blob: cb2af20c48a14ac167142ec0dcd5922ee02415e4 [file] [log] [blame]
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_POINTERS_RAW_PTR_H_
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_POINTERS_RAW_PTR_H_
#include <stddef.h>
#include <stdint.h>
#include <climits>
#include <cstddef>
#include <functional>
#include <type_traits>
#include <utility>
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
#include "base/allocator/partition_allocator/partition_alloc_base/cxx20_is_constant_evaluated.h"
#include "base/allocator/partition_allocator/partition_alloc_base/debug/debugging_buildflags.h"
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
#include "base/allocator/partition_allocator/partition_alloc_config.h"
#include "base/allocator/partition_allocator/partition_alloc_forward.h"
#include "base/allocator/partition_allocator/pointers/raw_ptr_exclusion.h"
#include "build/build_config.h"
#include "build/buildflag.h"
#if BUILDFLAG(IS_WIN)
#include "base/allocator/partition_allocator/partition_alloc_base/win/win_handle_types.h"
#endif
#if BUILDFLAG(USE_PARTITION_ALLOC)
#include "base/allocator/partition_allocator/partition_alloc_base/check.h"
// Live implementation of MiraclePtr being built.
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) || \
BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
#define PA_RAW_PTR_CHECK(condition) PA_BASE_CHECK(condition)
#else
// No-op implementation of MiraclePtr being built.
// Note that `PA_BASE_DCHECK()` evaporates from non-DCHECK builds,
// minimizing impact of generated code.
#define PA_RAW_PTR_CHECK(condition) PA_BASE_DCHECK(condition)
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) ||
// BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
#else // BUILDFLAG(USE_PARTITION_ALLOC)
// Without PartitionAlloc, there's no `PA_BASE_D?CHECK()` implementation
// available.
#define PA_RAW_PTR_CHECK(condition)
#endif // BUILDFLAG(USE_PARTITION_ALLOC)
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
#include "base/allocator/partition_allocator/pointers/raw_ptr_backup_ref_impl.h"
#endif
#if BUILDFLAG(USE_ASAN_UNOWNED_PTR)
#include "base/allocator/partition_allocator/pointers/raw_ptr_asan_unowned_impl.h"
#endif
#if BUILDFLAG(USE_HOOKABLE_RAW_PTR)
#include "base/allocator/partition_allocator/pointers/raw_ptr_hookable_impl.h"
#endif
namespace cc {
class Scheduler;
}
namespace base::internal {
class DelayTimerBase;
}
namespace content::responsiveness {
class Calculator;
}
namespace base {
// NOTE: All methods should be `PA_ALWAYS_INLINE`. raw_ptr is meant to be a
// lightweight replacement of a raw pointer, hence performance is critical.
// This is a bitfield representing the different flags that can be applied to a
// raw_ptr.
//
// Internal use only: Developers shouldn't use those values directly.
//
// Housekeeping rules: Try not to change trait values, so that numeric trait
// values stay constant across builds (could be useful e.g. when analyzing stack
// traces). A reasonable exception to this rule are `*ForTest` traits. As a
// matter of fact, we propose that new non-test traits are added before the
// `*ForTest` traits.
enum class RawPtrTraits : unsigned {
kEmpty = 0,
// Disables dangling pointer detection, but keeps other raw_ptr protections.
//
// Don't use directly, use DisableDanglingPtrDetection or DanglingUntriaged
// instead.
kMayDangle = (1 << 0),
#if BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
// Disables any hooks, by switching to NoOpImpl in that case.
//
// Internal use only.
kDisableHooks = (1 << 2),
#else
kDisableHooks = kEmpty,
#endif
// Pointer arithmetic is discouraged and disabled by default.
//
// Don't use directly, use AllowPtrArithmetic instead.
kAllowPtrArithmetic = (1 << 3),
// This pointer is evaluated by a separate, Ash-related experiment.
//
// Don't use directly, use ExperimentalAsh instead.
kExperimentalAsh = (1 << 4),
// *** ForTest traits below ***
// Adds accounting, on top of the chosen implementation, for test purposes.
// raw_ptr/raw_ref with this trait perform extra bookkeeping, e.g. to track
// the number of times the raw_ptr is wrapped, unwrapped, etc.
//
// Test only.
kUseCountingWrapperForTest = (1 << 10),
// Helper trait that can be used to test raw_ptr's behaviour or conversions.
//
// Test only.
kDummyForTest = (1 << 11),
};
// Used to combine RawPtrTraits:
constexpr RawPtrTraits operator|(RawPtrTraits a, RawPtrTraits b) {
return static_cast<RawPtrTraits>(static_cast<unsigned>(a) |
static_cast<unsigned>(b));
}
constexpr RawPtrTraits operator&(RawPtrTraits a, RawPtrTraits b) {
return static_cast<RawPtrTraits>(static_cast<unsigned>(a) &
static_cast<unsigned>(b));
}
constexpr RawPtrTraits operator~(RawPtrTraits a) {
return static_cast<RawPtrTraits>(~static_cast<unsigned>(a));
}
namespace raw_ptr_traits {
constexpr bool Contains(RawPtrTraits a, RawPtrTraits b) {
return (a & b) != RawPtrTraits::kEmpty;
}
constexpr RawPtrTraits Remove(RawPtrTraits a, RawPtrTraits b) {
return a & ~b;
}
constexpr bool AreValid(RawPtrTraits traits) {
return Remove(traits, RawPtrTraits::kMayDangle | RawPtrTraits::kDisableHooks |
RawPtrTraits::kAllowPtrArithmetic |
RawPtrTraits::kExperimentalAsh |
RawPtrTraits::kUseCountingWrapperForTest |
RawPtrTraits::kDummyForTest) ==
RawPtrTraits::kEmpty;
}
template <RawPtrTraits Traits>
struct TraitsToImpl;
} // namespace raw_ptr_traits
template <typename T, RawPtrTraits Traits = RawPtrTraits::kEmpty>
class raw_ptr;
} // namespace base
// This type is to be used internally, or in callbacks arguments when it is
// known that they might receive dangling pointers. In any other cases, please
// use one of:
// - raw_ptr<T, DanglingUntriaged>
// - raw_ptr<T, DisableDanglingPtrDetection>
template <typename T, base::RawPtrTraits Traits = base::RawPtrTraits::kEmpty>
using MayBeDangling = base::raw_ptr<T, Traits | base::RawPtrTraits::kMayDangle>;
namespace base {
struct RawPtrGlobalSettings {
static void EnableExperimentalAsh() {
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
internal::BackupRefPtrGlobalSettings::EnableExperimentalAsh();
#endif
}
static void DisableExperimentalAshForTest() {
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
internal::BackupRefPtrGlobalSettings::DisableExperimentalAshForTest();
#endif
}
};
namespace internal {
struct RawPtrNoOpImpl {
static constexpr bool kMustZeroOnInit = false;
static constexpr bool kMustZeroOnMove = false;
static constexpr bool kMustZeroOnDestruct = false;
// Wraps a pointer.
