blob: 499e1942827e5aa1faecc57c67a0363dd63f5728 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <queue>
#include <string>
#include "base/base_export.h"
#include "base/callback_forward.h"
#include "base/debug/task_annotator.h"
#include "base/gtest_prod_util.h"
#include "base/location.h"
#include "base/macros.h"
#include "base/memory/ref_counted.h"
#include "base/memory/scoped_ptr.h"
#include "base/message_loop/incoming_task_queue.h"
#include "base/message_loop/message_loop_task_runner.h"
#include "base/message_loop/message_pump.h"
#include "base/message_loop/timer_slack.h"
#include "base/observer_list.h"
#include "base/pending_task.h"
#include "base/sequenced_task_runner_helpers.h"
#include "base/synchronization/lock.h"
#include "base/time/time.h"
#include "base/tracking_info.h"
#include "build/build_config.h"
// TODO(sky): these includes should not be necessary. Nuke them.
#if defined(OS_WIN)
#include "base/message_loop/message_pump_win.h"
#elif defined(OS_IOS)
#include "base/message_loop/message_pump_io_ios.h"
#elif defined(OS_POSIX)
#include "base/message_loop/message_pump_libevent.h"
namespace base {
class HistogramBase;
class RunLoop;
class ThreadTaskRunnerHandle;
class WaitableEvent;
// A MessageLoop is used to process events for a particular thread. There is
// at most one MessageLoop instance per thread.
// Events include at a minimum Task instances submitted to PostTask and its
// variants. Depending on the type of message pump used by the MessageLoop
// other events such as UI messages may be processed. On Windows APC calls (as
// time permits) and signals sent to a registered set of HANDLEs may also be
// processed.
// NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
// on the thread where the MessageLoop's Run method executes.
// NOTE: MessageLoop has task reentrancy protection. This means that if a
// task is being processed, a second task cannot start until the first task is
// finished. Reentrancy can happen when processing a task, and an inner
// message pump is created. That inner pump then processes native messages
// which could implicitly start an inner task. Inner message pumps are created
// with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
// (DoDragDrop), printer functions (StartDoc) and *many* others.
// Sample workaround when inner task processing is needed:
// HRESULT hr;
// {
// MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
// hr = DoDragDrop(...); // Implicitly runs a modal message loop.
// }
// // Process |hr| (the result returned by DoDragDrop()).
// Please be SURE your task is reentrant (nestable) and all global variables
// are stable and accessible before calling SetNestableTasksAllowed(true).
class BASE_EXPORT MessageLoop : public MessagePump::Delegate {
// A MessageLoop has a particular type, which indicates the set of
// asynchronous events it may process in addition to tasks and timers.
// This type of ML only supports tasks and timers.
// This type of ML also supports native UI events (e.g., Windows messages).
// See also MessageLoopForUI.
// This type of ML also supports asynchronous IO. See also
// MessageLoopForIO.
// This type of ML is backed by a Java message handler which is responsible
// for running the tasks added to the ML. This is only for use on Android.
// TYPE_JAVA behaves in essence like TYPE_UI, except during construction
// where it does not use the main thread specific pump factory.
// MessagePump was supplied to constructor.
enum Type {
#if defined(OS_ANDROID)
#endif // defined(OS_ANDROID)
// Normally, it is not necessary to instantiate a MessageLoop. Instead, it
// is typical to make use of the current thread's MessageLoop instance.
explicit MessageLoop(Type type = TYPE_DEFAULT);
// Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must
// be non-NULL.
explicit MessageLoop(scoped_ptr<MessagePump> pump);
~MessageLoop() override;
// Returns the MessageLoop object for the current thread, or null if none.
static MessageLoop* current();
static void EnableHistogrammer(bool enable_histogrammer);
typedef scoped_ptr<MessagePump> (MessagePumpFactory)();
// Uses the given base::MessagePumpForUIFactory to override the default
// MessagePump implementation for 'TYPE_UI'. Returns true if the factory
// was successfully registered.
static bool InitMessagePumpForUIFactory(MessagePumpFactory* factory);
// Creates the default MessagePump based on |type|. Caller owns return
// value.
static scoped_ptr<MessagePump> CreateMessagePumpForType(Type type);
// A DestructionObserver is notified when the current MessageLoop is being
// destroyed. These observers are notified prior to MessageLoop::current()
// being changed to return NULL. This gives interested parties the chance to
// do final cleanup that depends on the MessageLoop.
