blob: 7f3e7249ac61f5aaaa97808c6e9d4a36bb708dbf [file] [log] [blame]
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef COMPONENTS_AUTOFILL_CORE_COMMON_DENSE_SET_H_
#define COMPONENTS_AUTOFILL_CORE_COMMON_DENSE_SET_H_
#include <array>
#include <climits>
#include <cstddef>
#include <iterator>
#include <type_traits>
#include "base/check.h"
#include "base/check_op.h"
#include "base/containers/span.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/numerics/safe_conversions.h"
#include "third_party/abseil-cpp/absl/numeric/bits.h"
namespace autofill {
// A set container with a std::set<T>-like interface for integral or enum types
// T that have a dense and small representation as unsigned integers.
//
// The order of the elements in the container corresponds to their integer
// representation.
//
// The lower and upper bounds of elements storable in a container are
// [T(0), kMaxValue]. By default, kMaxValue is T::kMaxValue.
//
// The `packed` parameter indicates whether the memory consumption of a DenseSet
// object should be minimized. That comes at the cost of slightly larger code
// size.
//
// Time and space complexity:
// - insert(), erase(), contains() should run in time O(1)
// - empty(), size(), iteration run in time O(kMaxValue)
// - sizeof(DenseSet) is, for N = kMaxValue + 1,
// - if `!packed`: the minimum of {1, 2, 4, 8 * ceil(N / 64)} bytes that has
// at least N bits;
// - if `packed`: ceil(N / 8) bytes.
//
// Iterators are invalidated when the owning container is destructed or moved,
// or when the element the iterator points to is erased from the container.
template <typename T, T kMaxValue = T::kMaxValue, bool packed = false>
class DenseSet {
private:
// The index of a bit.
using Index = std::make_unsigned_t<T>;
static_assert(std::is_integral<T>::value || std::is_enum<T>::value);
static_assert(0 <= base::checked_cast<Index>(kMaxValue) + 1);
// The maximum supported bit index. Indexing starts at 0, so kMaxBitIndex ==
// 63 means we need 64 bits.
static constexpr size_t kMaxBitIndex = base::checked_cast<Index>(kMaxValue);
public:
// The bitset is represented as array of words.
using Word = std::conditional_t<
!packed,
std::conditional_t<
(kMaxBitIndex < 8),
uint8_t,
std::conditional_t<
(kMaxBitIndex < 16),
uint16_t,
std::conditional_t<(kMaxBitIndex < 32), uint32_t, uint64_t>>>,
uint8_t>;
private:
// Returns ceil(x / y).
static constexpr size_t ceil_div(size_t x, size_t y) {
return (x + y - 1) / y;
}
static constexpr size_t kBitsPerWord = sizeof(Word) * CHAR_BIT;
public:
// The number of `Word`s needed to hold `kMaxBitIndex + 1` bits.
static constexpr size_t kNumWords = ceil_div(kMaxBitIndex + 1, kBitsPerWord);
// A bidirectional iterator for the DenseSet.
class Iterator {
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = T;
using difference_type = std::ptrdiff_t;
using pointer = void;
using reference = T;
constexpr Iterator() = default;
friend bool operator==(const Iterator& a, const Iterator& b) {
DCHECK(a.owner_);
DCHECK_EQ(a.owner_, b.owner_);
return a.index_ == b.index_;
}
friend bool operator!=(const Iterator& a, const Iterator& b) {
return !(a == b);
}
T operator*() const {
DCHECK(derefenceable());
return index_to_value(index_);
}
Iterator& operator++() {
++index_;
Skip(kForward);
return *this;
}
Iterator operator++(int) {
auto that = *this;
operator++();
return that;
}
Iterator& operator--() {
--index_;
Skip(kBackward);
return *this;
}
Iterator operator--(int) {
auto that = *this;
operator--();
return that;
}
private:
friend DenseSet;
enum Direction { kBackward = -1, kForward = 1 };
constexpr Iterator(const DenseSet* owner, Index index)
: owner_(owner), index_(index) {}
// Advances the index, starting from the current position, to the next
// non-empty one.