template <typename T>
PA_ALWAYS_INLINE static constexpr T* WrapRawPtr(T* ptr) {
return ptr;
}
// Notifies the allocator when a wrapped pointer is being removed or replaced.
template <typename T>
PA_ALWAYS_INLINE static constexpr void ReleaseWrappedPtr(T*) {}
// Unwraps the pointer, while asserting that memory hasn't been freed. The
// function is allowed to crash on nullptr.
template <typename T>
PA_ALWAYS_INLINE static constexpr T* SafelyUnwrapPtrForDereference(
T* wrapped_ptr) {
return wrapped_ptr;
}
// Unwraps the pointer, while asserting that memory hasn't been freed. The
// function must handle nullptr gracefully.
template <typename T>
PA_ALWAYS_INLINE static constexpr T* SafelyUnwrapPtrForExtraction(
T* wrapped_ptr) {
return wrapped_ptr;
}
// Unwraps the pointer, without making an assertion on whether memory was
// freed or not.
template <typename T>
PA_ALWAYS_INLINE static constexpr T* UnsafelyUnwrapPtrForComparison(
T* wrapped_ptr) {
return wrapped_ptr;
}
// Upcasts the wrapped pointer.
template <typename To, typename From>
PA_ALWAYS_INLINE static constexpr To* Upcast(From* wrapped_ptr) {
static_assert(std::is_convertible<From*, To*>::value,
"From must be convertible to To.");
// Note, this cast may change the address if upcasting to base that lies in
// the middle of the derived object.
return wrapped_ptr;
}
// Advance the wrapped pointer by `delta_elems`.
template <
typename T,
typename Z,
typename =
std::enable_if_t<partition_alloc::internal::is_offset_type<Z>, void>>
PA_ALWAYS_INLINE static constexpr T* Advance(T* wrapped_ptr, Z delta_elems) {
return wrapped_ptr + delta_elems;
}
// Retreat the wrapped pointer by `delta_elems`.
template <
typename T,
typename Z,
typename =
std::enable_if_t<partition_alloc::internal::is_offset_type<Z>, void>>
PA_ALWAYS_INLINE static constexpr T* Retreat(T* wrapped_ptr, Z delta_elems) {
return wrapped_ptr - delta_elems;
}
template <typename T>
PA_ALWAYS_INLINE static constexpr ptrdiff_t GetDeltaElems(T* wrapped_ptr1,
T* wrapped_ptr2) {
return wrapped_ptr1 - wrapped_ptr2;
}
// Returns a copy of a wrapped pointer, without making an assertion on whether
// memory was freed or not.
template <typename T>
PA_ALWAYS_INLINE static constexpr T* Duplicate(T* wrapped_ptr) {
return wrapped_ptr;
}
// `WrapRawPtrForDuplication` and `UnsafelyUnwrapPtrForDuplication` are used
// to create a new raw_ptr<T> from another raw_ptr<T> of a different flavor.
template <typename T>
PA_ALWAYS_INLINE static constexpr T* WrapRawPtrForDuplication(T* ptr) {
return ptr;
}
template <typename T>
PA_ALWAYS_INLINE static constexpr T* UnsafelyUnwrapPtrForDuplication(
T* wrapped_ptr) {
return wrapped_ptr;
}
// This is for accounting only, used by unit tests.
PA_ALWAYS_INLINE constexpr static void IncrementSwapCountForTest() {}
PA_ALWAYS_INLINE constexpr static void IncrementLessCountForTest() {}
PA_ALWAYS_INLINE constexpr static void
IncrementPointerToMemberOperatorCountForTest() {}
};
// Wraps a raw_ptr/raw_ref implementation, with a class of the same interface
// that provides accounting, for test purposes. raw_ptr/raw_ref that use it
// perform extra bookkeeping, e.g. to track the number of times the raw_ptr is
// wrapped, unrwapped, etc.
//
// Test only.
template <RawPtrTraits Traits>
struct RawPtrCountingImplWrapperForTest
: public raw_ptr_traits::TraitsToImpl<Traits>::Impl {
static_assert(
!raw_ptr_traits::Contains(Traits,
RawPtrTraits::kUseCountingWrapperForTest));
using SuperImpl = typename raw_ptr_traits::TraitsToImpl<Traits>::Impl;
static constexpr bool kMustZeroOnInit = SuperImpl::kMustZeroOnInit;
static constexpr bool kMustZeroOnMove = SuperImpl::kMustZeroOnMove;
static constexpr bool kMustZeroOnDestruct = SuperImpl::kMustZeroOnDestruct;
template <typename T>
PA_ALWAYS_INLINE static constexpr T* WrapRawPtr(T* ptr) {
++wrap_raw_ptr_cnt;
return SuperImpl::WrapRawPtr(ptr);
}
template <typename T>
PA_ALWAYS_INLINE static constexpr void ReleaseWrappedPtr(T* ptr) {
++release_wrapped_ptr_cnt;
SuperImpl::ReleaseWrappedPtr(ptr);
}
template <typename T>
PA_ALWAYS_INLINE static constexpr T* SafelyUnwrapPtrForDereference(
T* wrapped_ptr) {
++get_for_dereference_cnt;
return SuperImpl::SafelyUnwrapPtrForDereference(wrapped_ptr);
}
template <typename T>
PA_ALWAYS_INLINE static constexpr T* SafelyUnwrapPtrForExtraction(
T* wrapped_ptr) {
++get_for_extraction_cnt;
return SuperImpl::SafelyUnwrapPtrForExtraction(wrapped_ptr);
}
template <typename T>
PA_ALWAYS_INLINE static constexpr T* UnsafelyUnwrapPtrForComparison(
T* wrapped_ptr) {
++get_for_comparison_cnt;
return SuperImpl::UnsafelyUnwrapPtrForComparison(wrapped_ptr);
}
PA_ALWAYS_INLINE static constexpr void IncrementSwapCountForTest() {
++wrapped_ptr_swap_cnt;
}
PA_ALWAYS_INLINE static constexpr void IncrementLessCountForTest() {
++wrapped_ptr_less_cnt;
}
PA_ALWAYS_INLINE static constexpr void
IncrementPointerToMemberOperatorCountForTest() {
++pointer_to_member_operator_cnt;
}
template <typename T>
PA_ALWAYS_INLINE static constexpr T* WrapRawPtrForDuplication(T* ptr) {
++wrap_raw_ptr_for_dup_cnt;
return SuperImpl::WrapRawPtrForDuplication(ptr);
}
template <typename T>
PA_ALWAYS_INLINE static constexpr T* UnsafelyUnwrapPtrForDuplication(
T* wrapped_ptr) {
++get_for_duplication_cnt;
return SuperImpl::UnsafelyUnwrapPtrForDuplication(wrapped_ptr);
