blob: e637fb202ac7bba588b5e1667a618ea3ceecaf49 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/video_frame.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/cxx17_backports.h"
#include "base/format_macros.h"
#include "base/memory/aligned_memory.h"
#include "base/memory/unsafe_shared_memory_region.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "gpu/command_buffer/common/mailbox_holder.h"
#include "media/base/color_plane_layout.h"
#include "media/base/simple_sync_token_client.h"
#include "media/video/fake_gpu_memory_buffer.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/libyuv/include/libyuv.h"
namespace {
// Creates the backing storage for a frame suitable for WrapExternalData. Note
// that this is currently used only to test frame creation and tear-down, and so
// may not have alignment or other properties correct further video processing.
// |memory| must be at least 2 * coded_size.width() * coded_size.height() in
// bytes.
void CreateTestY16Frame(const gfx::Size& coded_size,
const gfx::Rect& visible_rect,
void* memory) {
const int offset_x = visible_rect.x();
const int offset_y = visible_rect.y();
const int stride = coded_size.width();
// In the visible rect, fill upper byte with [0-255] and lower with [255-0].
uint16_t* data = static_cast<uint16_t*>(memory);
for (int j = 0; j < visible_rect.height(); j++) {
for (int i = 0; i < visible_rect.width(); i++) {
const int value = i + j * visible_rect.width();
data[(stride * (j + offset_y)) + i + offset_x] =
((value & 0xFF) << 8) | (~value & 0xFF);
}
}
}
// Returns a VideoFrameMetadata object with a value for each field.
media::VideoFrameMetadata GetFullVideoFrameMetadata() {
// Assign a non-default, distinct (when possible), value to all fields, and
// make sure values are preserved across serialization.
media::VideoFrameMetadata metadata;
// ints
metadata.capture_counter = 123;
// gfx::Rects
metadata.capture_update_rect = gfx::Rect(12, 34, 360, 480);
// media::VideoTransformation
metadata.transformation = media::VIDEO_ROTATION_90;
// media::VideoFrameMetadata::CopyMode
metadata.copy_mode = media::VideoFrameMetadata::CopyMode::kCopyToNewTexture;
// bools
metadata.allow_overlay = true;
metadata.end_of_stream = true;
metadata.texture_owner = true;
metadata.wants_promotion_hint = true;
metadata.protected_video = true;
metadata.hw_protected = true;
metadata.power_efficient = true;
metadata.read_lock_fences_enabled = true;
metadata.interactive_content = true;
// base::UnguessableTokens
metadata.overlay_plane_id = base::UnguessableToken::Create();
// doubles
metadata.device_scale_factor = 2.0;
metadata.page_scale_factor = 2.1;
metadata.root_scroll_offset_x = 100.2;
metadata.root_scroll_offset_y = 200.1;
metadata.top_controls_visible_height = 25.5;
metadata.frame_rate = 29.94;
metadata.rtp_timestamp = 1.0;
// base::TimeTicks
base::TimeTicks now = base::TimeTicks::Now();
metadata.receive_time = now + base::TimeDelta::FromMilliseconds(10);
metadata.capture_begin_time = now + base::TimeDelta::FromMilliseconds(20);
metadata.capture_end_time = now + base::TimeDelta::FromMilliseconds(30);
metadata.decode_begin_time = now + base::TimeDelta::FromMilliseconds(40);
metadata.decode_end_time = now + base::TimeDelta::FromMilliseconds(50);
metadata.reference_time = now + base::TimeDelta::FromMilliseconds(60);
// base::TimeDeltas
metadata.processing_time = base::TimeDelta::FromMilliseconds(500);
metadata.frame_duration = base::TimeDelta::FromMilliseconds(16);
metadata.wallclock_frame_duration = base::TimeDelta::FromMilliseconds(17);
return metadata;
}
void VerifyVideoFrameMetadataEquality(const media::VideoFrameMetadata& a,
const media::VideoFrameMetadata& b) {
EXPECT_EQ(a.allow_overlay, b.allow_overlay);
EXPECT_EQ(a.capture_begin_time, b.capture_begin_time);
EXPECT_EQ(a.capture_end_time, b.capture_end_time);
EXPECT_EQ(a.capture_counter, b.capture_counter);
EXPECT_EQ(a.capture_update_rect, b.capture_update_rect);
EXPECT_EQ(a.copy_mode, b.copy_mode);
EXPECT_EQ(a.end_of_stream, b.end_of_stream);
EXPECT_EQ(a.frame_duration, b.frame_duration);
