blob: 0ae4179deaef141473f276f50eb503cba852f5cb [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/output/direct_renderer.h"
#include <utility>
#include <vector>
#include "base/containers/hash_tables.h"
#include "base/containers/scoped_ptr_hash_map.h"
#include "base/metrics/histogram.h"
#include "base/trace_event/trace_event.h"
#include "cc/base/math_util.h"
#include "cc/output/bsp_tree.h"
#include "cc/output/bsp_walk_action.h"
#include "cc/output/copy_output_request.h"
#include "cc/quads/draw_quad.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/transform.h"
static gfx::Transform OrthoProjectionMatrix(float left,
float right,
float bottom,
float top) {
// Use the standard formula to map the clipping frustum to the cube from
// [-1, -1, -1] to [1, 1, 1].
float delta_x = right - left;
float delta_y = top - bottom;
gfx::Transform proj;
if (!delta_x || !delta_y)
return proj;
proj.matrix().set(0, 0, 2.0f / delta_x);
proj.matrix().set(0, 3, -(right + left) / delta_x);
proj.matrix().set(1, 1, 2.0f / delta_y);
proj.matrix().set(1, 3, -(top + bottom) / delta_y);
// Z component of vertices is always set to zero as we don't use the depth
// buffer while drawing.
proj.matrix().set(2, 2, 0);
return proj;
}
static gfx::Transform window_matrix(int x, int y, int width, int height) {
gfx::Transform canvas;
// Map to window position and scale up to pixel coordinates.
canvas.Translate3d(x, y, 0);
canvas.Scale3d(width, height, 0);
// Map from ([-1, -1] to [1, 1]) -> ([0, 0] to [1, 1])
canvas.Translate3d(0.5, 0.5, 0.5);
canvas.Scale3d(0.5, 0.5, 0.5);
return canvas;
}
namespace cc {
DirectRenderer::DrawingFrame::DrawingFrame()
: root_render_pass(NULL), current_render_pass(NULL), current_texture(NULL) {
}
DirectRenderer::DrawingFrame::~DrawingFrame() {}
//
// static
gfx::RectF DirectRenderer::QuadVertexRect() {
return gfx::RectF(-0.5f, -0.5f, 1.f, 1.f);
}
// static
void DirectRenderer::QuadRectTransform(gfx::Transform* quad_rect_transform,
const gfx::Transform& quad_transform,
const gfx::RectF& quad_rect) {
*quad_rect_transform = quad_transform;
quad_rect_transform->Translate(0.5 * quad_rect.width() + quad_rect.x(),
0.5 * quad_rect.height() + quad_rect.y());
quad_rect_transform->Scale(quad_rect.width(), quad_rect.height());
}
void DirectRenderer::InitializeViewport(DrawingFrame* frame,
const gfx::Rect& draw_rect,
const gfx::Rect& viewport_rect,
const gfx::Size& surface_size) {
DCHECK_GE(viewport_rect.x(), 0);
DCHECK_GE(viewport_rect.y(), 0);
DCHECK_LE(viewport_rect.right(), surface_size.width());
DCHECK_LE(viewport_rect.bottom(), surface_size.height());
bool flip_y = FlippedFramebuffer(frame);
if (flip_y) {
frame->projection_matrix = OrthoProjectionMatrix(draw_rect.x(),
draw_rect.right(),
draw_rect.bottom(),
draw_rect.y());
} else {
frame->projection_matrix = OrthoProjectionMatrix(draw_rect.x(),
draw_rect.right(),
draw_rect.y(),
draw_rect.bottom());
}
gfx::Rect window_rect = viewport_rect;
if (flip_y)
window_rect.set_y(surface_size.height() - viewport_rect.bottom());
frame->window_matrix = window_matrix(window_rect.x(),
window_rect.y(),
window_rect.width(),
window_rect.height());
SetDrawViewport(window_rect);
current_draw_rect_ = draw_rect;
current_viewport_rect_ = viewport_rect;
current_surface_size_ = surface_size;
}
gfx::Rect DirectRenderer::MoveFromDrawToWindowSpace(
const DrawingFrame* frame,
const gfx::Rect& draw_rect) const {
gfx::Rect window_rect = draw_rect;
window_rect -= current_draw_rect_.OffsetFromOrigin();
window_rect += current_viewport_rect_.OffsetFromOrigin();
if (FlippedFramebuffer(frame))
window_rect.set_y(current_surface_size_.height() - window_rect.bottom());
return window_rect;
}
DirectRenderer::DirectRenderer(RendererClient* client,
const RendererSettings* settings,
OutputSurface* output_surface,
ResourceProvider* resource_provider)
: Renderer(client, settings),
