blob: e31dbe70ba06da5eb2432b4d6e0394c3389a3ad7 [file] [log] [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/cast/encoding/vpx_quantizer_parser.h"
#include <array>
#include <optional>
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_span.h"
#include "base/types/cxx23_to_underlying.h"
namespace media::cast {
namespace {
// VpxBitReader is a re-implementation of a subset of the VP8 entropy decoder.
// It is used to decompress the VP8 bitstream for the purposes of quickly
// parsing the VP8 frame headers. It is mostly the exact same implementation
// found in third_party/libvpx/.../vp8/decoder/dboolhuff.h except that only
// the portion of the implementation needed to parse the frame headers is
// present. As of this writing, the implementation in libvpx could not be
// re-used because of the way that the code is structured, and lack of the
// necessary parts being exported.
class VpxBitReader {
public:
explicit VpxBitReader(base::span<const uint8_t> data) : data_(data) {
VpxDecoderReadBytes();
}
~VpxBitReader() = default;
VpxBitReader(const VpxBitReader&) = delete;
VpxBitReader& operator=(const VpxBitReader&) = delete;
VpxBitReader(VpxBitReader&&) = delete;
VpxBitReader& operator=(VpxBitReader&&) = delete;
enum class BitResult : int {
kError = -1,
kZero = 0,
kOne = 1,
};
BitResult DecodeBit();
// Decode a value with |num_bits|. The decoding order is MSB first.
std::optional<unsigned int> DecodeValue(unsigned int num_bits);
private:
// Read new bytes from the encoded data buffer until |bit_count_| > 0.
void VpxDecoderReadBytes();
// The current byte to decode.
base::raw_span<const uint8_t> data_;
// The following two variables are maintained by the decoder.
// General decoding rule:
// If |value_| is in the range of 0 to half of |range_|, output 0.
// Otherwise output 1.
// |range_| and |value_| need to be shifted when necessary to avoid underflow.
unsigned int range_ = 255;
unsigned int value_ = 0;
// Number of valid bits left to decode. Initializing it to -8 to let the
// decoder load two bytes at the beginning. The lower byte is used as
// a buffer byte. During the decoding, decoder needs to call
// VpxDecoderReadBytes() to load new bytes when it becomes negative.
int bit_count_ = -8;
};
// The number of bits to be left-shifted to make the variable range_ over 128.
constexpr const std::array<uint8_t, 128> kVpxShift = {
0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
// Mapping from the q_index(0-127) to the quantizer value(0-63).
constexpr const std::array<uint8_t, 128> kVpxQuantizerLookup = {
0, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 12, 12, 13, 13, 14,
15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 27, 28, 28, 29, 29,
30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39,
39, 40, 40, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45, 45, 46, 46,
46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 51, 51, 51, 52, 52, 52,
53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 58, 58, 58, 59,
59, 59, 60, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 63};
void VpxBitReader::VpxDecoderReadBytes() {
int shift = -bit_count_;
while ((shift >= 0) && (!data_.empty())) {
bit_count_ += 8;
value_ |= static_cast<unsigned int>(*data_.data()) << shift;
data_ = data_.subspan<1>();
shift -= 8;
}
}
VpxBitReader::BitResult VpxBitReader::DecodeBit() {
unsigned int decoded_bit = 0;
unsigned int split = 1 + (((range_ - 1) * 128) >> 8);
if (bit_count_ < 0) {
VpxDecoderReadBytes();
}
// We ran out of data unexpectedly. Input data is improperly formatted.
if (bit_count_ < 0) {
return BitResult::kError;
}
const unsigned int shifted_split = split << 8;
if (value_ >= shifted_split) {
range_ -= split;
value_ -= shifted_split;
decoded_bit = 1;
} else {
range_ = split;
}
if (range_ < 128) {
int shift = kVpxShift[range_];
range_ <<= shift;
value_ <<= shift;
bit_count_ -= shift;
}
return decoded_bit ? BitResult::kOne : BitResult::kZero;
}
std::optional<unsigned int> VpxBitReader::DecodeValue(unsigned int num_bits) {
unsigned int decoded_value = 0;
for (int i = static_cast<int>(num_bits) - 1; i >= 0; i--) {
switch (DecodeBit()) {
case BitResult::kError:
return std::nullopt;
case BitResult::kOne:
decoded_value |= 1 << i;
break;
case BitResult::kZero:
break;
}
}
return decoded_value;
}
// Returns whether or not the consumption of bits was successful.