// NOTE: Any tasks posted to the MessageLoop during this notification will
// not be run. Instead, they will be deleted.
class BASE_EXPORT DestructionObserver {
virtual void WillDestroyCurrentMessageLoop() = 0;
virtual ~DestructionObserver();
// Add a DestructionObserver, which will start receiving notifications
// immediately.
void AddDestructionObserver(DestructionObserver* destruction_observer);
// Remove a DestructionObserver. It is safe to call this method while a
// DestructionObserver is receiving a notification callback.
void RemoveDestructionObserver(DestructionObserver* destruction_observer);
// NOTE: Deprecated; prefer task_runner() and the TaskRunner interfaces.
// TODO(skyostil): Remove these functions (
// The "PostTask" family of methods call the task's Run method asynchronously
// from within a message loop at some point in the future.
// With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
// with normal UI or IO event processing. With the PostDelayedTask variant,
// tasks are called after at least approximately 'delay_ms' have elapsed.
// The NonNestable variants work similarly except that they promise never to
// dispatch the task from a nested invocation of MessageLoop::Run. Instead,
// such tasks get deferred until the top-most MessageLoop::Run is executing.
// The MessageLoop takes ownership of the Task, and deletes it after it has
// been Run().
// PostTask(from_here, task) is equivalent to
// PostDelayedTask(from_here, task, 0).
// NOTE: These methods may be called on any thread. The Task will be invoked
// on the thread that executes MessageLoop::Run().
void PostTask(const tracked_objects::Location& from_here,
const Closure& task);
void PostDelayedTask(const tracked_objects::Location& from_here,
const Closure& task,
TimeDelta delay);
void PostNonNestableTask(const tracked_objects::Location& from_here,
const Closure& task);
void PostNonNestableDelayedTask(const tracked_objects::Location& from_here,
const Closure& task,
TimeDelta delay);
// A variant on PostTask that deletes the given object. This is useful
// if the object needs to live until the next run of the MessageLoop (for
// example, deleting a RenderProcessHost from within an IPC callback is not
// good).
// NOTE: This method may be called on any thread. The object will be deleted
// on the thread that executes MessageLoop::Run().
template <class T>
void DeleteSoon(const tracked_objects::Location& from_here, const T* object) {
base::subtle::DeleteHelperInternal<T, void>::DeleteViaSequencedTaskRunner(
this, from_here, object);
// A variant on PostTask that releases the given reference counted object
// (by calling its Release method). This is useful if the object needs to
// live until the next run of the MessageLoop, or if the object needs to be
// released on a particular thread.
// A common pattern is to manually increment the object's reference count
// (AddRef), clear the pointer, then issue a ReleaseSoon. The reference count
// is incremented manually to ensure clearing the pointer does not trigger a
// delete and to account for the upcoming decrement (ReleaseSoon). For
// example:
// scoped_refptr<Foo> foo = ...
// foo->AddRef();
// Foo* raw_foo = foo.get();
// foo = NULL;
// message_loop->ReleaseSoon(raw_foo);
// NOTE: This method may be called on any thread. The object will be
// released (and thus possibly deleted) on the thread that executes
// MessageLoop::Run(). If this is not the same as the thread that calls
// ReleaseSoon(FROM_HERE, ), then T MUST inherit from
// RefCountedThreadSafe<T>!
template <class T>
void ReleaseSoon(const tracked_objects::Location& from_here,
const T* object) {
base::subtle::ReleaseHelperInternal<T, void>::ReleaseViaSequencedTaskRunner(
this, from_here, object);
// Deprecated: use RunLoop instead.
// Run the message loop.
void Run();
// Deprecated: use RunLoop instead.
// Process all pending tasks, windows messages, etc., but don't wait/sleep.
// Return as soon as all items that can be run are taken care of.
void RunUntilIdle();
// Deprecated: use RunLoop instead.
// Signals the Run method to return when it becomes idle. It will continue to
// process pending messages and future messages as long as they are enqueued.
// Warning: if the MessageLoop remains busy, it may never quit. Only use this
// Quit method when looping procedures (such as web pages) have been shut
// down.
// This method may only be called on the same thread that called Run, and Run
// must still be on the call stack.
// Use QuitClosure variants if you need to Quit another thread's MessageLoop,
// but note that doing so is fairly dangerous if the target thread makes
// nested calls to MessageLoop::Run. The problem being that you won't know
// which nested run loop you are quitting, so be careful!
void QuitWhenIdle();
// Deprecated: use RunLoop instead.
// This method is a variant of Quit, that does not wait for pending messages
// to be processed before returning from Run.
void QuitNow();
// Deprecated: use RunLoop instead.