EXPECT_EQ(a.frame_rate, b.frame_rate);
EXPECT_EQ(a.interactive_content, b.interactive_content);
EXPECT_EQ(a.reference_time, b.reference_time);
EXPECT_EQ(a.read_lock_fences_enabled, b.read_lock_fences_enabled);
EXPECT_EQ(a.transformation, b.transformation);
EXPECT_EQ(a.texture_owner, b.texture_owner);
EXPECT_EQ(a.wants_promotion_hint, b.wants_promotion_hint);
EXPECT_EQ(a.protected_video, b.protected_video);
EXPECT_EQ(a.hw_protected, b.hw_protected);
EXPECT_EQ(a.overlay_plane_id, b.overlay_plane_id);
EXPECT_EQ(a.power_efficient, b.power_efficient);
EXPECT_EQ(a.device_scale_factor, b.device_scale_factor);
EXPECT_EQ(a.page_scale_factor, b.page_scale_factor);
EXPECT_EQ(a.root_scroll_offset_x, b.root_scroll_offset_x);
EXPECT_EQ(a.root_scroll_offset_y, b.root_scroll_offset_y);
EXPECT_EQ(a.top_controls_visible_height, b.top_controls_visible_height);
EXPECT_EQ(a.decode_begin_time, b.decode_begin_time);
EXPECT_EQ(a.decode_end_time, b.decode_end_time);
EXPECT_EQ(a.processing_time, b.processing_time);
EXPECT_EQ(a.rtp_timestamp, b.rtp_timestamp);
EXPECT_EQ(a.receive_time, b.receive_time);
EXPECT_EQ(a.wallclock_frame_duration, b.wallclock_frame_duration);
}
} // namespace
namespace media {
using base::MD5DigestToBase16;
// Helper function that initializes a YV12 frame with white and black scan
// lines based on the |white_to_black| parameter. If 0, then the entire
// frame will be black, if 1 then the entire frame will be white.
void InitializeYV12Frame(VideoFrame* frame, double white_to_black) {
EXPECT_EQ(PIXEL_FORMAT_YV12, frame->format());
const int first_black_row =
static_cast<int>(frame->coded_size().height() * white_to_black);
uint8_t* y_plane = frame->data(VideoFrame::kYPlane);
for (int row = 0; row < frame->coded_size().height(); ++row) {
int color = (row < first_black_row) ? 0xFF : 0x00;
memset(y_plane, color, frame->stride(VideoFrame::kYPlane));
y_plane += frame->stride(VideoFrame::kYPlane);
}
uint8_t* u_plane = frame->data(VideoFrame::kUPlane);
uint8_t* v_plane = frame->data(VideoFrame::kVPlane);
for (int row = 0; row < frame->coded_size().height(); row += 2) {
memset(u_plane, 0x80, frame->stride(VideoFrame::kUPlane));
memset(v_plane, 0x80, frame->stride(VideoFrame::kVPlane));
u_plane += frame->stride(VideoFrame::kUPlane);
v_plane += frame->stride(VideoFrame::kVPlane);
}
}
// Given a |yv12_frame| this method converts the YV12 frame to RGBA and
// makes sure that all the pixels of the RBG frame equal |expect_rgb_color|.
void ExpectFrameColor(media::VideoFrame* yv12_frame,
uint32_t expect_rgb_color) {
ASSERT_EQ(PIXEL_FORMAT_YV12, yv12_frame->format());
ASSERT_EQ(yv12_frame->stride(VideoFrame::kUPlane),
yv12_frame->stride(VideoFrame::kVPlane));
ASSERT_EQ(
yv12_frame->coded_size().width() & (VideoFrame::kFrameSizeAlignment - 1),
0);
ASSERT_EQ(
yv12_frame->coded_size().height() & (VideoFrame::kFrameSizeAlignment - 1),
0);
size_t bytes_per_row = yv12_frame->coded_size().width() * 4u;
uint8_t* rgb_data = reinterpret_cast<uint8_t*>(
base::AlignedAlloc(bytes_per_row * yv12_frame->coded_size().height() +
VideoFrame::kFrameSizePadding,
VideoFrame::kFrameAddressAlignment));
libyuv::I420ToARGB(yv12_frame->data(VideoFrame::kYPlane),
yv12_frame->stride(VideoFrame::kYPlane),
yv12_frame->data(VideoFrame::kUPlane),
yv12_frame->stride(VideoFrame::kUPlane),
yv12_frame->data(VideoFrame::kVPlane),
yv12_frame->stride(VideoFrame::kVPlane), rgb_data,
bytes_per_row, yv12_frame->coded_size().width(),
yv12_frame->coded_size().height());
for (int row = 0; row < yv12_frame->coded_size().height(); ++row) {
uint32_t* rgb_row_data =
reinterpret_cast<uint32_t*>(rgb_data + (bytes_per_row * row));
for (int col = 0; col < yv12_frame->coded_size().width(); ++col) {
SCOPED_TRACE(base::StringPrintf("Checking (%d, %d)", row, col));
EXPECT_EQ(expect_rgb_color, rgb_row_data[col]);
}
}
base::AlignedFree(rgb_data);
}
// Fill each plane to its reported extents and verify accessors report non
// zero values. Additionally, for the first plane verify the rows, row_bytes,
// and columns values are correct.