bool ConsumeBits(VpxBitReader* bit_reader, int bits) {
switch (bit_reader->DecodeBit()) {
case VpxBitReader::BitResult::kError:
return false;
case VpxBitReader::BitResult::kZero:
return true;
case VpxBitReader::BitResult::kOne:
return bit_reader->DecodeValue(bits).has_value();
}
}
// Parse the Segment Header part in the first partition.
void ParseSegmentHeader(VpxBitReader* bit_reader) {
if (bit_reader->DecodeBit() != VpxBitReader::BitResult::kOne) {
return;
}
DVLOG(2) << "segmentation_enabled.";
const VpxBitReader::BitResult update_mb_segmentation_map =
bit_reader->DecodeBit();
const VpxBitReader::BitResult update_mb_segmentation_data =
bit_reader->DecodeBit();
DVLOG(2) << "update_mb_segmentation_data:"
<< base::to_underlying(update_mb_segmentation_data);
if (update_mb_segmentation_map == VpxBitReader::BitResult::kError ||
update_mb_segmentation_data == VpxBitReader::BitResult::kError) {
return;
}
if (update_mb_segmentation_data == VpxBitReader::BitResult::kOne) {
bit_reader->DecodeBit();
for (int i = 0; i < 4; ++i) {
// Parse 7 bits value + 1 sign bit.
if (!ConsumeBits(bit_reader, 7 + 1)) {
return;
}
}
for (int i = 0; i < 4; ++i) {
// Parse 6 bits value + 1 sign bit.
if (!ConsumeBits(bit_reader, 6 + 1)) {
return;
}
}
}
if (update_mb_segmentation_map == VpxBitReader::BitResult::kOne) {
for (int i = 0; i < 3; ++i) {
// Consume an entire byte.
if (!ConsumeBits(bit_reader, 8)) {
return;
}
}
}
}
// Parse the Filter Header in the first partition.
void ParseFilterHeader(VpxBitReader* bit_reader) {
// Parse 1 bit filter_type + 6 bits loop_filter_level + 3 bits
// sharpness_level.
bit_reader->DecodeValue(1 + 6 + 3);
if (bit_reader->DecodeBit() != VpxBitReader::BitResult::kOne) {
return;
}
if (bit_reader->DecodeBit() != VpxBitReader::BitResult::kOne) {
return;
}
for (int i = 0; i < 8; ++i) {
// Parse 6 bits value + 1 sign bit.
if (!ConsumeBits(bit_reader, 6 + 1)) {
return;
}
}
}
} // unnamed namespace
std::optional<int> ParseVpxHeaderQuantizer(base::span<const uint8_t> data) {
if (data.size() <= 3) {
return std::nullopt;
}
const bool is_key = !(data[0] & 1);
const unsigned int header_3bytes = data[0] | (data[1] << 8) | (data[2] << 16);
// Parse the size of the first partition.
const unsigned int partition_size = (header_3bytes >> 5);
data = data.subspan<3>();
if (is_key) {
if (data.size() <= 7) {
return std::nullopt;
}
data = data.subspan<7>();
}
if (data.size() < partition_size) {
return std::nullopt;
}
VpxBitReader bit_reader(data.first(partition_size));
if (is_key) {
// Parse two bits: color_space + clamp_type.
if (!bit_reader.DecodeValue(1 + 1).has_value()) {
return std::nullopt;
}
}
ParseSegmentHeader(&bit_reader);
ParseFilterHeader(&bit_reader);
// Parse the number of coefficient data partitions.
if (!bit_reader.DecodeValue(2).has_value()) {
return std::nullopt;
}
// Parse the base q_index.
const std::optional<unsigned int> q_result = bit_reader.DecodeValue(7);
if (!q_result.has_value()) {
return std::nullopt;
}
return q_result.value() > 127 ? 63 : kVpxQuantizerLookup[q_result.value()];
}
} // namespace media::cast