output_surface_(output_surface),
resource_provider_(resource_provider),
overlay_processor_(
new OverlayProcessor(output_surface, resource_provider)) {
overlay_processor_->Initialize();
}
DirectRenderer::~DirectRenderer() {}
void DirectRenderer::SetEnlargePassTextureAmountForTesting(
const gfx::Vector2d& amount) {
enlarge_pass_texture_amount_ = amount;
}
void DirectRenderer::DecideRenderPassAllocationsForFrame(
const RenderPassList& render_passes_in_draw_order) {
if (!resource_provider_)
return;
base::hash_map<RenderPassId, gfx::Size> render_passes_in_frame;
for (size_t i = 0; i < render_passes_in_draw_order.size(); ++i)
render_passes_in_frame.insert(std::pair<RenderPassId, gfx::Size>(
render_passes_in_draw_order[i]->id,
RenderPassTextureSize(render_passes_in_draw_order[i])));
std::vector<RenderPassId> passes_to_delete;
base::ScopedPtrHashMap<RenderPassId, ScopedResource>::const_iterator
pass_iter;
for (pass_iter = render_pass_textures_.begin();
pass_iter != render_pass_textures_.end();
++pass_iter) {
base::hash_map<RenderPassId, gfx::Size>::const_iterator it =
render_passes_in_frame.find(pass_iter->first);
if (it == render_passes_in_frame.end()) {
passes_to_delete.push_back(pass_iter->first);
continue;
}
gfx::Size required_size = it->second;
ScopedResource* texture = pass_iter->second;
DCHECK(texture);
bool size_appropriate = texture->size().width() >= required_size.width() &&
texture->size().height() >= required_size.height();
if (texture->id() && !size_appropriate)
texture->Free();
}
// Delete RenderPass textures from the previous frame that will not be used
// again.
for (size_t i = 0; i < passes_to_delete.size(); ++i)
render_pass_textures_.erase(passes_to_delete[i]);
for (size_t i = 0; i < render_passes_in_draw_order.size(); ++i) {
if (!render_pass_textures_.contains(render_passes_in_draw_order[i]->id)) {
scoped_ptr<ScopedResource> texture =
ScopedResource::Create(resource_provider_);
render_pass_textures_.set(render_passes_in_draw_order[i]->id,
texture.Pass());
}
}
}
void DirectRenderer::DrawFrame(RenderPassList* render_passes_in_draw_order,
float device_scale_factor,
const gfx::Rect& device_viewport_rect,
const gfx::Rect& device_clip_rect,
bool disable_picture_quad_image_filtering) {
TRACE_EVENT0("cc", "DirectRenderer::DrawFrame");
UMA_HISTOGRAM_COUNTS("Renderer4.renderPassCount",
render_passes_in_draw_order->size());
const RenderPass* root_render_pass = render_passes_in_draw_order->back();
DCHECK(root_render_pass);
DrawingFrame frame;
frame.render_passes_in_draw_order = render_passes_in_draw_order;
frame.root_render_pass = root_render_pass;
frame.root_damage_rect = Capabilities().using_partial_swap
? root_render_pass->damage_rect
: root_render_pass->output_rect;
frame.root_damage_rect.Intersect(gfx::Rect(device_viewport_rect.size()));
frame.device_viewport_rect = device_viewport_rect;
frame.device_clip_rect = device_clip_rect;
frame.disable_picture_quad_image_filtering =
disable_picture_quad_image_filtering;
overlay_processor_->ProcessForOverlays(render_passes_in_draw_order,
&frame.overlay_list);
EnsureBackbuffer();
// Only reshape when we know we are going to draw. Otherwise, the reshape
// can leave the window at the wrong size if we never draw and the proper
// viewport size is never set.
output_surface_->Reshape(device_viewport_rect.size(), device_scale_factor);
BeginDrawingFrame(&frame);
for (size_t i = 0; i < render_passes_in_draw_order->size(); ++i) {
RenderPass* pass = render_passes_in_draw_order->at(i);
DrawRenderPass(&frame, pass);
for (ScopedPtrVector<CopyOutputRequest>::iterator it =
pass->copy_requests.begin();
it != pass->copy_requests.end();
++it) {
if (it != pass->copy_requests.begin()) {
// Doing a readback is destructive of our state on Mac, so make sure
// we restore the state between readbacks. http://crbug.com/99393.