}
static constexpr void ClearCounters() {
wrap_raw_ptr_cnt = 0;
release_wrapped_ptr_cnt = 0;
get_for_dereference_cnt = 0;
get_for_extraction_cnt = 0;
get_for_comparison_cnt = 0;
wrapped_ptr_swap_cnt = 0;
wrapped_ptr_less_cnt = 0;
pointer_to_member_operator_cnt = 0;
wrap_raw_ptr_for_dup_cnt = 0;
get_for_duplication_cnt = 0;
}
static inline int wrap_raw_ptr_cnt = INT_MIN;
static inline int release_wrapped_ptr_cnt = INT_MIN;
static inline int get_for_dereference_cnt = INT_MIN;
static inline int get_for_extraction_cnt = INT_MIN;
static inline int get_for_comparison_cnt = INT_MIN;
static inline int wrapped_ptr_swap_cnt = INT_MIN;
static inline int wrapped_ptr_less_cnt = INT_MIN;
static inline int pointer_to_member_operator_cnt = INT_MIN;
static inline int wrap_raw_ptr_for_dup_cnt = INT_MIN;
static inline int get_for_duplication_cnt = INT_MIN;
};
} // namespace internal
namespace raw_ptr_traits {
// IsSupportedType<T>::value answers whether raw_ptr<T> 1) compiles and 2) is
// always safe at runtime. Templates that may end up using `raw_ptr<T>` should
// use IsSupportedType to ensure that raw_ptr is not used with unsupported
// types. As an example, see how base::internal::StorageTraits uses
// IsSupportedType as a condition for using base::internal::UnretainedWrapper
// (which has a `ptr_` field that will become `raw_ptr<T>` after the Big
// Rewrite).
template <typename T, typename SFINAE = void>
struct IsSupportedType {
static constexpr bool value = true;
};
// raw_ptr<T> is not compatible with function pointer types. Also, they don't
// even need the raw_ptr protection, because they don't point on heap.
template <typename T>
struct IsSupportedType<T, std::enable_if_t<std::is_function<T>::value>> {
static constexpr bool value = false;
};
// This section excludes some types from raw_ptr<T> to avoid them from being
// used inside base::Unretained in performance sensitive places. These were
// identified from sampling profiler data. See crbug.com/1287151 for more info.
template <>
struct IsSupportedType<cc::Scheduler> {
static constexpr bool value = false;
};
template <>
struct IsSupportedType<base::internal::DelayTimerBase> {
static constexpr bool value = false;
};
template <>
struct IsSupportedType<content::responsiveness::Calculator> {
static constexpr bool value = false;
};
#if __OBJC__
// raw_ptr<T> is not compatible with pointers to Objective-C classes for a
// multitude of reasons. They may fail to compile in many cases, and wouldn't
// work well with tagged pointers. Anyway, Objective-C objects have their own
// way of tracking lifespan, hence don't need the raw_ptr protection as much.
//
// Such pointers are detected by checking if they're convertible to |id| type.
template <typename T>
struct IsSupportedType<T,
std::enable_if_t<std::is_convertible<T*, id>::value>> {
static constexpr bool value = false;
};
#endif // __OBJC__
#if BUILDFLAG(IS_WIN)
// raw_ptr<HWND__> is unsafe at runtime - if the handle happens to also
// represent a valid pointer into a PartitionAlloc-managed region then it can
// lead to manipulating random memory when treating it as BackupRefPtr
// ref-count. See also https://crbug.com/1262017.
//
// TODO(https://crbug.com/1262017): Cover other handle types like HANDLE,
// HLOCAL, HINTERNET, or HDEVINFO. Maybe we should avoid using raw_ptr<T> when
// T=void (as is the case in these handle types). OTOH, explicit,
// non-template-based raw_ptr<void> should be allowed. Maybe this can be solved
// by having 2 traits: IsPointeeAlwaysSafe (to be used in templates) and
// IsPointeeUsuallySafe (to be used in the static_assert in raw_ptr). The
// upside of this approach is that it will safely handle base::Bind closing over
// HANDLE. The downside of this approach is that base::Bind closing over a
// void* pointer will not get UaF protection.
#define PA_WINDOWS_HANDLE_TYPE(name) \
template <> \
struct IsSupportedType<name##__, void> { \
static constexpr bool value = false; \
};
#include "base/allocator/partition_allocator/partition_alloc_base/win/win_handle_types_list.inc"
#undef PA_WINDOWS_HANDLE_TYPE
#endif
template <RawPtrTraits Traits>
struct TraitsToImpl {
static_assert(AreValid(Traits), "Unknown raw_ptr trait(s)");
private:
// UnderlyingImpl is the struct that provides the implementation of the
// protections related to raw_ptr.
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
using UnderlyingImpl = internal::RawPtrBackupRefImpl<
/*AllowDangling=*/Contains(Traits, RawPtrTraits::kMayDangle),
/*ExperimentalAsh=*/Contains(Traits, RawPtrTraits::kExperimentalAsh)>;
#elif BUILDFLAG(USE_ASAN_UNOWNED_PTR)
using UnderlyingImpl = std::conditional_t<
Contains(Traits, RawPtrTraits::kMayDangle),
// No special bookkeeping required for this case,
// just treat these as ordinary pointers.
internal::RawPtrNoOpImpl,
internal::RawPtrAsanUnownedImpl<
Contains(Traits, RawPtrTraits::kAllowPtrArithmetic)>>;
#elif BUILDFLAG(USE_HOOKABLE_RAW_PTR)
using UnderlyingImpl =
std::conditional_t<Contains(Traits, RawPtrTraits::kDisableHooks),
internal::RawPtrNoOpImpl,
internal::RawPtrHookableImpl>;
#else
using UnderlyingImpl = internal::RawPtrNoOpImpl;
#endif
public:
// Impl is the struct that implements raw_ptr functions. Think of raw_ptr as a
// thin wrapper, that directs calls to Impl.
