blob: 57831cd3c0c1c142a1723968cf98105e052c5024 [file] [log] [blame]
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/disassembler.h"
#include <algorithm>
#include <string>
#include <vector>
#include "base/basictypes.h"
#include "base/logging.h"
#include "courgette/assembly_program.h"
#include "courgette/courgette.h"
#include "courgette/encoded_program.h"
#include "courgette/image_info.h"
// COURGETTE_HISTOGRAM_TARGETS prints out a histogram of how frequently
// different target addresses are referenced. Purely for debugging.
#define COURGETTE_HISTOGRAM_TARGETS 0
namespace courgette {
class DisassemblerWin32X86 : public Disassembler {
public:
explicit DisassemblerWin32X86(PEInfo* pe_info)
: pe_info_(pe_info),
incomplete_disassembly_(false) {
}
virtual bool Disassemble(AssemblyProgram* target);
virtual void Destroy() { delete this; }
protected:
PEInfo& pe_info() { return *pe_info_; }
void ParseFile(AssemblyProgram* target);
bool ParseAbs32Relocs();
void ParseRel32RelocsFromSections();
void ParseRel32RelocsFromSection(const Section* section);
void ParseNonSectionFileRegion(uint32 start_file_offset,
uint32 end_file_offset,
AssemblyProgram* program);
void ParseFileRegion(const Section* section,
uint32 start_file_offset, uint32 end_file_offset,
AssemblyProgram* program);
#if COURGETTE_HISTOGRAM_TARGETS
void HistogramTargets(const char* kind, const std::map<RVA, int>& map);
#endif
PEInfo* pe_info_;
bool incomplete_disassembly_; // 'true' if can leave out 'uninteresting' bits
std::vector<RVA> abs32_locations_;
std::vector<RVA> rel32_locations_;
#if COURGETTE_HISTOGRAM_TARGETS
std::map<RVA, int> abs32_target_rvas_;
std::map<RVA, int> rel32_target_rvas_;
#endif
};
bool DisassemblerWin32X86::Disassemble(AssemblyProgram* target) {
if (!pe_info().ok())
return false;
target->set_image_base(pe_info().image_base());
if (!ParseAbs32Relocs())
return false;
ParseRel32RelocsFromSections();
ParseFile(target);
target->DefaultAssignIndexes();
return true;
}
static uint32 Read32LittleEndian(const void* address) {
return *reinterpret_cast<const uint32*>(address);
}
bool DisassemblerWin32X86::ParseAbs32Relocs() {
abs32_locations_.clear();
if (!pe_info().ParseRelocs(&abs32_locations_))
return false;
std::sort(abs32_locations_.begin(), abs32_locations_.end());
#if COURGETTE_HISTOGRAM_TARGETS
for (size_t i = 0; i < abs32_locations_.size(); ++i) {
RVA rva = abs32_locations_[i];
// The 4 bytes at the relocation are a reference to some address.
uint32 target_address = Read32LittleEndian(pe_info().RVAToPointer(rva));
++abs32_target_rvas_[target_address - pe_info().image_base()];
}
#endif
return true;
}
void DisassemblerWin32X86::ParseRel32RelocsFromSections() {
uint32 file_offset = 0;
while (file_offset < pe_info().length()) {
const Section* section = pe_info().FindNextSection(file_offset);
if (section == NULL)
break;
if (file_offset < section->file_offset_of_raw_data)
file_offset = section->file_offset_of_raw_data;
ParseRel32RelocsFromSection(section);
file_offset += section->size_of_raw_data;
}
std::sort(rel32_locations_.begin(), rel32_locations_.end());
#if COURGETTE_HISTOGRAM_TARGETS
LOG(INFO) << "abs32_locations_ " << abs32_locations_.size();
LOG(INFO) << "rel32_locations_ " << rel32_locations_.size();
LOG(INFO) << "abs32_target_rvas_ " << abs32_target_rvas_.size();
LOG(INFO) << "rel32_target_rvas_ " << rel32_target_rvas_.size();
int common = 0;
std::map<RVA, int>::iterator abs32_iter = abs32_target_rvas_.begin();
std::map<RVA, int>::iterator rel32_iter = rel32_target_rvas_.begin();
while (abs32_iter != abs32_target_rvas_.end() &&
rel32_iter != rel32_target_rvas_.end()) {
if (abs32_iter->first < rel32_iter->first)
++abs32_iter;
else if (rel32_iter->first < abs32_iter->first)
++rel32_iter;
else {
++common;
++abs32_iter;
++rel32_iter;
}
}
LOG(INFO) << "common " << common;
#endif
}
void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section* section) {
// TODO(sra): use characteristic.