UseRenderPass(&frame, pass);
}
CopyCurrentRenderPassToBitmap(&frame, pass->copy_requests.take(it));
}
}
FinishDrawingFrame(&frame);
render_passes_in_draw_order->clear();
}
gfx::Rect DirectRenderer::ComputeScissorRectForRenderPass(
const DrawingFrame* frame) {
gfx::Rect render_pass_scissor = frame->current_render_pass->output_rect;
if (frame->root_damage_rect == frame->root_render_pass->output_rect ||
!frame->current_render_pass->copy_requests.empty())
return render_pass_scissor;
gfx::Transform inverse_transform(gfx::Transform::kSkipInitialization);
if (frame->current_render_pass->transform_to_root_target.GetInverse(
&inverse_transform)) {
// Only intersect inverse-projected damage if the transform is invertible.
gfx::Rect damage_rect_in_render_pass_space =
MathUtil::ProjectEnclosingClippedRect(inverse_transform,
frame->root_damage_rect);
render_pass_scissor.Intersect(damage_rect_in_render_pass_space);
}
return render_pass_scissor;
}
bool DirectRenderer::NeedDeviceClip(const DrawingFrame* frame) const {
if (frame->current_render_pass != frame->root_render_pass)
return false;
return !frame->device_clip_rect.Contains(frame->device_viewport_rect);
}
gfx::Rect DirectRenderer::DeviceClipRectInWindowSpace(const DrawingFrame* frame)
const {
gfx::Rect device_clip_rect = frame->device_clip_rect;
if (FlippedFramebuffer(frame))
device_clip_rect.set_y(current_surface_size_.height() -
device_clip_rect.bottom());
return device_clip_rect;
}
void DirectRenderer::SetScissorStateForQuad(const DrawingFrame* frame,
const DrawQuad& quad) {
if (quad.isClipped()) {
SetScissorTestRectInDrawSpace(frame, quad.clipRect());
return;
}
if (NeedDeviceClip(frame)) {
SetScissorTestRect(DeviceClipRectInWindowSpace(frame));
return;
}
EnsureScissorTestDisabled();
}
bool DirectRenderer::ShouldSkipQuad(const DrawQuad& quad,
const gfx::Rect& render_pass_scissor) {
if (render_pass_scissor.IsEmpty())
return true;
if (quad.isClipped()) {
gfx::Rect r = quad.clipRect();
r.Intersect(render_pass_scissor);
return r.IsEmpty();
}
return false;
}
void DirectRenderer::SetScissorStateForQuadWithRenderPassScissor(
const DrawingFrame* frame,
const DrawQuad& quad,
const gfx::Rect& render_pass_scissor) {
gfx::Rect quad_scissor_rect = render_pass_scissor;
if (quad.isClipped())
quad_scissor_rect.Intersect(quad.clipRect());
SetScissorTestRectInDrawSpace(frame, quad_scissor_rect);
}
void DirectRenderer::SetScissorTestRectInDrawSpace(
const DrawingFrame* frame,
const gfx::Rect& draw_space_rect) {
gfx::Rect window_space_rect =
MoveFromDrawToWindowSpace(frame, draw_space_rect);
if (NeedDeviceClip(frame))
window_space_rect.Intersect(DeviceClipRectInWindowSpace(frame));
SetScissorTestRect(window_space_rect);
}
void DirectRenderer::FinishDrawingQuadList() {}
void DirectRenderer::DoDrawPolygon(const DrawPolygon& poly,
DrawingFrame* frame,
const gfx::Rect& render_pass_scissor,
bool using_scissor_as_optimization) {
if (using_scissor_as_optimization) {
SetScissorStateForQuadWithRenderPassScissor(frame, *poly.original_ref(),
render_pass_scissor);
} else {
SetScissorStateForQuad(frame, *poly.original_ref());
}
// If the poly has not been split, then it is just a normal DrawQuad,
// and we should save any extra processing that would have to be done.