void ExpectFrameExtents(VideoPixelFormat format, const char* expected_hash) {
const unsigned char kFillByte = 0x80;
const int kWidth = 61;
const int kHeight = 31;
const base::TimeDelta kTimestamp = base::TimeDelta::FromMicroseconds(1337);
gfx::Size size(kWidth, kHeight);
scoped_refptr<VideoFrame> frame = VideoFrame::CreateFrame(
format, size, gfx::Rect(size), size, kTimestamp);
ASSERT_TRUE(frame.get());
int planes = VideoFrame::NumPlanes(format);
for (int plane = 0; plane < planes; plane++) {
SCOPED_TRACE(base::StringPrintf("Checking plane %d", plane));
EXPECT_TRUE(frame->data(plane));
EXPECT_TRUE(frame->stride(plane));
EXPECT_TRUE(frame->rows(plane));
EXPECT_TRUE(frame->row_bytes(plane));
EXPECT_TRUE(frame->columns(plane));
memset(frame->data(plane), kFillByte,
frame->stride(plane) * frame->rows(plane));
}
base::MD5Context context;
base::MD5Init(&context);
VideoFrame::HashFrameForTesting(&context, *frame.get());
base::MD5Digest digest;
base::MD5Final(&digest, &context);
EXPECT_EQ(MD5DigestToBase16(digest), expected_hash);
}
TEST(VideoFrame, CreateFrame) {
const int kWidth = 64;
const int kHeight = 48;
const base::TimeDelta kTimestamp = base::TimeDelta::FromMicroseconds(1337);
// Create a YV12 Video Frame.
gfx::Size size(kWidth, kHeight);
scoped_refptr<media::VideoFrame> frame = VideoFrame::CreateFrame(
media::PIXEL_FORMAT_YV12, size, gfx::Rect(size), size, kTimestamp);
ASSERT_TRUE(frame.get());
// Test VideoFrame implementation.
EXPECT_EQ(media::PIXEL_FORMAT_YV12, frame->format());
{
SCOPED_TRACE("");
InitializeYV12Frame(frame.get(), 0.0f);
ExpectFrameColor(frame.get(), 0xFF000000);
}
base::MD5Digest digest;
base::MD5Context context;
base::MD5Init(&context);
VideoFrame::HashFrameForTesting(&context, *frame.get());
base::MD5Final(&digest, &context);
EXPECT_EQ(MD5DigestToBase16(digest), "9065c841d9fca49186ef8b4ef547e79b");
{
SCOPED_TRACE("");
InitializeYV12Frame(frame.get(), 1.0f);
ExpectFrameColor(frame.get(), 0xFFFFFFFF);
}
base::MD5Init(&context);
VideoFrame::HashFrameForTesting(&context, *frame.get());
base::MD5Final(&digest, &context);
EXPECT_EQ(MD5DigestToBase16(digest), "911991d51438ad2e1a40ed5f6fc7c796");
// Test single planar frame.
frame = VideoFrame::CreateFrame(media::PIXEL_FORMAT_ARGB, size,
gfx::Rect(size), size, kTimestamp);
EXPECT_EQ(media::PIXEL_FORMAT_ARGB, frame->format());
EXPECT_GE(frame->stride(VideoFrame::kARGBPlane), frame->coded_size().width());
// Test double planar frame.
frame = VideoFrame::CreateFrame(media::PIXEL_FORMAT_NV12, size,
gfx::Rect(size), size, kTimestamp);
EXPECT_EQ(media::PIXEL_FORMAT_NV12, frame->format());
// Test an empty frame.
frame = VideoFrame::CreateEOSFrame();
EXPECT_TRUE(frame->metadata().end_of_stream);
// Test an video hole frame.
frame = VideoFrame::CreateVideoHoleFrame(base::UnguessableToken::Create(),
size, kTimestamp);
ASSERT_TRUE(frame);
}
TEST(VideoFrame, CreateZeroInitializedFrame) {
const int kWidth = 2;
const int kHeight = 2;
const base::TimeDelta kTimestamp = base::TimeDelta::FromMicroseconds(1337);
// Create a YV12 Video Frame.
gfx::Size size(kWidth, kHeight);
scoped_refptr<media::VideoFrame> frame =
VideoFrame::CreateZeroInitializedFrame(media::PIXEL_FORMAT_YV12, size,
gfx::Rect(size), size, kTimestamp);
ASSERT_TRUE(frame.get());
EXPECT_TRUE(frame->IsMappable());
// Verify that frame is initialized with zeros.