bool isCode = strcmp(section->name, ".text") == 0;
if (!isCode)
return;
uint32 start_file_offset = section->file_offset_of_raw_data;
uint32 end_file_offset = start_file_offset + section->size_of_raw_data;
RVA relocs_start_rva = pe_info().base_relocation_table().address_;
const uint8* start_pointer = pe_info().FileOffsetToPointer(start_file_offset);
const uint8* end_pointer = pe_info().FileOffsetToPointer(end_file_offset);
RVA start_rva = pe_info().FileOffsetToRVA(start_file_offset);
RVA end_rva = start_rva + section->virtual_size;
// Quick way to convert from Pointer to RVA within a single Section is to
// subtract 'pointer_to_rva'.
const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;
std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
// Find the rel32 relocations.
const uint8* p = start_pointer;
while (p < end_pointer) {
RVA current_rva = p - adjust_pointer_to_rva;
if (current_rva == relocs_start_rva) {
uint32 relocs_size = pe_info().base_relocation_table().size_;
if (relocs_size) {
p += relocs_size;
continue;
}
}
//while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
// ++abs32_pos;
// Heuristic discovery of rel32 locations in instruction stream: are the
// next few bytes the start of an instruction containing a rel32
// addressing mode?
const uint8* rel32 = NULL;
if (p + 5 < end_pointer) {
if (*p == 0xE8 || *p == 0xE9) { // jmp rel32 and call rel32
rel32 = p + 1;
}
}
if (p + 6 < end_pointer) {
if (*p == 0x0F && (*(p+1) & 0xF0) == 0x80) { // Jcc long form
if (p[1] != 0x8A && p[1] != 0x8B) // JPE/JPO unlikely
rel32 = p + 2;
}
}
if (rel32) {
RVA rel32_rva = rel32 - adjust_pointer_to_rva;
// Is there an abs32 reloc overlapping the candidate?
while (abs32_pos != abs32_locations_.end() && *abs32_pos < rel32_rva - 3)
++abs32_pos;
// Now: (*abs32_pos > rel32_rva - 4) i.e. the lowest addressed 4-byte
// region that could overlap rel32_rva.
if (abs32_pos != abs32_locations_.end()) {
if (*abs32_pos < rel32_rva + 4) {
// Beginning of abs32 reloc is before end of rel32 reloc so they
// overlap. Skip four bytes past the abs32 reloc.
p += (*abs32_pos + 4) - current_rva;
continue;
}
}
RVA target_rva = rel32_rva + 4 + Read32LittleEndian(rel32);
// To be valid, rel32 target must be within image, and within this
// section.
if (pe_info().IsValidRVA(target_rva) &&
start_rva <= target_rva && target_rva < end_rva) {
rel32_locations_.push_back(rel32_rva);
#if COURGETTE_HISTOGRAM_TARGETS
++rel32_target_rvas_[target_rva];
#endif
p += 4;
continue;
}
}
p += 1;
}
}
void DisassemblerWin32X86::ParseFile(AssemblyProgram* program) {
// Walk all the bytes in the file, whether or not in a section.
uint32 file_offset = 0;
while (file_offset < pe_info().length()) {
const Section* section = pe_info().FindNextSection(file_offset);
if (section == NULL) {
// No more sections. There should not be extra stuff following last
// section.
// ParseNonSectionFileRegion(file_offset, pe_info().length(), program);
break;
}
if (file_offset < section->file_offset_of_raw_data) {
uint32 section_start_offset = section->file_offset_of_raw_data;
ParseNonSectionFileRegion(file_offset, section_start_offset, program);
file_offset = section_start_offset;
}
uint32 end = file_offset + section->size_of_raw_data;
ParseFileRegion(section, file_offset, end, program);
file_offset = end;
}
#if COURGETTE_HISTOGRAM_TARGETS
HistogramTargets("abs32 relocs", abs32_target_rvas_);
HistogramTargets("rel32 relocs", rel32_target_rvas_);
#endif
}
void DisassemblerWin32X86::ParseNonSectionFileRegion(
uint32 start_file_offset,
uint32 end_file_offset,
AssemblyProgram* program) {
if (incomplete_disassembly_)
return;
const uint8* start = pe_info().FileOffsetToPointer(start_file_offset);
const uint8* end = pe_info().FileOffsetToPointer(end_file_offset);
const uint8* p = start;
while (p < end) {
program->EmitByteInstruction(*p);
++p;
}
}
void DisassemblerWin32X86::ParseFileRegion(
const Section* section,
uint32 start_file_offset, uint32 end_file_offset,
AssemblyProgram* program) {
RVA relocs_start_rva = pe_info().base_relocation_table().address_;
const uint8* start_pointer = pe_info().FileOffsetToPointer(start_file_offset);
const uint8* end_pointer = pe_info().FileOffsetToPointer(end_file_offset);
RVA start_rva = pe_info().FileOffsetToRVA(start_file_offset);
RVA end_rva = start_rva + section->virtual_size;
// Quick way to convert from Pointer to RVA within a single Section is to
// subtract 'pointer_to_rva'.
