blob: 10268c97e4286fab9f5b5d9ea9a1a38510a32d70 [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "services/device/generic_sensor/platform_sensor_reader_win.h"
#include <Sensors.h>
#include <objbase.h>
#include "base/memory/ptr_util.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/time/time.h"
#include "base/win/iunknown_impl.h"
#include "base/win/scoped_propvariant.h"
#include "services/device/generic_sensor/generic_sensor_consts.h"
#include "services/device/public/cpp/generic_sensor/platform_sensor_configuration.h"
#include "services/device/public/cpp/generic_sensor/sensor_reading.h"
namespace device {
// Init params for the PlatformSensorReaderWin.
struct ReaderInitParams {
// ISensorDataReport::GetSensorValue is not const, therefore, report
// cannot be passed as const ref.
// ISensorDataReport* report - report that contains new sensor data.
// SensorReading* reading - out parameter that must be populated.
// Returns HRESULT - S_OK on success, otherwise error code.
using ReaderFunctor = HRESULT (*)(ISensorDataReport* report,
SensorReading* reading);
SENSOR_TYPE_ID sensor_type_id;
ReaderFunctor reader_func;
unsigned long min_reporting_interval_ms = 0;
};
namespace {
// Gets value from the report for provided key.
bool GetReadingValueForProperty(REFPROPERTYKEY key,
ISensorDataReport* report,
double* value) {
DCHECK(value);
base::win::ScopedPropVariant variant_value;
if (SUCCEEDED(report->GetSensorValue(key, variant_value.Receive()))) {
if (variant_value.get().vt == VT_R8)
*value = variant_value.get().dblVal;
else if (variant_value.get().vt == VT_R4)
*value = variant_value.get().fltVal;
else
return false;
return true;
}
*value = 0;
return false;
}
// Ambient light sensor reader initialization parameters.
std::unique_ptr<ReaderInitParams> CreateAmbientLightReaderInitParams() {
auto params = base::MakeUnique<ReaderInitParams>();
params->sensor_type_id = SENSOR_TYPE_AMBIENT_LIGHT;
params->reader_func =
[](ISensorDataReport* report, SensorReading* reading) {
double lux = 0.0;
if (!GetReadingValueForProperty(SENSOR_DATA_TYPE_LIGHT_LEVEL_LUX,
report, &lux)) {
return E_FAIL;
}
reading->values[0] = lux;
return S_OK;
};
return params;
}
// Accelerometer sensor reader initialization parameters.
std::unique_ptr<ReaderInitParams> CreateAccelerometerReaderInitParams() {
auto params = base::MakeUnique<ReaderInitParams>();
params->sensor_type_id = SENSOR_TYPE_ACCELEROMETER_3D;
params->reader_func =
[](ISensorDataReport* report, SensorReading* reading) {
double x = 0.0;
double y = 0.0;
double z = 0.0;
if (!GetReadingValueForProperty(SENSOR_DATA_TYPE_ACCELERATION_X_G,
report, &x) ||
!GetReadingValueForProperty(SENSOR_DATA_TYPE_ACCELERATION_Y_G,
report, &y) ||
!GetReadingValueForProperty(SENSOR_DATA_TYPE_ACCELERATION_Z_G,
report, &z)) {
return E_FAIL;
}
// Windows uses coordinate system where Z axis points down from device
// screen, therefore, using right hand notation, we have to reverse
// sign for each axis. Values are converted from G/s^2 to m/s^2.
reading->values[0] = -x * kMeanGravity;
reading->values[1] = -y * kMeanGravity;
reading->values[2] = -z * kMeanGravity;
return S_OK;
};
return params;
}
// Gyroscope sensor reader initialization parameters.
std::unique_ptr<ReaderInitParams> CreateGyroscopeReaderInitParams() {
auto params = base::MakeUnique<ReaderInitParams>();
params->sensor_type_id = SENSOR_TYPE_GYROMETER_3D;
params->reader_func =
[](ISensorDataReport* report, SensorReading* reading) {
double x = 0.0;
double y = 0.0;
double z = 0.0;
if (!GetReadingValueForProperty(
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_X_DEGREES_PER_SECOND, report,
&x) ||
!GetReadingValueForProperty(
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Y_DEGREES_PER_SECOND, report,
&y) ||
!GetReadingValueForProperty(
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Z_DEGREES_PER_SECOND, report,
&z)) {
return E_FAIL;
}
// Windows uses coordinate system where Z axis points down from device
// screen, therefore, using right hand notation, we have to reverse
// sign for each axis. Values are converted from deg to rad.