// Construct a Closure that will call QuitWhenIdle(). Useful to schedule an
// arbitrary MessageLoop to QuitWhenIdle.
static Closure QuitWhenIdleClosure();
// Set the timer slack for this message loop.
void SetTimerSlack(TimerSlack timer_slack) {
// Returns true if this loop is |type|. This allows subclasses (especially
// those in tests) to specialize how they are identified.
virtual bool IsType(Type type) const;
// Returns the type passed to the constructor.
Type type() const { return type_; }
// Optional call to connect the thread name with this loop.
void set_thread_name(const std::string& thread_name) {
DCHECK(thread_name_.empty()) << "Should not rename this thread!";
thread_name_ = thread_name;
const std::string& thread_name() const { return thread_name_; }
// Gets the TaskRunner associated with this message loop.
const scoped_refptr<SingleThreadTaskRunner>& task_runner() {
return task_runner_;
// Sets a new TaskRunner for this message loop. The message loop must already
// have been bound to a thread prior to this call, and the task runner must
// belong to that thread. Note that changing the task runner will also affect
// the ThreadTaskRunnerHandle for the target thread. Must be called on the
// thread to which the message loop is bound.
void SetTaskRunner(scoped_refptr<SingleThreadTaskRunner> task_runner);
// Enables or disables the recursive task processing. This happens in the case
// of recursive message loops. Some unwanted message loops may occur when
// using common controls or printer functions. By default, recursive task
// processing is disabled.
// Please use |ScopedNestableTaskAllower| instead of calling these methods
// directly. In general, nestable message loops are to be avoided. They are
// dangerous and difficult to get right, so please use with extreme caution.
// The specific case where tasks get queued is:
// - The thread is running a message loop.
// - It receives a task #1 and executes it.
// - The task #1 implicitly starts a message loop, like a MessageBox in the
// unit test. This can also be StartDoc or GetSaveFileName.
// - The thread receives a task #2 before or while in this second message
// loop.
// - With NestableTasksAllowed set to true, the task #2 will run right away.
// Otherwise, it will get executed right after task #1 completes at "thread
// message loop level".
void SetNestableTasksAllowed(bool allowed);
bool NestableTasksAllowed() const;
// Enables nestable tasks on |loop| while in scope.
class ScopedNestableTaskAllower {
explicit ScopedNestableTaskAllower(MessageLoop* loop)
: loop_(loop),
old_state_(loop_->NestableTasksAllowed()) {
~ScopedNestableTaskAllower() {
MessageLoop* loop_;
bool old_state_;
// Returns true if we are currently running a nested message loop.
bool IsNested();
// A TaskObserver is an object that receives task notifications from the
// MessageLoop.
// NOTE: A TaskObserver implementation should be extremely fast!
class BASE_EXPORT TaskObserver {
// This method is called before processing a task.
virtual void WillProcessTask(const PendingTask& pending_task) = 0;
// This method is called after processing a task.
virtual void DidProcessTask(const PendingTask& pending_task) = 0;
virtual ~TaskObserver();
// These functions can only be called on the same thread that |this| is
// running on.
void AddTaskObserver(TaskObserver* task_observer);
void RemoveTaskObserver(TaskObserver* task_observer);
#if defined(OS_WIN)
void set_os_modal_loop(bool os_modal_loop) {
os_modal_loop_ = os_modal_loop;
bool os_modal_loop() const {
return os_modal_loop_;
#endif // OS_WIN
// Can only be called from the thread that owns the MessageLoop.
bool is_running() const;
// Returns true if the message loop has high resolution timers enabled.
// Provided for testing.
bool HasHighResolutionTasks();
// Returns true if the message loop is "idle". Provided for testing.
bool IsIdleForTesting();
// Returns the TaskAnnotator which is used to add debug information to posted
// tasks.
debug::TaskAnnotator* task_annotator() { return &task_annotator_; }
// Runs the specified PendingTask.
void RunTask(const PendingTask& pending_task);
scoped_ptr<MessagePump> pump_;
using MessagePumpFactoryCallback = Callback<scoped_ptr<MessagePump>()>;
// Common protected constructor. Other constructors delegate the
// initialization to this constructor.
// A subclass can invoke this constructor to create a message_loop of a
// specific type with a custom loop. The implementation does not call
// BindToCurrentThread. If this constructor is invoked directly by a subclass,
// then the subclass must subsequently bind the message loop.
MessageLoop(Type type, MessagePumpFactoryCallback pump_factory);
// Configure various members and bind this message loop to the current thread.
void BindToCurrentThread();
friend class RunLoop;
friend class internal::IncomingTaskQueue;
friend class ScheduleWorkTest;
friend class Thread;
FRIEND_TEST_ALL_PREFIXES(MessageLoopTest, DeleteUnboundLoop);
// Creates a MessageLoop without binding to a thread.