// TODO(emircan): Check all the contents when we know the exact size of the
// allocated buffer.
for (size_t i = 0; i < VideoFrame::NumPlanes(frame->format()); ++i)
EXPECT_EQ(0, frame->data(i)[0]);
}
TEST(VideoFrame, CreateBlackFrame) {
const int kWidth = 2;
const int kHeight = 2;
const uint8_t kExpectedYRow[] = {0, 0};
const uint8_t kExpectedUVRow[] = {128};
scoped_refptr<media::VideoFrame> frame =
VideoFrame::CreateBlackFrame(gfx::Size(kWidth, kHeight));
ASSERT_TRUE(frame.get());
EXPECT_TRUE(frame->IsMappable());
// Test basic properties.
EXPECT_EQ(0, frame->timestamp().InMicroseconds());
EXPECT_FALSE(frame->metadata().end_of_stream);
// Test |frame| properties.
EXPECT_EQ(PIXEL_FORMAT_I420, frame->format());
EXPECT_EQ(kWidth, frame->coded_size().width());
EXPECT_EQ(kHeight, frame->coded_size().height());
// Test frames themselves.
uint8_t* y_plane = frame->data(VideoFrame::kYPlane);
for (int y = 0; y < frame->coded_size().height(); ++y) {
EXPECT_EQ(0, memcmp(kExpectedYRow, y_plane, base::size(kExpectedYRow)));
y_plane += frame->stride(VideoFrame::kYPlane);
}
uint8_t* u_plane = frame->data(VideoFrame::kUPlane);
uint8_t* v_plane = frame->data(VideoFrame::kVPlane);
for (int y = 0; y < frame->coded_size().height() / 2; ++y) {
EXPECT_EQ(0, memcmp(kExpectedUVRow, u_plane, base::size(kExpectedUVRow)));
EXPECT_EQ(0, memcmp(kExpectedUVRow, v_plane, base::size(kExpectedUVRow)));
u_plane += frame->stride(VideoFrame::kUPlane);
v_plane += frame->stride(VideoFrame::kVPlane);
}
}
static void FrameNoLongerNeededCallback(bool* triggered) {
*triggered = true;
}
TEST(VideoFrame, WrapVideoFrame) {
const int kWidth = 4;
const int kHeight = 4;
const base::TimeDelta kFrameDuration = base::TimeDelta::FromMicroseconds(42);
scoped_refptr<media::VideoFrame> frame;
bool done_callback_was_run = false;
{
scoped_refptr<media::VideoFrame> wrapped_frame =
VideoFrame::CreateBlackFrame(gfx::Size(kWidth, kHeight));
ASSERT_TRUE(wrapped_frame.get());
gfx::Rect visible_rect(1, 1, 1, 1);
gfx::Size natural_size = visible_rect.size();
wrapped_frame->metadata().frame_duration = kFrameDuration;
frame = media::VideoFrame::WrapVideoFrame(
wrapped_frame, wrapped_frame->format(), visible_rect, natural_size);
wrapped_frame->AddDestructionObserver(
base::BindOnce(&FrameNoLongerNeededCallback, &done_callback_was_run));
EXPECT_EQ(wrapped_frame->coded_size(), frame->coded_size());
EXPECT_EQ(wrapped_frame->data(media::VideoFrame::kYPlane),
frame->data(media::VideoFrame::kYPlane));
EXPECT_NE(wrapped_frame->visible_rect(), frame->visible_rect());
EXPECT_EQ(visible_rect, frame->visible_rect());
EXPECT_NE(wrapped_frame->natural_size(), frame->natural_size());
EXPECT_EQ(natural_size, frame->natural_size());
// Verify metadata was copied to the wrapped frame.
EXPECT_EQ(*frame->metadata().frame_duration, kFrameDuration);
// Verify the metadata copy was a deep copy.
wrapped_frame->clear_metadata();
EXPECT_NE(wrapped_frame->metadata().frame_duration.has_value(),
frame->metadata().frame_duration.has_value());
}
// Verify that |wrapped_frame| outlives |frame|.
EXPECT_FALSE(done_callback_was_run);
frame.reset();
EXPECT_TRUE(done_callback_was_run);
}
// Create a frame that wraps unowned memory.
TEST(VideoFrame, WrapExternalData) {
uint8_t memory[2 * 256 * 256];
gfx::Size coded_size(256, 256);
gfx::Rect visible_rect(coded_size);
CreateTestY16Frame(coded_size, visible_rect, memory);
auto timestamp = base::TimeDelta::FromMilliseconds(1);
auto frame = VideoFrame::WrapExternalData(media::PIXEL_FORMAT_Y16, coded_size,
visible_rect, visible_rect.size(),
memory, sizeof(memory), timestamp);
EXPECT_EQ(frame->coded_size(), coded_size);
EXPECT_EQ(frame->visible_rect(), visible_rect);
EXPECT_EQ(frame->timestamp(), timestamp);
EXPECT_EQ(frame->data(media::VideoFrame::kYPlane)[0], 0xff);
}
// Create a frame that wraps read-only shared memory.
