecryptorTest, MultipleSubsamplesWithClearBytes) { |
| // Encrypt |one_block_| using kKey and kIv. |
| auto encrypted_block = Encrypt(one_block_, *key_, iv_); |
| DCHECK_EQ(kBlockSize, encrypted_block.size()); |
| |
| // Combine into alternating clear/encrypted blocks in 3 subsamples. Split |
| // the second and third clear blocks into part of encrypted data of the |
| // previous block (which as a partial block will be considered unencrypted). |
| // data: | clear | encrypted | clear | encrypted | clear | encrypted | |
| // subsamples: | subsample#1 | subsample#2 | subsample#3 | |
| // |uuuuuuu eeeeeeeeeeee|uuuuuu eeeeeeeeeeeeeeee|uu eeeeeeeeeee| |
| auto input_data = Combine({one_block_, encrypted_block, one_block_, |
| encrypted_block, one_block_, encrypted_block}); |
| auto expected_result = Repeat(one_block_, 6); |
| std::vector<SubsampleEntry> subsamples = {{kBlockSize, kBlockSize + 1}, |
| {kBlockSize - 1, kBlockSize + 10}, |
| {kBlockSize - 10, kBlockSize}}; |
| |
| auto encrypted_buffer = CreateEncryptedBuffer(input_data, iv_, subsamples, |
| EncryptionPattern(1, 0)); |
| EXPECT_EQ(expected_result, DecryptWithKey(encrypted_buffer, *key_)); |
| } |
| |
| } // namespace media |