// If |type| is TYPE_CUSTOM non-null |pump_factory| must be also given
// to create a message pump for this message loop. Otherwise a default
// message pump for the |type| is created.
// It is valid to call this to create a new message loop on one thread,
// and then pass it to the thread where the message loop actually runs.
// The message loop's BindToCurrentThread() method must be called on the
// thread the message loop runs on, before calling Run().
// Before BindToCurrentThread() is called, only Post*Task() functions can
// be called on the message loop.
static scoped_ptr<MessageLoop> CreateUnbound(
Type type,
MessagePumpFactoryCallback pump_factory);
// Sets the ThreadTaskRunnerHandle for the current thread to point to the
// task runner for this message loop.
void SetThreadTaskRunnerHandle();
// Invokes the actual run loop using the message pump.
void RunHandler();
// Called to process any delayed non-nestable tasks.
bool ProcessNextDelayedNonNestableTask();
// Calls RunTask or queues the pending_task on the deferred task list if it
// cannot be run right now. Returns true if the task was run.
bool DeferOrRunPendingTask(const PendingTask& pending_task);
// Adds the pending task to delayed_work_queue_.
void AddToDelayedWorkQueue(const PendingTask& pending_task);
// Delete tasks that haven't run yet without running them. Used in the
// destructor to make sure all the task's destructors get called. Returns
// true if some work was done.
bool DeletePendingTasks();
// Loads tasks from the incoming queue to |work_queue_| if the latter is
// empty.
void ReloadWorkQueue();
// Wakes up the message pump. Can be called on any thread. The caller is
// responsible for synchronizing ScheduleWork() calls.
void ScheduleWork();
// Start recording histogram info about events and action IF it was enabled
// and IF the statistics recorder can accept a registration of our histogram.
void StartHistogrammer();
// Add occurrence of event to our histogram, so that we can see what is being
// done in a specific MessageLoop instance (i.e., specific thread).
// If message_histogram_ is NULL, this is a no-op.
void HistogramEvent(int event);
// MessagePump::Delegate methods:
bool DoWork() override;
bool DoDelayedWork(TimeTicks* next_delayed_work_time) override;
bool DoIdleWork() override;
const Type type_;
// A list of tasks that need to be processed by this instance. Note that
// this queue is only accessed (push/pop) by our current thread.
TaskQueue work_queue_;
#if defined(OS_WIN)
// How many high resolution tasks are in the pending task queue. This value
// increases by N every time we call ReloadWorkQueue() and decreases by 1
// every time we call RunTask() if the task needs a high resolution timer.
int pending_high_res_tasks_;
// Tracks if we have requested high resolution timers. Its only use is to
// turn off the high resolution timer upon loop destruction.
bool in_high_res_mode_;
// Contains delayed tasks, sorted by their 'delayed_run_time' property.
DelayedTaskQueue delayed_work_queue_;
// A recent snapshot of Time::Now(), used to check delayed_work_queue_.
TimeTicks recent_time_;
// A queue of non-nestable tasks that we had to defer because when it came
// time to execute them we were in a nested message loop. They will execute
// once we're out of nested message loops.
TaskQueue deferred_non_nestable_work_queue_;
ObserverList<DestructionObserver> destruction_observers_;
// A recursion block that prevents accidentally running additional tasks when
// insider a (accidentally induced?) nested message pump.
bool nestable_tasks_allowed_;
#if defined(OS_WIN)
// Should be set to true before calling Windows APIs like TrackPopupMenu, etc.
// which enter a modal message loop.
bool os_modal_loop_;
// pump_factory_.Run() is called to create a message pump for this loop
// if type_ is TYPE_CUSTOM and pump_ is null.
MessagePumpFactoryCallback pump_factory_;
std::string thread_name_;
// A profiling histogram showing the counts of various messages and events.
HistogramBase* message_histogram_;
RunLoop* run_loop_;
ObserverList<TaskObserver> task_observers_;
debug::TaskAnnotator task_annotator_;
scoped_refptr<internal::IncomingTaskQueue> incoming_task_queue_;
// A task runner which we haven't bound to a thread yet.
scoped_refptr<internal::MessageLoopTaskRunner> unbound_task_runner_;
// The task runner associated with this message loop.
scoped_refptr<SingleThreadTaskRunner> task_runner_;
scoped_ptr<ThreadTaskRunnerHandle> thread_task_runner_handle_;
template <class T, class R> friend class base::subtle::DeleteHelperInternal;
template <class T, class R> friend class base::subtle::ReleaseHelperInternal;
void DeleteSoonInternal(const tracked_objects::Location& from_here,
void(*deleter)(const void*),
const void* object);
void ReleaseSoonInternal(const tracked_objects::Location& from_here,
void(*releaser)(const void*),
const void* object);
#if !defined(OS_NACL)
// MessageLoopForUI extends MessageLoop with methods that are particular to a
// MessageLoop instantiated with TYPE_UI.