TEST(VideoFrame, WrapSharedMemory) {
const size_t kDataSize = 2 * 256 * 256;
base::UnsafeSharedMemoryRegion region =
base::UnsafeSharedMemoryRegion::Create(kDataSize);
ASSERT_TRUE(region.IsValid());
base::WritableSharedMemoryMapping mapping = region.Map();
ASSERT_TRUE(mapping.IsValid());
gfx::Size coded_size(256, 256);
gfx::Rect visible_rect(coded_size);
CreateTestY16Frame(coded_size, visible_rect, mapping.memory());
auto timestamp = base::TimeDelta::FromMilliseconds(1);
auto frame = VideoFrame::WrapExternalData(
media::PIXEL_FORMAT_Y16, coded_size, visible_rect, visible_rect.size(),
mapping.GetMemoryAsSpan<uint8_t>().data(), kDataSize, timestamp);
frame->BackWithSharedMemory(&region);
EXPECT_EQ(frame->coded_size(), coded_size);
EXPECT_EQ(frame->visible_rect(), visible_rect);
EXPECT_EQ(frame->timestamp(), timestamp);
EXPECT_EQ(frame->data(media::VideoFrame::kYPlane)[0], 0xff);
}
TEST(VideoFrame, WrapExternalGpuMemoryBuffer) {
gfx::Size coded_size = gfx::Size(256, 256);
gfx::Rect visible_rect(coded_size);
auto timestamp = base::TimeDelta::FromMilliseconds(1);
#if defined(OS_LINUX) || defined(OS_CHROMEOS)
const uint64_t modifier = 0x001234567890abcdULL;
#else
const uint64_t modifier = gfx::NativePixmapHandle::kNoModifier;
#endif
std::unique_ptr<gfx::GpuMemoryBuffer> gmb =
std::make_unique<FakeGpuMemoryBuffer>(
coded_size, gfx::BufferFormat::YUV_420_BIPLANAR, modifier);
gfx::GpuMemoryBuffer* gmb_raw_ptr = gmb.get();
gpu::MailboxHolder mailbox_holders[media::VideoFrame::kMaxPlanes] = {
gpu::MailboxHolder(gpu::Mailbox::Generate(), gpu::SyncToken(), 5),
gpu::MailboxHolder(gpu::Mailbox::Generate(), gpu::SyncToken(), 10)};
auto frame = VideoFrame::WrapExternalGpuMemoryBuffer(
visible_rect, coded_size, std::move(gmb), mailbox_holders,
base::DoNothing::Once<const gpu::SyncToken&,
std::unique_ptr<gfx::GpuMemoryBuffer>>(),
timestamp);
EXPECT_EQ(frame->layout().format(), PIXEL_FORMAT_NV12);
EXPECT_EQ(frame->layout().coded_size(), coded_size);
EXPECT_EQ(frame->layout().num_planes(), 2u);
EXPECT_EQ(frame->layout().is_multi_planar(), false);
for (size_t i = 0; i < 2; ++i) {
EXPECT_EQ(frame->layout().planes()[i].stride, coded_size.width());
}
EXPECT_EQ(frame->layout().modifier(), modifier);
EXPECT_EQ(frame->storage_type(), VideoFrame::STORAGE_GPU_MEMORY_BUFFER);
EXPECT_TRUE(frame->HasGpuMemoryBuffer());
EXPECT_EQ(frame->GetGpuMemoryBuffer(), gmb_raw_ptr);
EXPECT_EQ(frame->coded_size(), coded_size);
EXPECT_EQ(frame->visible_rect(), visible_rect);
EXPECT_EQ(frame->timestamp(), timestamp);
EXPECT_EQ(frame->HasTextures(), true);
EXPECT_EQ(frame->HasReleaseMailboxCB(), true);
EXPECT_EQ(frame->mailbox_holder(0).mailbox, mailbox_holders[0].mailbox);
EXPECT_EQ(frame->mailbox_holder(1).mailbox, mailbox_holders[1].mailbox);
}
#if defined(OS_LINUX) || defined(OS_CHROMEOS)
TEST(VideoFrame, WrapExternalDmabufs) {
gfx::Size coded_size = gfx::Size(256, 256);
gfx::Rect visible_rect(coded_size);
std::vector<int32_t> strides = {384, 192, 192};
std::vector<size_t> offsets = {0, 100, 200};
std::vector<size_t> sizes = {100, 50, 50};
std::vector<ColorPlaneLayout> planes(strides.size());
for (size_t i = 0; i < planes.size(); i++) {
planes[i].stride = strides[i];
planes[i].offset = offsets[i];
planes[i].size = sizes[i];
}
auto timestamp = base::TimeDelta::FromMilliseconds(1);
auto layout =