if (!poly.is_split()) {
DoDrawQuad(frame, poly.original_ref(), NULL);
return;
}
std::vector<gfx::QuadF> quads;
poly.ToQuads2D(&quads);
for (size_t i = 0; i < quads.size(); ++i) {
DoDrawQuad(frame, poly.original_ref(), &quads[i]);
}
}
void DirectRenderer::FlushPolygons(ScopedPtrDeque<DrawPolygon>* poly_list,
DrawingFrame* frame,
const gfx::Rect& render_pass_scissor,
bool using_scissor_as_optimization) {
if (poly_list->empty()) {
return;
}
BspTree bsp_tree(poly_list);
BspWalkActionDrawPolygon action_handler(this, frame, render_pass_scissor,
using_scissor_as_optimization);
bsp_tree.TraverseWithActionHandler(&action_handler);
DCHECK(poly_list->empty());
}
void DirectRenderer::DrawRenderPass(DrawingFrame* frame,
const RenderPass* render_pass) {
TRACE_EVENT0("cc", "DirectRenderer::DrawRenderPass");
if (!UseRenderPass(frame, render_pass))
return;
bool using_scissor_as_optimization = Capabilities().using_partial_swap;
gfx::Rect render_pass_scissor;
bool draw_rect_covers_full_surface = true;
if (frame->current_render_pass == frame->root_render_pass &&
!frame->device_viewport_rect.Contains(
gfx::Rect(output_surface_->SurfaceSize())))
draw_rect_covers_full_surface = false;
if (using_scissor_as_optimization) {
render_pass_scissor = ComputeScissorRectForRenderPass(frame);
SetScissorTestRectInDrawSpace(frame, render_pass_scissor);
if (!render_pass_scissor.Contains(frame->current_render_pass->output_rect))
draw_rect_covers_full_surface = false;
}
if (frame->current_render_pass != frame->root_render_pass ||
settings_->should_clear_root_render_pass) {
if (NeedDeviceClip(frame)) {
SetScissorTestRect(DeviceClipRectInWindowSpace(frame));
draw_rect_covers_full_surface = false;
} else if (!using_scissor_as_optimization) {
EnsureScissorTestDisabled();
}
bool has_external_stencil_test =
output_surface_->HasExternalStencilTest() &&
frame->current_render_pass == frame->root_render_pass;
DiscardPixels(has_external_stencil_test, draw_rect_covers_full_surface);
ClearFramebuffer(frame, has_external_stencil_test);
}
const QuadList& quad_list = render_pass->quad_list;
ScopedPtrDeque<DrawPolygon> poly_list;
int next_polygon_id = 0;
int last_sorting_context_id = 0;
for (auto it = quad_list.BackToFrontBegin(); it != quad_list.BackToFrontEnd();
++it) {
const DrawQuad& quad = **it;
gfx::QuadF send_quad(quad.visible_rect);
if (using_scissor_as_optimization &&
ShouldSkipQuad(quad, render_pass_scissor)) {
continue;
}
if (last_sorting_context_id != quad.shared_quad_state->sorting_context_id) {
last_sorting_context_id = quad.shared_quad_state->sorting_context_id;
FlushPolygons(&poly_list, frame, render_pass_scissor,
using_scissor_as_optimization);
}
// This layer is in a 3D sorting context so we add it to the list of
// polygons to go into the BSP tree.
if (quad.shared_quad_state->sorting_context_id != 0) {
scoped_ptr<DrawPolygon> new_polygon(new DrawPolygon(
*it, quad.visible_rect, quad.quadTransform(), next_polygon_id++));
if (new_polygon->points().size() > 2u) {
poly_list.push_back(new_polygon.Pass());
}
continue;
}
// We are not in a 3d sorting context, so we should draw the quad normally.
if (using_scissor_as_optimization) {
SetScissorStateForQuadWithRenderPassScissor(frame, quad,
render_pass_scissor);
} else {
SetScissorStateForQuad(frame, quad);
}
DoDrawQuad(frame, &quad, nullptr);
}
FlushPolygons(&poly_list, frame, render_pass_scissor,
using_scissor_as_optimization);
FinishDrawingQuadList();
}
bool DirectRenderer::UseRenderPass(DrawingFrame* frame,
const RenderPass* render_pass) {
frame->current_render_pass = render_pass;
frame->current_texture = NULL;
if (render_pass == frame->root_render_pass) {
BindFramebufferToOutputSurface(frame);
InitializeViewport(frame,
render_pass->output_rect,
frame->device_viewport_rect,
output_surface_->SurfaceSize());
return true;
}
ScopedResource* texture = render_pass_textures_.get(render_pass->id);
DCHECK(texture);
gfx::Size size = RenderPassTextureSize(render_pass);
size.Enlarge(enlarge_pass_texture_amount_.x(),
enlarge_pass_texture_amount_.y());
if (!texture->id())
texture->Allocate(
size, ResourceProvider::TEXTURE_HINT_IMMUTABLE_FRAMEBUFFER, RGBA_8888);
DCHECK(texture->id());
return BindFramebufferToTexture(frame, texture, render_pass->output_rect);
}
bool DirectRenderer::HasAllocatedResourcesForTesting(RenderPassId id) const {
ScopedResource* texture = render_pass_textures_.get(id);
return texture && texture->id();
}
// static
gfx::Size DirectRenderer::RenderPassTextureSize(const RenderPass* render_pass) {
return render_pass->output_rect.size();
}
} // namespace cc