reading->values[0] = -x * kRadiansInDegrees;
reading->values[1] = -y * kRadiansInDegrees;
reading->values[2] = -z * kRadiansInDegrees;
return S_OK;
};
return params;
}
// Magnetometer sensor reader initialization parameters.
std::unique_ptr<ReaderInitParams> CreateMagnetometerReaderInitParams() {
auto params = base::MakeUnique<ReaderInitParams>();
params->sensor_type_id = SENSOR_TYPE_COMPASS_3D;
params->reader_func =
[](ISensorDataReport* report, SensorReading* reading) {
double x = 0.0;
double y = 0.0;
double z = 0.0;
if (!GetReadingValueForProperty(
SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_X_MILLIGAUSS, report,
&x) ||
!GetReadingValueForProperty(
SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Y_MILLIGAUSS, report,
&y) ||
!GetReadingValueForProperty(
SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Z_MILLIGAUSS, report,
&z)) {
return E_FAIL;
}
// Windows uses coordinate system where Z axis points down from device
// screen, therefore, using right hand notation, we have to reverse
// sign for each axis. Values are converted from Milligaus to
// Microtesla.
reading->values[0] = -x * kMicroteslaInMilligauss;
reading->values[1] = -y * kMicroteslaInMilligauss;
reading->values[2] = -z * kMicroteslaInMilligauss;
return S_OK;
};
return params;
}
// AbsoluteOrientationEulerAngles sensor reader initialization parameters.
std::unique_ptr<ReaderInitParams>
CreateAbsoluteOrientationEulerAnglesReaderInitParams() {
auto params = base::MakeUnique<ReaderInitParams>();
params->sensor_type_id = SENSOR_TYPE_INCLINOMETER_3D;
params->reader_func =
[](ISensorDataReport* report, SensorReading* reading) {
double x = 0.0;
double y = 0.0;
double z = 0.0;
if (!GetReadingValueForProperty(SENSOR_DATA_TYPE_TILT_X_DEGREES, report,
&x) ||
!GetReadingValueForProperty(SENSOR_DATA_TYPE_TILT_Y_DEGREES, report,
&y) ||
!GetReadingValueForProperty(SENSOR_DATA_TYPE_TILT_Z_DEGREES, report,
&z)) {
return E_FAIL;
}
reading->values[0] = x;
reading->values[1] = y;
reading->values[2] = z;
return S_OK;
};
return params;
}
// AbsoluteOrientationQuaternion sensor reader initialization parameters.
std::unique_ptr<ReaderInitParams>
CreateAbsoluteOrientationQuaternionReaderInitParams() {
auto params = base::MakeUnique<ReaderInitParams>();
params->sensor_type_id = SENSOR_TYPE_AGGREGATED_DEVICE_ORIENTATION;
params->reader_func =
[](ISensorDataReport* report, SensorReading* reading) {
base::win::ScopedPropVariant quat_variant;
HRESULT hr = report->GetSensorValue(SENSOR_DATA_TYPE_QUATERNION,
quat_variant.Receive());
if (FAILED(hr) || quat_variant.get().vt != (VT_VECTOR | VT_UI1) ||
quat_variant.get().caub.cElems < 16) {
return E_FAIL;
}
float* quat = reinterpret_cast<float*>(quat_variant.get().caub.pElems);
// Windows uses coordinate system where Z axis points down from device
// screen, therefore, using right hand notation, we have to reverse
// sign for each quaternion component.
reading->values[0] = -quat[0]; // x*sin(Theta/2)
reading->values[1] = -quat[1]; // y*sin(Theta/2)
reading->values[2] = -quat[2]; // z*sin(Theta/2)
reading->values[3] = quat[3]; // cos(Theta/2)
return S_OK;
};
return params;
}
// Creates ReaderInitParams params structure. To implement support for new
// sensor types, new switch case should be added and appropriate fields must
// be set:
// sensor_type_id - GUID of the sensor supported by Windows.