// Impl may be different from UnderlyingImpl, because it may include a
// wrapper.
using Impl = std::conditional_t<
Contains(Traits, RawPtrTraits::kUseCountingWrapperForTest),
internal::RawPtrCountingImplWrapperForTest<
Remove(Traits, RawPtrTraits::kUseCountingWrapperForTest)>,
UnderlyingImpl>;
};
} // namespace raw_ptr_traits
// `raw_ptr<T>` is a non-owning smart pointer that has improved memory-safety
// over raw pointers. It behaves just like a raw pointer on platforms where
// USE_BACKUP_REF_PTR is off, and almost like one when it's on (the main
// difference is that it's zero-initialized and cleared on destruction and
// move). Unlike `std::unique_ptr<T>`, `base::scoped_refptr<T>`, etc., it
// doesn’t manage ownership or lifetime of an allocated object - you are still
// responsible for freeing the object when no longer used, just as you would
// with a raw C++ pointer.
//
// Compared to a raw C++ pointer, on platforms where USE_BACKUP_REF_PTR is on,
// `raw_ptr<T>` incurs additional performance overhead for initialization,
// destruction, and assignment (including `ptr++` and `ptr += ...`). There is
// no overhead when dereferencing a pointer.
//
// `raw_ptr<T>` is beneficial for security, because it can prevent a significant
// percentage of Use-after-Free (UaF) bugs from being exploitable. `raw_ptr<T>`
// has limited impact on stability - dereferencing a dangling pointer remains
// Undefined Behavior. Note that the security protection is not yet enabled by
// default.
//
// raw_ptr<T> is marked as [[gsl::Pointer]] which allows the compiler to catch
// some bugs where the raw_ptr holds a dangling pointer to a temporary object.
// However the [[gsl::Pointer]] analysis expects that such types do not have a
// non-default move constructor/assignment. Thus, it's possible to get an error
// where the pointer is not actually dangling, and have to work around the
// compiler. We have not managed to construct such an example in Chromium yet.
template <typename T, RawPtrTraits Traits>
class PA_TRIVIAL_ABI PA_GSL_POINTER raw_ptr {
public:
using Impl = typename raw_ptr_traits::TraitsToImpl<Traits>::Impl;
#if !BUILDFLAG(USE_PARTITION_ALLOC)
// See comment at top about `PA_RAW_PTR_CHECK()`.
static_assert(std::is_same_v<Impl, internal::RawPtrNoOpImpl>);
#endif // !BUILDFLAG(USE_PARTITION_ALLOC)
static_assert(raw_ptr_traits::IsSupportedType<T>::value,
"raw_ptr<T> doesn't work with this kind of pointee type T");
// TODO(bartekn): Turn on zeroing as much as possible, to reduce
// pointer-related UBs. In the current implementation we do it only when the
// underlying implementation needs it for correctness, for performance
// reasons. There are two secnarios where it's important:
// 1. When rewriting renderer, we don't want extra overhead get in the way of
// our perf evaluation.
// 2. The same applies to rewriting 3rd party libraries, but also we want
// RawPtrNoOpImpl to be a true no-op, in case the library is linked with
// a product other than Chromium (this can be mitigated using
// `build_with_chromium` GN variable).
static constexpr bool kZeroOnInit = Impl::kMustZeroOnInit;
static constexpr bool kZeroOnMove = Impl::kMustZeroOnMove;
static constexpr bool kZeroOnDestruct = Impl::kMustZeroOnDestruct;
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) || \
BUILDFLAG(USE_ASAN_UNOWNED_PTR) || BUILDFLAG(USE_HOOKABLE_RAW_PTR)
// BackupRefPtr requires a non-trivial default constructor, destructor, etc.
PA_ALWAYS_INLINE constexpr raw_ptr() noexcept {
if constexpr (kZeroOnInit) {
wrapped_ptr_ = nullptr;
}
}
PA_ALWAYS_INLINE constexpr raw_ptr(const raw_ptr& p) noexcept
: wrapped_ptr_(Impl::Duplicate(p.wrapped_ptr_)) {}
PA_ALWAYS_INLINE constexpr raw_ptr(raw_ptr&& p) noexcept {
wrapped_ptr_ = p.wrapped_ptr_;
if constexpr (kZeroOnMove) {
p.wrapped_ptr_ = nullptr;
}
}
PA_ALWAYS_INLINE constexpr raw_ptr& operator=(const raw_ptr& p) noexcept {
// Duplicate before releasing, in case the pointer is assigned to itself.
//
// Unlike the move version of this operator, don't add |this != &p| branch,
// for performance reasons. Even though Duplicate() is not cheap, we
// practically never assign a raw_ptr<T> to itself. We suspect that a
// cumulative cost of a conditional branch, even if always correctly
// predicted, would exceed that.
T* new_ptr = Impl::Duplicate(p.wrapped_ptr_);
Impl::ReleaseWrappedPtr(wrapped_ptr_);
wrapped_ptr_ = new_ptr;
return *this;
}
PA_ALWAYS_INLINE constexpr raw_ptr& operator=(raw_ptr&& p) noexcept {
// Unlike the the copy version of this operator, this branch is necessaty
// for correctness.
if (PA_LIKELY(this != &p)) {
Impl::ReleaseWrappedPtr(wrapped_ptr_);
wrapped_ptr_ = p.wrapped_ptr_;
if constexpr (kZeroOnMove) {
p.wrapped_ptr_ = nullptr;
}
}
return *this;
}
// Constexpr destructors were introduced in C++20. PartitionAlloc's minimum
// supported C++ version is C++17.
#if defined(__cpp_constexpr) && __cpp_constexpr >= 201907L
PA_ALWAYS_INLINE constexpr ~raw_ptr() noexcept {
#else
PA_ALWAYS_INLINE ~raw_ptr() noexcept {
#endif
Impl::ReleaseWrappedPtr(wrapped_ptr_);
// Work around external issues where raw_ptr is used after destruction.
if constexpr (kZeroOnDestruct) {
wrapped_ptr_ = nullptr;
}
}
#else // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) ||
// BUILDFLAG(USE_ASAN_UNOWNED_PTR) || BUILDFLAG(USE_HOOKABLE_RAW_PTR)
// raw_ptr can be trivially default constructed (leaving |wrapped_ptr_|
// uninitialized).