// This class is typically used like so:
// MessageLoopForUI::current()-> some method...
class BASE_EXPORT MessageLoopForUI : public MessageLoop {
MessageLoopForUI() : MessageLoop(TYPE_UI) {
explicit MessageLoopForUI(scoped_ptr<MessagePump> pump);
// Returns the MessageLoopForUI of the current thread.
static MessageLoopForUI* current() {
MessageLoop* loop = MessageLoop::current();
return static_cast<MessageLoopForUI*>(loop);
static bool IsCurrent() {
MessageLoop* loop = MessageLoop::current();
return loop && loop->IsType(MessageLoop::TYPE_UI);
#if defined(OS_IOS)
// On iOS, the main message loop cannot be Run(). Instead call Attach(),
// which connects this MessageLoop to the UI thread's CFRunLoop and allows
// PostTask() to work.
void Attach();
#if defined(OS_ANDROID)
// On Android, the UI message loop is handled by Java side. So Run() should
// never be called. Instead use Start(), which will forward all the native UI
// events to the Java message loop.
void Start();
#if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
// Please see MessagePumpLibevent for definition.
bool WatchFileDescriptor(
int fd,
bool persistent,
MessagePumpLibevent::Mode mode,
MessagePumpLibevent::FileDescriptorWatcher* controller,
MessagePumpLibevent::Watcher* delegate);
// Do not add any member variables to MessageLoopForUI! This is important b/c
// MessageLoopForUI is often allocated via MessageLoop(TYPE_UI). Any extra
// data that you need should be stored on the MessageLoop's pump_ instance.
static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
"MessageLoopForUI should not have extra member variables");
#endif // !defined(OS_NACL)
// MessageLoopForIO extends MessageLoop with methods that are particular to a
// MessageLoop instantiated with TYPE_IO.
// This class is typically used like so:
// MessageLoopForIO::current()-> some method...
class BASE_EXPORT MessageLoopForIO : public MessageLoop {
MessageLoopForIO() : MessageLoop(TYPE_IO) {
// Returns the MessageLoopForIO of the current thread.
static MessageLoopForIO* current() {
MessageLoop* loop = MessageLoop::current();
DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
return static_cast<MessageLoopForIO*>(loop);
static bool IsCurrent() {
MessageLoop* loop = MessageLoop::current();
return loop && loop->type() == MessageLoop::TYPE_IO;
#if !defined(OS_NACL_SFI)
#if defined(OS_WIN)
typedef MessagePumpForIO::IOHandler IOHandler;
typedef MessagePumpForIO::IOContext IOContext;
typedef MessagePumpForIO::IOObserver IOObserver;
#elif defined(OS_IOS)
typedef MessagePumpIOSForIO::Watcher Watcher;
typedef MessagePumpIOSForIO::FileDescriptorWatcher
typedef MessagePumpIOSForIO::IOObserver IOObserver;
enum Mode {
#elif defined(OS_POSIX)
typedef MessagePumpLibevent::Watcher Watcher;
typedef MessagePumpLibevent::FileDescriptorWatcher
typedef MessagePumpLibevent::IOObserver IOObserver;
enum Mode {
WATCH_READ = MessagePumpLibevent::WATCH_READ,
WATCH_WRITE = MessagePumpLibevent::WATCH_WRITE,
void AddIOObserver(IOObserver* io_observer);
void RemoveIOObserver(IOObserver* io_observer);
#if defined(OS_WIN)
// Please see MessagePumpWin for definitions of these methods.
void RegisterIOHandler(HANDLE file, IOHandler* handler);
bool RegisterJobObject(HANDLE job, IOHandler* handler);
bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
#elif defined(OS_POSIX)
// Please see MessagePumpIOSForIO/MessagePumpLibevent for definition.
bool WatchFileDescriptor(int fd,
bool persistent,
Mode mode,
FileDescriptorWatcher* controller,
Watcher* delegate);
#endif // defined(OS_IOS) || defined(OS_POSIX)
#endif // !defined(OS_NACL_SFI)
// Do not add any member variables to MessageLoopForIO! This is important b/c
// MessageLoopForIO is often allocated via MessageLoop(TYPE_IO). Any extra
// data that you need should be stored on the MessageLoop's pump_ instance.
static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
"MessageLoopForIO should not have extra member variables");
} // namespace base