// reader_func - Functor that is responsible to populate SensorReading from
// ISensorDataReport data.
std::unique_ptr<ReaderInitParams> CreateReaderInitParamsForSensor(
mojom::SensorType type) {
switch (type) {
case mojom::SensorType::AMBIENT_LIGHT:
return CreateAmbientLightReaderInitParams();
case mojom::SensorType::ACCELEROMETER:
return CreateAccelerometerReaderInitParams();
case mojom::SensorType::GYROSCOPE:
return CreateGyroscopeReaderInitParams();
case mojom::SensorType::MAGNETOMETER:
return CreateMagnetometerReaderInitParams();
case mojom::SensorType::ABSOLUTE_ORIENTATION_EULER_ANGLES:
return CreateAbsoluteOrientationEulerAnglesReaderInitParams();
case mojom::SensorType::ABSOLUTE_ORIENTATION_QUATERNION:
return CreateAbsoluteOrientationQuaternionReaderInitParams();
default:
NOTIMPLEMENTED();
return nullptr;
}
}
} // namespace
// Class that implements ISensorEvents and IUnknown interfaces and used
// by ISensor interface to dispatch state and data change events.
class EventListener : public ISensorEvents, public base::win::IUnknownImpl {
public:
explicit EventListener(PlatformSensorReaderWin* platform_sensor_reader)
: platform_sensor_reader_(platform_sensor_reader) {
DCHECK(platform_sensor_reader_);
}
// IUnknown interface
ULONG STDMETHODCALLTYPE AddRef() override { return IUnknownImpl::AddRef(); }
ULONG STDMETHODCALLTYPE Release() override { return IUnknownImpl::Release(); }
STDMETHODIMP QueryInterface(REFIID riid, void** ppv) override {
if (riid == __uuidof(ISensorEvents)) {
*ppv = static_cast<ISensorEvents*>(this);
AddRef();
return S_OK;
}
return IUnknownImpl::QueryInterface(riid, ppv);
}
protected:
~EventListener() override = default;
// ISensorEvents interface
STDMETHODIMP OnEvent(ISensor*, REFGUID, IPortableDeviceValues*) override {
return S_OK;
}
STDMETHODIMP OnLeave(REFSENSOR_ID sensor_id) override {
// If event listener is active and sensor is disconnected, notify client
// about the error.
platform_sensor_reader_->SensorError();
platform_sensor_reader_->StopSensor();
return S_OK;
}
STDMETHODIMP OnStateChanged(ISensor* sensor, SensorState state) override {
if (sensor == nullptr)
return E_INVALIDARG;
if (state != SensorState::SENSOR_STATE_READY &&
state != SensorState::SENSOR_STATE_INITIALIZING) {
platform_sensor_reader_->SensorError();
platform_sensor_reader_->StopSensor();
}
return S_OK;
}
STDMETHODIMP OnDataUpdated(ISensor* sensor,
ISensorDataReport* report) override {
if (sensor == nullptr || report == nullptr)
return E_INVALIDARG;
// To get precise timestamp, we need to get delta between timestamp
// provided in the report and current system time. Then the delta in
// milliseconds is substracted from current high resolution timestamp.
SYSTEMTIME report_time;
HRESULT hr = report->GetTimestamp(&report_time);
if (FAILED(hr))
return hr;
base::TimeTicks ticks_now = base::TimeTicks::Now();
base::Time time_now = base::Time::NowFromSystemTime();
base::Time::Exploded exploded;
exploded.year = report_time.wYear;
exploded.month = report_time.wMonth;
exploded.day_of_week = report_time.wDayOfWeek;
exploded.day_of_month = report_time.wDay;
exploded.hour = report_time.wHour;
exploded.minute = report_time.wMinute;
exploded.second = report_time.wSecond;
exploded.millisecond = report_time.wMilliseconds;
base::Time timestamp;
if (!base::Time::FromUTCExploded(exploded, &timestamp))
return E_FAIL;
base::TimeDelta delta = time_now - timestamp;
SensorReading reading;
reading.timestamp = ((ticks_now - delta) - base::TimeTicks()).InSecondsF();
// Discard update events that have non-monotonically increasing timestamp.