PA_ALWAYS_INLINE constexpr raw_ptr() noexcept = default;
// In addition to nullptr_t ctor above, raw_ptr needs to have these
// as |=default| or |constexpr| to avoid hitting -Wglobal-constructors in
// cases like this:
// struct SomeStruct { int int_field; raw_ptr<int> ptr_field; };
// SomeStruct g_global_var = { 123, nullptr };
PA_ALWAYS_INLINE raw_ptr(const raw_ptr&) noexcept = default;
PA_ALWAYS_INLINE raw_ptr(raw_ptr&&) noexcept = default;
PA_ALWAYS_INLINE raw_ptr& operator=(const raw_ptr&) noexcept = default;
PA_ALWAYS_INLINE raw_ptr& operator=(raw_ptr&&) noexcept = default;
PA_ALWAYS_INLINE ~raw_ptr() noexcept = default;
// With default constructor, destructor and move operations, we don't have an
// opportunity to zero the underlying pointer, so ensure this isn't expected.
static_assert(!kZeroOnInit);
static_assert(!kZeroOnMove);
static_assert(!kZeroOnDestruct);
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) ||
// BUILDFLAG(USE_ASAN_UNOWNED_PTR) || BUILDFLAG(USE_HOOKABLE_RAW_PTR)
// Cross-kind copy constructor.
// Move is not supported as different traits may use different ref-counts, so
// let move operations degrade to copy, which handles it well.
template <RawPtrTraits PassedTraits,
typename Unused = std::enable_if_t<Traits != PassedTraits>>
PA_ALWAYS_INLINE constexpr explicit raw_ptr(
const raw_ptr<T, PassedTraits>& p) noexcept
: wrapped_ptr_(Impl::WrapRawPtrForDuplication(
raw_ptr_traits::TraitsToImpl<PassedTraits>::Impl::
UnsafelyUnwrapPtrForDuplication(p.wrapped_ptr_))) {
// Limit cross-kind conversions only to cases where kMayDangle gets added,
// because that's needed for Unretained(Ref)Wrapper. Use a static_assert,
// instead of disabling via SFINAE, so that the compiler catches other
// conversions. Otherwise implicit raw_ptr<T> -> T* -> raw_ptr<> route will
// be taken.
static_assert(Traits == (PassedTraits | RawPtrTraits::kMayDangle));
}
// Cross-kind assignment.
// Move is not supported as different traits may use different ref-counts, so
// let move operations degrade to copy, which handles it well.
template <RawPtrTraits PassedTraits,
typename Unused = std::enable_if_t<Traits != PassedTraits>>
PA_ALWAYS_INLINE constexpr raw_ptr& operator=(
const raw_ptr<T, PassedTraits>& p) noexcept {
// Limit cross-kind assignments only to cases where kMayDangle gets added,
// because that's needed for Unretained(Ref)Wrapper. Use a static_assert,
// instead of disabling via SFINAE, so that the compiler catches other
// conversions. Otherwise implicit raw_ptr<T> -> T* -> raw_ptr<> route will
// be taken.
static_assert(Traits == (PassedTraits | RawPtrTraits::kMayDangle));
Impl::ReleaseWrappedPtr(wrapped_ptr_);
wrapped_ptr_ = Impl::WrapRawPtrForDuplication(
raw_ptr_traits::TraitsToImpl<PassedTraits>::Impl::
UnsafelyUnwrapPtrForDuplication(p.wrapped_ptr_));
return *this;
}
// Deliberately implicit, because raw_ptr is supposed to resemble raw ptr.
// Ignore kZeroOnInit, because here the caller explicitly wishes to initialize
// with nullptr. NOLINTNEXTLINE(google-explicit-constructor)
PA_ALWAYS_INLINE constexpr raw_ptr(std::nullptr_t) noexcept
: wrapped_ptr_(nullptr) {}
// Deliberately implicit, because raw_ptr is supposed to resemble raw ptr.
// NOLINTNEXTLINE(google-explicit-constructor)
PA_ALWAYS_INLINE constexpr raw_ptr(T* p) noexcept
: wrapped_ptr_(Impl::WrapRawPtr(p)) {}
// Deliberately implicit in order to support implicit upcast.
template <typename U,
typename Unused = std::enable_if_t<
std::is_convertible<U*, T*>::value &&
!std::is_void<typename std::remove_cv<T>::type>::value>>
// NOLINTNEXTLINE(google-explicit-constructor)
PA_ALWAYS_INLINE constexpr raw_ptr(const raw_ptr<U, Traits>& ptr) noexcept
: wrapped_ptr_(
Impl::Duplicate(Impl::template Upcast<T, U>(ptr.wrapped_ptr_))) {}
// Deliberately implicit in order to support implicit upcast.
template <typename U,
typename Unused = std::enable_if_t<
std::is_convertible<U*, T*>::value &&
!std::is_void<typename std::remove_cv<T>::type>::value>>
// NOLINTNEXTLINE(google-explicit-constructor)
PA_ALWAYS_INLINE constexpr raw_ptr(raw_ptr<U, Traits>&& ptr) noexcept
: wrapped_ptr_(Impl::template Upcast<T, U>(ptr.wrapped_ptr_)) {
if constexpr (kZeroOnMove) {
ptr.wrapped_ptr_ = nullptr;
}
}
PA_ALWAYS_INLINE constexpr raw_ptr& operator=(std::nullptr_t) noexcept {
Impl::ReleaseWrappedPtr(wrapped_ptr_);
wrapped_ptr_ = nullptr;
return *this;
}
PA_ALWAYS_INLINE constexpr raw_ptr& operator=(T* p) noexcept {
Impl::ReleaseWrappedPtr(wrapped_ptr_);
wrapped_ptr_ = Impl::WrapRawPtr(p);
return *this;
}
// Upcast assignment
template <typename U,
typename Unused = std::enable_if_t<
std::is_convertible<U*, T*>::value &&
!std::is_void<typename std::remove_cv<T>::type>::value>>
PA_ALWAYS_INLINE constexpr raw_ptr& operator=(
const raw_ptr<U, Traits>& ptr) noexcept {
// Make sure that pointer isn't assigned to itself (look at raw_ptr address,
// not its contained pointer value). The comparison is only needed when they
// are the same type, otherwise they can't be the same raw_ptr object.
#if BUILDFLAG(PA_DCHECK_IS_ON) || BUILDFLAG(ENABLE_BACKUP_REF_PTR_SLOW_CHECKS)
if constexpr (std::is_same_v<raw_ptr, std::decay_t<decltype(ptr)>>) {
PA_RAW_PTR_CHECK(this != &ptr);
}
#endif
Impl::ReleaseWrappedPtr(wrapped_ptr_);
wrapped_ptr_ =
Impl::Duplicate(Impl::template Upcast<T, U>(ptr.wrapped_ptr_));
return *this;
}
template <typename U,
typename Unused = std::enable_if_t<
std::is_convertible<U*, T*>::value &&
!std::is_void<typename std::remove_cv<T>::type>::value>>
PA_ALWAYS_INLINE constexpr raw_ptr& operator=(
raw_ptr<U, Traits>&& ptr) noexcept {
// Make sure that pointer isn't assigned to itself (look at raw_ptr address,
// not its contained pointer value). The comparison is only needed when they
// are the same type, otherwise they can't be the same raw_ptr object.