VideoFrameLayout::CreateWithPlanes(PIXEL_FORMAT_I420, coded_size, planes);
ASSERT_TRUE(layout);
std::vector<base::ScopedFD> dmabuf_fds(3u);
auto frame = VideoFrame::WrapExternalDmabufs(
*layout, visible_rect, visible_rect.size(), std::move(dmabuf_fds),
timestamp);
EXPECT_EQ(frame->layout().format(), PIXEL_FORMAT_I420);
EXPECT_EQ(frame->layout().coded_size(), coded_size);
EXPECT_EQ(frame->layout().num_planes(), 3u);
EXPECT_EQ(frame->layout().is_multi_planar(), false);
for (size_t i = 0; i < 3; ++i) {
EXPECT_EQ(frame->layout().planes()[i].stride, strides[i]);
EXPECT_EQ(frame->layout().planes()[i].offset, offsets[i]);
EXPECT_EQ(frame->layout().planes()[i].size, sizes[i]);
}
EXPECT_TRUE(frame->HasDmaBufs());
EXPECT_EQ(frame->DmabufFds().size(), 3u);
EXPECT_EQ(frame->coded_size(), coded_size);
EXPECT_EQ(frame->visible_rect(), visible_rect);
EXPECT_EQ(frame->timestamp(), timestamp);
// Wrapped DMABUF frames must share the same memory as their wrappee.
auto wrapped_frame = VideoFrame::WrapVideoFrame(
frame, frame->format(), visible_rect, visible_rect.size());
ASSERT_NE(wrapped_frame, nullptr);
ASSERT_EQ(wrapped_frame->IsSameDmaBufsAs(*frame), true);
// Multi-level wrapping should share same memory as well.
auto wrapped_frame2 = VideoFrame::WrapVideoFrame(
wrapped_frame, frame->format(), visible_rect, visible_rect.size());
ASSERT_NE(wrapped_frame2, nullptr);
ASSERT_EQ(wrapped_frame2->IsSameDmaBufsAs(*wrapped_frame), true);
ASSERT_EQ(wrapped_frame2->IsSameDmaBufsAs(*frame), true);
}
#endif
// Ensure each frame is properly sized and allocated. Will trigger OOB reads
// and writes as well as incorrect frame hashes otherwise.
TEST(VideoFrame, CheckFrameExtents) {
// Each call consists of a Format and the expected hash of all
// planes if filled with kFillByte (defined in ExpectFrameExtents).
ExpectFrameExtents(PIXEL_FORMAT_YV12, "8e5d54cb23cd0edca111dd35ffb6ff05");
ExpectFrameExtents(PIXEL_FORMAT_I422, "cce408a044b212db42a10dfec304b3ef");
}
static void TextureCallback(gpu::SyncToken* called_sync_token,
const gpu::SyncToken& release_sync_token) {
*called_sync_token = release_sync_token;
}
// Verify the gpu::MailboxHolder::ReleaseCallback is called when VideoFrame is
// destroyed with the default release sync point.
TEST(VideoFrame, TextureNoLongerNeededCallbackIsCalled) {
gpu::SyncToken called_sync_token(gpu::CommandBufferNamespace::GPU_IO,
gpu::CommandBufferId::FromUnsafeValue(1), 1);
{
gpu::MailboxHolder holders[media::VideoFrame::kMaxPlanes] = {
gpu::MailboxHolder(gpu::Mailbox::Generate(), gpu::SyncToken(), 5)};
scoped_refptr<VideoFrame> frame = VideoFrame::WrapNativeTextures(
PIXEL_FORMAT_ARGB, holders,
base::BindOnce(&TextureCallback, &called_sync_token),
gfx::Size(10, 10), // coded_size
gfx::Rect(10, 10), // visible_rect
gfx::Size(10, 10), // natural_size
base::TimeDelta()); // timestamp
EXPECT_EQ(PIXEL_FORMAT_ARGB, frame->format());
EXPECT_EQ(VideoFrame::STORAGE_OPAQUE, frame->storage_type());
EXPECT_TRUE(frame->HasTextures());
}
// Nobody set a sync point to |frame|, so |frame| set |called_sync_token|
// cleared to default value.
EXPECT_FALSE(called_sync_token.HasData());
}
// Verify the gpu::MailboxHolder::ReleaseCallback is called when VideoFrame is
// destroyed with the release sync point, which was updated by clients.
// (i.e. the compositor, webgl).