if (last_sensor_reading_.timestamp > reading.timestamp)
return E_FAIL;
hr = platform_sensor_reader_->SensorReadingChanged(report, &reading);
if (SUCCEEDED(hr))
last_sensor_reading_ = reading;
return hr;
}
private:
PlatformSensorReaderWin* const platform_sensor_reader_;
SensorReading last_sensor_reading_;
DISALLOW_COPY_AND_ASSIGN(EventListener);
};
// static
std::unique_ptr<PlatformSensorReaderWin> PlatformSensorReaderWin::Create(
mojom::SensorType type,
base::win::ScopedComPtr<ISensorManager> sensor_manager) {
DCHECK(sensor_manager);
auto params = CreateReaderInitParamsForSensor(type);
if (!params)
return nullptr;
auto sensor = GetSensorForType(params->sensor_type_id, sensor_manager);
if (!sensor)
return nullptr;
base::win::ScopedPropVariant min_interval;
HRESULT hr = sensor->GetProperty(SENSOR_PROPERTY_MIN_REPORT_INTERVAL,
min_interval.Receive());
if (SUCCEEDED(hr) && min_interval.get().vt == VT_UI4)
params->min_reporting_interval_ms = min_interval.get().ulVal;
GUID interests[] = {SENSOR_EVENT_STATE_CHANGED, SENSOR_EVENT_DATA_UPDATED};
hr = sensor->SetEventInterest(interests, arraysize(interests));
if (FAILED(hr))
return nullptr;
return base::WrapUnique(
new PlatformSensorReaderWin(sensor, std::move(params)));
}
// static
base::win::ScopedComPtr<ISensor> PlatformSensorReaderWin::GetSensorForType(
REFSENSOR_TYPE_ID sensor_type,
base::win::ScopedComPtr<ISensorManager> sensor_manager) {
base::win::ScopedComPtr<ISensor> sensor;
base::win::ScopedComPtr<ISensorCollection> sensor_collection;
HRESULT hr = sensor_manager->GetSensorsByType(
sensor_type, sensor_collection.GetAddressOf());
if (FAILED(hr) || !sensor_collection)
return sensor;
ULONG count = 0;
hr = sensor_collection->GetCount(&count);
if (SUCCEEDED(hr) && count > 0)
sensor_collection->GetAt(0, sensor.GetAddressOf());
return sensor;
}
PlatformSensorReaderWin::PlatformSensorReaderWin(
base::win::ScopedComPtr<ISensor> sensor,
std::unique_ptr<ReaderInitParams> params)
: init_params_(std::move(params)),
task_runner_(base::ThreadTaskRunnerHandle::Get()),
sensor_active_(false),
client_(nullptr),
sensor_(sensor),
event_listener_(new EventListener(this)),
weak_factory_(this) {
DCHECK(init_params_);
DCHECK(init_params_->reader_func);
DCHECK(sensor_);
}
void PlatformSensorReaderWin::SetClient(Client* client) {
base::AutoLock autolock(lock_);
// Can be null.
client_ = client;
}
void PlatformSensorReaderWin::StopSensor() {
base::AutoLock autolock(lock_);
if (sensor_active_) {
sensor_->SetEventSink(nullptr);
sensor_active_ = false;
}
}
PlatformSensorReaderWin::~PlatformSensorReaderWin() {
DCHECK(task_runner_->BelongsToCurrentThread());
}
bool PlatformSensorReaderWin::StartSensor(
const PlatformSensorConfiguration& configuration) {
base::AutoLock autolock(lock_);
if (!SetReportingInterval(configuration))
return false;
if (!sensor_active_) {
task_runner_->PostTask(
FROM_HERE, base::Bind(&PlatformSensorReaderWin::ListenSensorEvent,
weak_factory_.GetWeakPtr()));
sensor_active_ = true;
}
return true;
}
void PlatformSensorReaderWin::ListenSensorEvent() {
// Set event listener.
if (FAILED(sensor_->SetEventSink(event_listener_.get()))) {
SensorError();
StopSensor();
}
}
bool PlatformSensorReaderWin::SetReportingInterval(
const PlatformSensorConfiguration& configuration) {
base::win::ScopedComPtr<IPortableDeviceValues> props;
if (SUCCEEDED(::CoCreateInstance(CLSID_PortableDeviceValues, nullptr,
CLSCTX_ALL, IID_PPV_ARGS(&props)))) {
unsigned interval =
(1 / configuration.frequency()) * base::Time::kMillisecondsPerSecond;
HRESULT hr = props->SetUnsignedIntegerValue(
SENSOR_PROPERTY_CURRENT_REPORT_INTERVAL, interval);
if (SUCCEEDED(hr)) {
base::win::ScopedComPtr<IPortableDeviceValues> return_props;
hr = sensor_->SetProperties(props.Get(), return_props.GetAddressOf());
return SUCCEEDED(hr);
}
}
return false;
}
HRESULT PlatformSensorReaderWin::SensorReadingChanged(
ISensorDataReport* report,
SensorReading* reading) const {
if (!client_)
return E_FAIL;
HRESULT hr = init_params_->reader_func(report, reading);
if (SUCCEEDED(hr))
client_->OnReadingUpdated(*reading);
return hr;
}
void PlatformSensorReaderWin::SensorError() {
if (client_)
client_->OnSensorError();
}
unsigned long PlatformSensorReaderWin::GetMinimalReportingIntervalMs() const {
return init_params_->min_reporting_interval_ms;
}
} // namespace device