#if BUILDFLAG(PA_DCHECK_IS_ON) || BUILDFLAG(ENABLE_BACKUP_REF_PTR_SLOW_CHECKS)
if constexpr (std::is_same_v<raw_ptr, std::decay_t<decltype(ptr)>>) {
PA_RAW_PTR_CHECK(this != &ptr);
}
#endif
Impl::ReleaseWrappedPtr(wrapped_ptr_);
wrapped_ptr_ = Impl::template Upcast<T, U>(ptr.wrapped_ptr_);
if constexpr (kZeroOnMove) {
ptr.wrapped_ptr_ = nullptr;
}
return *this;
}
// Avoid using. The goal of raw_ptr is to be as close to raw pointer as
// possible, so use it only if absolutely necessary (e.g. for const_cast).
PA_ALWAYS_INLINE constexpr T* get() const { return GetForExtraction(); }
PA_ALWAYS_INLINE constexpr explicit operator bool() const {
return !!wrapped_ptr_;
}
template <typename U = T,
typename Unused = std::enable_if_t<
!std::is_void<typename std::remove_cv<U>::type>::value>>
PA_ALWAYS_INLINE constexpr U& operator*() const {
return *GetForDereference();
}
PA_ALWAYS_INLINE constexpr T* operator->() const {
return GetForDereference();
}
// Disables `(my_raw_ptr->*pmf)(...)` as a workaround for
// the ICE in GCC parsing the code, reported at
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103455
template <typename PMF>
void operator->*(PMF) const = delete;
// Deliberately implicit, because raw_ptr is supposed to resemble raw ptr.
// NOLINTNEXTLINE(google-explicit-constructor)
PA_ALWAYS_INLINE constexpr operator T*() const { return GetForExtraction(); }
template <typename U>
PA_ALWAYS_INLINE constexpr explicit operator U*() const {
// This operator may be invoked from static_cast, meaning the types may not
// be implicitly convertible, hence the need for static_cast here.
return static_cast<U*>(GetForExtraction());
}
PA_ALWAYS_INLINE constexpr raw_ptr& operator++() {
wrapped_ptr_ = Impl::Advance(wrapped_ptr_, 1);
return *this;
}
PA_ALWAYS_INLINE constexpr raw_ptr& operator--() {
wrapped_ptr_ = Impl::Retreat(wrapped_ptr_, 1);
return *this;
}
PA_ALWAYS_INLINE constexpr raw_ptr operator++(int /* post_increment */) {
raw_ptr result = *this;
++(*this);
return result;
}
PA_ALWAYS_INLINE constexpr raw_ptr operator--(int /* post_decrement */) {
raw_ptr result = *this;
--(*this);
return result;
}
template <
typename Z,
typename = std::enable_if_t<partition_alloc::internal::is_offset_type<Z>>>
PA_ALWAYS_INLINE constexpr raw_ptr& operator+=(Z delta_elems) {
wrapped_ptr_ = Impl::Advance(wrapped_ptr_, delta_elems);
return *this;
}
template <
typename Z,
typename = std::enable_if_t<partition_alloc::internal::is_offset_type<Z>>>
PA_ALWAYS_INLINE constexpr raw_ptr& operator-=(Z delta_elems) {
wrapped_ptr_ = Impl::Retreat(wrapped_ptr_, delta_elems);
return *this;
}
// Do not disable operator+() and operator-().
// They provide OOB checks, which prevent from assigning an arbitrary value to
// raw_ptr, leading BRP to modifying arbitrary memory thinking it's ref-count.
// Keep them enabled, which may be blocked later when attempting to apply the
// += or -= operation, when disabled. In the absence of operators +/-, the
// compiler is free to implicitly convert to the underlying T* representation
// and perform ordinary pointer arithmetic, thus invalidating the purpose
// behind disabling them.
template <typename Z>
PA_ALWAYS_INLINE friend constexpr raw_ptr operator+(const raw_ptr& p,
Z delta_elems) {
raw_ptr result = p;
return result += delta_elems;
}
template <typename Z>
PA_ALWAYS_INLINE friend constexpr raw_ptr operator-(const raw_ptr& p,
Z delta_elems) {
raw_ptr result = p;
return result -= delta_elems;
}
PA_ALWAYS_INLINE friend constexpr ptrdiff_t operator-(const raw_ptr& p1,
const raw_ptr& p2) {
return Impl::GetDeltaElems(p1.wrapped_ptr_, p2.wrapped_ptr_);
}
PA_ALWAYS_INLINE friend constexpr ptrdiff_t operator-(T* p1,
const raw_ptr& p2) {
return Impl::GetDeltaElems(p1, p2.wrapped_ptr_);
}
PA_ALWAYS_INLINE friend constexpr ptrdiff_t operator-(const raw_ptr& p1,
T* p2) {
return Impl::GetDeltaElems(p1.wrapped_ptr_, p2);
}
// Stop referencing the underlying pointer and free its memory. Compared to
// raw delete calls, this avoids the raw_ptr to be temporarily dangling
// during the free operation, which will lead to taking the slower path that
// involves quarantine.
PA_ALWAYS_INLINE constexpr void ClearAndDelete() noexcept {
delete GetForExtractionAndReset();
}
PA_ALWAYS_INLINE constexpr void ClearAndDeleteArray() noexcept {
delete[] GetForExtractionAndReset();
}
// Clear the underlying pointer and return another raw_ptr instance
// that is allowed to dangle.
// This can be useful in cases such as:
// ```
// ptr.ExtractAsDangling()->SelfDestroy();
// ```
// ```
// c_style_api_do_something_and_destroy(ptr.ExtractAsDangling());
// ```
// NOTE, avoid using this method as it indicates an error-prone memory
// ownership pattern. If possible, use smart pointers like std::unique_ptr<>
// instead of raw_ptr<>.
// If you have to use it, avoid saving the return value in a long-lived
// variable (or worse, a field)! It's meant to be used as a temporary, to be
// passed into a cleanup & freeing function, and destructed at the end of the
// statement.