TEST(VideoFrame,
TexturesNoLongerNeededCallbackAfterTakingAndReleasingMailboxes) {
const int kPlanesNum = 3;
const gpu::CommandBufferNamespace kNamespace =
gpu::CommandBufferNamespace::GPU_IO;
const gpu::CommandBufferId kCommandBufferId =
gpu::CommandBufferId::FromUnsafeValue(0x123);
gpu::Mailbox mailbox[kPlanesNum];
for (int i = 0; i < kPlanesNum; ++i) {
mailbox[i].name[0] = 50 + 1;
}
gpu::SyncToken sync_token(kNamespace, kCommandBufferId, 7);
sync_token.SetVerifyFlush();
uint32_t target = 9;
gpu::SyncToken release_sync_token(kNamespace, kCommandBufferId, 111);
release_sync_token.SetVerifyFlush();
gpu::SyncToken called_sync_token;
{
gpu::MailboxHolder holders[media::VideoFrame::kMaxPlanes] = {
gpu::MailboxHolder(mailbox[VideoFrame::kYPlane], sync_token, target),
gpu::MailboxHolder(mailbox[VideoFrame::kUPlane], sync_token, target),
gpu::MailboxHolder(mailbox[VideoFrame::kVPlane], sync_token, target),
};
scoped_refptr<VideoFrame> frame = VideoFrame::WrapNativeTextures(
PIXEL_FORMAT_I420, holders,
base::BindOnce(&TextureCallback, &called_sync_token),
gfx::Size(10, 10), // coded_size
gfx::Rect(10, 10), // visible_rect
gfx::Size(10, 10), // natural_size
base::TimeDelta()); // timestamp
EXPECT_EQ(VideoFrame::STORAGE_OPAQUE, frame->storage_type());
EXPECT_EQ(PIXEL_FORMAT_I420, frame->format());
EXPECT_EQ(3u, VideoFrame::NumPlanes(frame->format()));
EXPECT_TRUE(frame->HasTextures());
for (size_t i = 0; i < VideoFrame::NumPlanes(frame->format()); ++i) {
const gpu::MailboxHolder& mailbox_holder = frame->mailbox_holder(i);
EXPECT_EQ(mailbox[i].name[0], mailbox_holder.mailbox.name[0]);
EXPECT_EQ(target, mailbox_holder.texture_target);
EXPECT_EQ(sync_token, mailbox_holder.sync_token);
}
SimpleSyncTokenClient client(release_sync_token);
frame->UpdateReleaseSyncToken(&client);
EXPECT_EQ(sync_token,
frame->mailbox_holder(VideoFrame::kYPlane).sync_token);
}
EXPECT_EQ(release_sync_token, called_sync_token);
}
TEST(VideoFrame, IsValidConfig_OddCodedSize) {
// Odd sizes are valid for all formats. Odd formats may be internally rounded
// in VideoFrame::CreateFrame because VideoFrame owns the allocation and can
// pad the requested coded_size to ensure the UV sample boundaries line up
// with the Y plane after subsample scaling. See CreateFrame_OddWidth.
gfx::Size odd_size(677, 288);
// First choosing a format with sub-sampling for UV.
EXPECT_TRUE(VideoFrame::IsValidConfig(
PIXEL_FORMAT_I420, VideoFrame::STORAGE_OWNED_MEMORY, odd_size,
gfx::Rect(odd_size), odd_size));
// Next try a format with no sub-sampling for UV.
EXPECT_TRUE(VideoFrame::IsValidConfig(
PIXEL_FORMAT_I444, VideoFrame::STORAGE_OWNED_MEMORY, odd_size,
gfx::Rect(odd_size), odd_size));
}
TEST(VideoFrame, CreateFrame_OddWidth) {
// Odd sizes are non-standard for YUV formats that subsample the UV, but they
// do exist in the wild and should be gracefully handled by VideoFrame in
// situations where VideoFrame allocates the YUV memory. See discussion in
// crrev.com/1240833003
const gfx::Size odd_size(677, 288);
const base::TimeDelta kTimestamp = base::TimeDelta();
// First create a frame that sub-samples UV.
scoped_refptr<VideoFrame> frame = VideoFrame::CreateFrame(
PIXEL_FORMAT_I420, odd_size, gfx::Rect(odd_size), odd_size, kTimestamp);
ASSERT_TRUE(frame.get());
// I420 aligns UV to every 2 Y pixels. Hence, 677 should be rounded to 678
// which is the nearest value such that width % 2 == 0
EXPECT_EQ(678, frame->coded_size().width());
// Next create a frame that does not sub-sample UV.
frame = VideoFrame::CreateFrame(PIXEL_FORMAT_I444, odd_size,
gfx::Rect(odd_size), odd_size, kTimestamp);
ASSERT_TRUE(frame.get());
// No sub-sampling for YV24 will mean odd width can remain odd since any pixel
// in the Y plane has a a corresponding pixel in the UV planes at the same
// index.