const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;
std::vector<RVA>::iterator rel32_pos = rel32_locations_.begin();
std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
program->EmitOriginInstruction(start_rva);
const uint8* p = start_pointer;
while (p < end_pointer) {
RVA current_rva = p - adjust_pointer_to_rva;
// The base relocation table is usually in the .relocs section, but it could
// actually be anywhere. Make sure we skip it because we will regenerate it
// during assembly.
if (current_rva == relocs_start_rva) {
program->EmitMakeRelocsInstruction();
uint32 relocs_size = pe_info().base_relocation_table().size_;
if (relocs_size) {
p += relocs_size;
continue;
}
}
while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
++abs32_pos;
if (abs32_pos != abs32_locations_.end() && *abs32_pos == current_rva) {
uint32 target_address = Read32LittleEndian(p);
RVA target_rva = target_address - pe_info().image_base();
// TODO(sra): target could be Label+offset. It is not clear how to guess
// which it might be. We assume offset==0.
program->EmitAbs32(program->FindOrMakeAbs32Label(target_rva));
p += 4;
continue;
}
while (rel32_pos != rel32_locations_.end() && *rel32_pos < current_rva)
++rel32_pos;
if (rel32_pos != rel32_locations_.end() && *rel32_pos == current_rva) {
RVA target_rva = current_rva + 4 + Read32LittleEndian(p);
program->EmitRel32(program->FindOrMakeRel32Label(target_rva));
p += 4;
continue;
}
if (incomplete_disassembly_) {
if ((abs32_pos == abs32_locations_.end() || end_rva <= *abs32_pos) &&
(rel32_pos == rel32_locations_.end() || end_rva <= *rel32_pos) &&
(end_rva <= relocs_start_rva || current_rva >= relocs_start_rva)) {
// No more relocs in this section, don't bother encoding bytes.
break;
}
}
program->EmitByteInstruction(*p);
p += 1;
}
}
#if COURGETTE_HISTOGRAM_TARGETS
// Histogram is printed to std::cout. It is purely for debugging the algorithm
// and is only enabled manually in 'exploration' builds. I don't want to add
// command-line configuration for this feature because this code has to be
// small, which means compiled-out.
void DisassemblerWin32X86::HistogramTargets(const char* kind,
const std::map<RVA, int>& map) {
int total = 0;
std::map<int, std::vector<RVA> > h;
for (std::map<RVA, int>::const_iterator p = map.begin();
p != map.end();
++p) {
h[p->second].push_back(p->first);
total += p->second;
}
std::cout << total << " " << kind << " to "
<< map.size() << " unique targets" << std::endl;
std::cout << "indegree: #targets-with-indegree (example)" << std::endl;
const int kFirstN = 15;
bool someSkipped = false;
int index = 0;
for (std::map<int, std::vector<RVA> >::reverse_iterator p = h.rbegin();
p != h.rend();
++p) {
++index;
if (index <= kFirstN || p->first <= 3) {
if (someSkipped) {
std::cout << "..." << std::endl;
}
size_t count = p->second.size();
std::cout << std::dec << p->first << ": " << count;
if (count <= 2) {
for (size_t i = 0; i < count; ++i)
std::cout << " " << pe_info().DescribeRVA(p->second[i]);
}
std::cout << std::endl;
someSkipped = false;
} else {
someSkipped = true;
}
}
}
#endif // COURGETTE_HISTOGRAM_TARGETS
Disassembler* Disassembler::MakeDisassemberWin32X86(PEInfo* pe_info) {
return new DisassemblerWin32X86(pe_info);
}
////////////////////////////////////////////////////////////////////////////////
Status ParseWin32X86PE(const void* buffer, size_t length,
AssemblyProgram** output) {
*output = NULL;
PEInfo* pe_info = new PEInfo();
pe_info->Init(buffer, length);
if (!pe_info->ParseHeader()) {
delete pe_info;
return C_INPUT_NOT_RECOGNIZED;
}
Disassembler* disassembler = Disassembler::MakeDisassemberWin32X86(pe_info);
AssemblyProgram* program = new AssemblyProgram();
if (!disassembler->Disassemble(program)) {
delete program;
disassembler->Destroy();
delete pe_info;
return C_DISASSEMBLY_FAILED;
}
disassembler->Destroy();
delete pe_info;
*output = program;
return C_OK;
}
void DeleteAssemblyProgram(AssemblyProgram* program) {
delete program;
}
} // namespace courgette