PA_ALWAYS_INLINE constexpr MayBeDangling<T, Traits>
ExtractAsDangling() noexcept {
MayBeDangling<T, Traits> res(std::move(*this));
// Not all implementation clear the source pointer on move. Furthermore,
// even for implemtantions that do, cross-kind conversions (that add
// kMayDangle) fall back to a copy, instead of move. So do it here just in
// case. Should be cheap.
operator=(nullptr);
return res;
}
// Comparison operators between raw_ptr and raw_ptr<U>/U*/std::nullptr_t.
// Strictly speaking, it is not necessary to provide these: the compiler can
// use the conversion operator implicitly to allow comparisons to fall back to
// comparisons between raw pointers. However, `operator T*`/`operator U*` may
// perform safety checks with a higher runtime cost, so to avoid this, provide
// explicit comparison operators for all combinations of parameters.
// Comparisons between `raw_ptr`s. This unusual declaration and separate
// definition below is because `GetForComparison()` is a private method. The
// more conventional approach of defining a comparison operator between
// `raw_ptr` and `raw_ptr<U>` in the friend declaration itself does not work,
// because a comparison operator defined inline would not be allowed to call
// `raw_ptr<U>`'s private `GetForComparison()` method.
template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
friend bool operator==(const raw_ptr<U, R1>& lhs, const raw_ptr<V, R2>& rhs);
template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
friend bool operator!=(const raw_ptr<U, R1>& lhs, const raw_ptr<V, R2>& rhs);
template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
friend bool operator<(const raw_ptr<U, R1>& lhs, const raw_ptr<V, R2>& rhs);
template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
friend bool operator>(const raw_ptr<U, R1>& lhs, const raw_ptr<V, R2>& rhs);
template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
friend bool operator<=(const raw_ptr<U, R1>& lhs, const raw_ptr<V, R2>& rhs);
template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
friend bool operator>=(const raw_ptr<U, R1>& lhs, const raw_ptr<V, R2>& rhs);
// Comparisons with U*. These operators also handle the case where the RHS is
// T*.
template <typename U>
PA_ALWAYS_INLINE friend bool operator==(const raw_ptr& lhs, U* rhs) {
return lhs.GetForComparison() == rhs;
}
template <typename U>
PA_ALWAYS_INLINE friend bool operator!=(const raw_ptr& lhs, U* rhs) {
return !(lhs == rhs);
}
template <typename U>
PA_ALWAYS_INLINE friend bool operator==(U* lhs, const raw_ptr& rhs) {
return rhs == lhs; // Reverse order to call the operator above.
}
template <typename U>
PA_ALWAYS_INLINE friend bool operator!=(U* lhs, const raw_ptr& rhs) {
return rhs != lhs; // Reverse order to call the operator above.
}
template <typename U>
PA_ALWAYS_INLINE friend bool operator<(const raw_ptr& lhs, U* rhs) {
return lhs.GetForComparison() < rhs;
}
template <typename U>
PA_ALWAYS_INLINE friend bool operator<=(const raw_ptr& lhs, U* rhs) {
return lhs.GetForComparison() <= rhs;
}
template <typename U>
PA_ALWAYS_INLINE friend bool operator>(const raw_ptr& lhs, U* rhs) {
return lhs.GetForComparison() > rhs;
}
template <typename U>
PA_ALWAYS_INLINE friend bool operator>=(const raw_ptr& lhs, U* rhs) {
return lhs.GetForComparison() >= rhs;
}
template <typename U>
PA_ALWAYS_INLINE friend bool operator<(U* lhs, const raw_ptr& rhs) {
return lhs < rhs.GetForComparison();
}
template <typename U>
PA_ALWAYS_INLINE friend bool operator<=(U* lhs, const raw_ptr& rhs) {
return lhs <= rhs.GetForComparison();
}
template <typename U>
PA_ALWAYS_INLINE friend bool operator>(U* lhs, const raw_ptr& rhs) {
return lhs > rhs.GetForComparison();
}
template <typename U>
PA_ALWAYS_INLINE friend bool operator>=(U* lhs, const raw_ptr& rhs) {
return lhs >= rhs.GetForComparison();
}
// Comparisons with `std::nullptr_t`.
PA_ALWAYS_INLINE friend bool operator==(const raw_ptr& lhs, std::nullptr_t) {
return !lhs;
}
PA_ALWAYS_INLINE friend bool operator!=(const raw_ptr& lhs, std::nullptr_t) {
return !!lhs; // Use !! otherwise the costly implicit cast will be used.
}
PA_ALWAYS_INLINE friend bool operator==(std::nullptr_t, const raw_ptr& rhs) {
return !rhs;
}
PA_ALWAYS_INLINE friend bool operator!=(std::nullptr_t, const raw_ptr& rhs) {
return !!rhs; // Use !! otherwise the costly implicit cast will be used.
}
PA_ALWAYS_INLINE friend constexpr void swap(raw_ptr& lhs,
raw_ptr& rhs) noexcept {
Impl::IncrementSwapCountForTest();
std::swap(lhs.wrapped_ptr_, rhs.wrapped_ptr_);
}
PA_ALWAYS_INLINE void ReportIfDangling() const noexcept {
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
Impl::ReportIfDangling(wrapped_ptr_);
#endif
}
private:
// This getter is meant for situations where the pointer is meant to be
// dereferenced. It is allowed to crash on nullptr (it may or may not),
// because it knows that the caller will crash on nullptr.
PA_ALWAYS_INLINE constexpr T* GetForDereference() const {
return Impl::SafelyUnwrapPtrForDereference(wrapped_ptr_);
}
// This getter is meant for situations where the raw pointer is meant to be
// extracted outside of this class, but not necessarily with an intention to
// dereference. It mustn't crash on nullptr.
PA_ALWAYS_INLINE constexpr T* GetForExtraction() const {
return Impl::SafelyUnwrapPtrForExtraction(wrapped_ptr_);
}
// This getter is meant *only* for situations where the pointer is meant to be
// compared (guaranteeing no dereference or extraction outside of this class).
// Any verifications can and should be skipped for performance reasons.