EXPECT_EQ(677, frame->coded_size().width());
}
TEST(VideoFrame, AllocationSize_OddSize) {
const gfx::Size size(3, 5);
for (unsigned int i = 1u; i <= PIXEL_FORMAT_MAX; ++i) {
const VideoPixelFormat format = static_cast<VideoPixelFormat>(i);
switch (format) {
case PIXEL_FORMAT_YUV444P9:
case PIXEL_FORMAT_YUV444P10:
case PIXEL_FORMAT_YUV444P12:
EXPECT_EQ(144u, VideoFrame::AllocationSize(format, size))
<< VideoPixelFormatToString(format);
break;
case PIXEL_FORMAT_YUV422P9:
case PIXEL_FORMAT_YUV422P10:
case PIXEL_FORMAT_YUV422P12:
EXPECT_EQ(96u, VideoFrame::AllocationSize(format, size))
<< VideoPixelFormatToString(format);
break;
case PIXEL_FORMAT_I444:
case PIXEL_FORMAT_YUV420P9:
case PIXEL_FORMAT_YUV420P10:
case PIXEL_FORMAT_YUV420P12:
case PIXEL_FORMAT_P016LE:
EXPECT_EQ(72u, VideoFrame::AllocationSize(format, size))
<< VideoPixelFormatToString(format);
break;
case PIXEL_FORMAT_UYVY:
case PIXEL_FORMAT_YUY2:
case PIXEL_FORMAT_I422:
EXPECT_EQ(48u, VideoFrame::AllocationSize(format, size))
<< VideoPixelFormatToString(format);
break;
case PIXEL_FORMAT_YV12:
case PIXEL_FORMAT_I420:
case PIXEL_FORMAT_NV12:
case PIXEL_FORMAT_NV21:
EXPECT_EQ(36u, VideoFrame::AllocationSize(format, size))
<< VideoPixelFormatToString(format);
break;
case PIXEL_FORMAT_ARGB:
case PIXEL_FORMAT_BGRA:
case PIXEL_FORMAT_XRGB:
case PIXEL_FORMAT_I420A:
case PIXEL_FORMAT_ABGR:
case PIXEL_FORMAT_XBGR:
case PIXEL_FORMAT_XR30:
case PIXEL_FORMAT_XB30:
EXPECT_EQ(60u, VideoFrame::AllocationSize(format, size))
<< VideoPixelFormatToString(format);
break;
case PIXEL_FORMAT_RGB24:
EXPECT_EQ(45u, VideoFrame::AllocationSize(format, size))
<< VideoPixelFormatToString(format);
break;
case PIXEL_FORMAT_Y16:
EXPECT_EQ(30u, VideoFrame::AllocationSize(format, size))
<< VideoPixelFormatToString(format);
break;
case PIXEL_FORMAT_RGBAF16:
EXPECT_EQ(120u, VideoFrame::AllocationSize(format, size))
<< VideoPixelFormatToString(format);
break;
case PIXEL_FORMAT_MJPEG:
case PIXEL_FORMAT_UNKNOWN:
continue;
}
}
}
TEST(VideoFrameMetadata, MergeMetadata) {
VideoFrameMetadata reference_metadata = GetFullVideoFrameMetadata();
VideoFrameMetadata full_metadata = reference_metadata;
VideoFrameMetadata empty_metadata;
// Merging empty metadata into full metadata should be a no-op.
full_metadata.MergeMetadataFrom(empty_metadata);
VerifyVideoFrameMetadataEquality(full_metadata, reference_metadata);
// Merging full metadata into empty metadata should fill it up.
empty_metadata.MergeMetadataFrom(full_metadata);
VerifyVideoFrameMetadataEquality(empty_metadata, reference_metadata);
}
TEST(VideoFrameMetadata, PartialMergeMetadata) {
VideoFrameMetadata full_metadata = GetFullVideoFrameMetadata();
const gfx::Rect kTempRect{100, 200, 300, 400};
const base::TimeTicks kTempTicks =
base::TimeTicks::Now() + base::TimeDelta::FromSeconds(2);
const base::TimeDelta kTempDelta = base::TimeDelta::FromMilliseconds(31415);
VideoFrameMetadata partial_metadata;
partial_metadata.capture_update_rect = kTempRect;
partial_metadata.reference_time = kTempTicks;
partial_metadata.processing_time = kTempDelta;
partial_metadata.allow_overlay = false;
// Merging partial metadata into full metadata partially override it.
full_metadata.MergeMetadataFrom(partial_metadata);
EXPECT_EQ(partial_metadata.capture_update_rect, kTempRect);
EXPECT_EQ(partial_metadata.reference_time, kTempTicks);
EXPECT_EQ(partial_metadata.processing_time, kTempDelta);
EXPECT_EQ(partial_metadata.allow_overlay, false);
}
} // namespace media