PA_ALWAYS_INLINE constexpr T* GetForComparison() const {
return Impl::UnsafelyUnwrapPtrForComparison(wrapped_ptr_);
}
PA_ALWAYS_INLINE constexpr T* GetForExtractionAndReset() {
T* ptr = GetForExtraction();
operator=(nullptr);
return ptr;
}
// This field is not a raw_ptr<> because it was filtered by the rewriter for:
// #union, #global-scope, #constexpr-ctor-field-initializer
RAW_PTR_EXCLUSION T* wrapped_ptr_;
template <typename U, base::RawPtrTraits R>
friend class raw_ptr;
};
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator==(const raw_ptr<U, Traits1>& lhs,
const raw_ptr<V, Traits2>& rhs) {
return lhs.GetForComparison() == rhs.GetForComparison();
}
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator!=(const raw_ptr<U, Traits1>& lhs,
const raw_ptr<V, Traits2>& rhs) {
return !(lhs == rhs);
}
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator<(const raw_ptr<U, Traits1>& lhs,
const raw_ptr<V, Traits2>& rhs) {
return lhs.GetForComparison() < rhs.GetForComparison();
}
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator>(const raw_ptr<U, Traits1>& lhs,
const raw_ptr<V, Traits2>& rhs) {
return lhs.GetForComparison() > rhs.GetForComparison();
}
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator<=(const raw_ptr<U, Traits1>& lhs,
const raw_ptr<V, Traits2>& rhs) {
return lhs.GetForComparison() <= rhs.GetForComparison();
}
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator>=(const raw_ptr<U, Traits1>& lhs,
const raw_ptr<V, Traits2>& rhs) {
return lhs.GetForComparison() >= rhs.GetForComparison();
}
template <typename T>
struct IsRawPtr : std::false_type {};
template <typename T, RawPtrTraits Traits>
struct IsRawPtr<raw_ptr<T, Traits>> : std::true_type {};
template <typename T>
inline constexpr bool IsRawPtrV = IsRawPtr<T>::value;
template <typename T>
inline constexpr bool IsRawPtrMayDangleV = false;
template <typename T, RawPtrTraits Traits>
inline constexpr bool IsRawPtrMayDangleV<raw_ptr<T, Traits>> =
raw_ptr_traits::Contains(Traits, RawPtrTraits::kMayDangle);
// Template helpers for working with T* or raw_ptr<T>.
template <typename T>
struct IsPointer : std::false_type {};
template <typename T>
struct IsPointer<T*> : std::true_type {};
template <typename T, RawPtrTraits Traits>
struct IsPointer<raw_ptr<T, Traits>> : std::true_type {};
template <typename T>
inline constexpr bool IsPointerV = IsPointer<T>::value;
template <typename T>
struct RemovePointer {
using type = T;
};
template <typename T>
struct RemovePointer<T*> {
using type = T;
};
template <typename T, RawPtrTraits Traits>
struct RemovePointer<raw_ptr<T, Traits>> {
using type = T;
};
template <typename T>
using RemovePointerT = typename RemovePointer<T>::type;
} // namespace base
using base::raw_ptr;
// DisableDanglingPtrDetection option for raw_ptr annotates
// "intentional-and-safe" dangling pointers. It is meant to be used at the
// margin, only if there is no better way to re-architecture the code.
//
// Usage:
// raw_ptr<T, DisableDanglingPtrDetection> dangling_ptr;
//
// When using it, please provide a justification about what guarantees that it
// will never be dereferenced after becoming dangling.
constexpr auto DisableDanglingPtrDetection = base::RawPtrTraits::kMayDangle;
// See `docs/dangling_ptr.md`
// Annotates known dangling raw_ptr. Those haven't been triaged yet. All the
// occurrences are meant to be removed. See https://crbug.com/1291138.
constexpr auto DanglingUntriaged = base::RawPtrTraits::kMayDangle;
// Unlike DanglingUntriaged, this annotates raw_ptrs that are known to
// dangle only occasionally on the CQ.
//
// These were found from CQ runs and analysed in this dashboard:
// https://docs.google.com/spreadsheets/d/1k12PQOG4y1-UEV9xDfP1F8FSk4cVFywafEYHmzFubJ8/
constexpr auto FlakyDanglingUntriaged = base::RawPtrTraits::kMayDangle;
// The use of pointer arithmetic with raw_ptr is strongly discouraged and
// disabled by default. Usually a container like span<> should be used
// instead of the raw_ptr.
constexpr auto AllowPtrArithmetic = base::RawPtrTraits::kAllowPtrArithmetic;
// Temporary flag for `raw_ptr` / `raw_ref`. This is used by finch experiments
// to differentiate pointers added recently for the ChromeOS ash rewrite.
//
// See launch plan:
// https://docs.google.com/document/d/105OVhNl-2lrfWElQSk5BXYv-nLynfxUrbC4l8cZ0CoU/edit
//
// This is not meant to be added manually. You can ignore this flag.
constexpr auto ExperimentalAsh = base::RawPtrTraits::kExperimentalAsh;
namespace std {
// Override so set/map lookups do not create extra raw_ptr. This also allows
// dangling pointers to be used for lookup.
template <typename T, base::RawPtrTraits Traits>
struct less<raw_ptr<T, Traits>> {
using Impl = typename raw_ptr<T, Traits>::Impl;
using is_transparent = void;
bool operator()(const raw_ptr<T, Traits>& lhs,
const raw_ptr<T, Traits>& rhs) const {
Impl::IncrementLessCountForTest();
return lhs < rhs;
}
bool operator()(T* lhs, const raw_ptr<T, Traits>& rhs) const {
Impl::IncrementLessCountForTest();
return lhs < rhs;
}
bool operator()(const raw_ptr<T, Traits>& lhs, T* rhs) const {
Impl::IncrementLessCountForTest();
return lhs < rhs;
}
};
// Define for cases where raw_ptr<T> holds a pointer to an array of type T.
// This is consistent with definition of std::iterator_traits<T*>.
// Algorithms like std::binary_search need that.
template <typename T, base::RawPtrTraits Traits>
struct iterator_traits<raw_ptr<T, Traits>> {
using difference_type = ptrdiff_t;
using value_type = std::remove_cv_t<T>;
using pointer = T*;
using reference = T&;
using iterator_category = std::random_access_iterator_tag;
};
#if defined(_LIBCPP_VERSION)
// Specialize std::pointer_traits. The latter is required to obtain the
// underlying raw pointer in the std::to_address(pointer) overload.
// Implementing the pointer_traits is the standard blessed way to customize
// `std::to_address(pointer)` in C++20 [3].
//
// [1] https://wg21.link/pointer.traits.optmem
template <typename T, ::base::RawPtrTraits Traits>
struct pointer_traits<::raw_ptr<T, Traits>> {
using pointer = ::raw_ptr<T, Traits>;
using element_type = T;
using difference_type = ptrdiff_t;
template <typename U>
using rebind = ::raw_ptr<U, Traits>;
static constexpr pointer pointer_to(element_type& r) noexcept {
return pointer(&r);
}
static constexpr element_type* to_address(pointer p) noexcept {
return p.get();
}
};
#endif // defined(_LIBCPP_VERSION)
} // namespace std
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_POINTERS_RAW_PTR_H_