void Skip(Direction direction) {
DCHECK_LE(index_, owner_->max_size());
while (index_ < owner_->max_size() && !derefenceable()) {
index_ += direction;
}
}
bool derefenceable() const {
DCHECK_LT(index_, owner_->max_size());
return owner_->get_bit(index_);
}
// This field is not a raw_ptr<> because it was filtered by the rewriter
// for: #constexpr-ctor-field-initializer
RAW_PTR_EXCLUSION const DenseSet* owner_ = nullptr;
// The current index is in the interval [0, owner_->max_size()].
Index index_ = 0;
};
using value_type = T;
using iterator = Iterator;
using const_iterator = Iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
constexpr DenseSet() = default;
constexpr DenseSet(std::initializer_list<T> init) {
for (const auto& x : init) {
set_bit(value_to_index(x));
}
}
template <typename InputIt>
DenseSet(InputIt first, InputIt last) {
for (auto it = first; it != last; ++it) {
insert(*it);
}
}
// Returns a raw bitmask. Useful for serialization.
constexpr base::span<const Word, kNumWords> data() const { return words_; }
friend bool operator==(const DenseSet& a, const DenseSet& b) {
return a.words_ == b.words_;
}
friend bool operator!=(const DenseSet& a, const DenseSet& b) {
return !(a == b);
}
// Iterators.
// Returns an iterator to the beginning.
iterator begin() const {
const_iterator it(this, 0);
it.Skip(Iterator::kForward);
return it;
}
const_iterator cbegin() const { return begin(); }
// Returns an iterator to the end.
iterator end() const { return iterator(this, max_size()); }
const_iterator cend() const { return end(); }
// Returns a reverse iterator to the beginning.
reverse_iterator rbegin() const { return reverse_iterator(end()); }
const_reverse_iterator crbegin() const { return rbegin(); }
// Returns a reverse iterator to the end.
reverse_iterator rend() const { return reverse_iterator(begin()); }
const_reverse_iterator crend() const { return rend(); }
// Capacity.
// Returns true if the set is empty, otherwise false.
constexpr bool empty() const { return words_ == kOnlyZeros; }
// Returns the number of elements the set has.
constexpr size_t size() const {
// We count the number of bits in `words_`. DenseSet ensures that all bits
// beyond `kMaxBitIndex` are zero. This is necessary for size() to be
// correct.
DCHECK_EQ(words_.back() & (~0ULL << (kMaxBitIndex % kBitsPerWord + 1)),
0ULL);
size_t num_set_bits = 0;
for (const auto word : words_) {
num_set_bits += absl::popcount(word);
}
return num_set_bits;
}
// Returns the maximum number of elements the set can have.
constexpr size_t max_size() const { return kMaxBitIndex + 1; }
// Modifiers.
// Clears the contents.
constexpr void clear() { words_ = {}; }
// Inserts value |x| if it is not present yet, and returns an iterator to the
// inserted or existing element and a boolean that indicates whether the
// insertion took place.
constexpr std::pair<iterator, bool> insert(T x) {
bool contained = contains(x);
set_bit(value_to_index(x));
return {find(x), !contained};
}
// Inserts all values of |xs| into the present set.
constexpr void insert_all(const DenseSet& xs) {
DCHECK_EQ(words_.size(), xs.words_.size());
for (size_t i = 0; i < words_.size(); ++i) {
words_[i] |= xs.words_[i];
}
}
// Erases the element whose index matches the index of |x| and returns the
// number of erased elements (0 or 1).
size_t erase(T x) {
bool contained = contains(x);
unset_bit(value_to_index(x));
return contained ? 1 : 0;
}
// Erases the element |*it| and returns an iterator to its successor.
iterator erase(const_iterator it) {
DCHECK(it.owner_ == this && it.derefenceable());
unset_bit(it.index_);
it.Skip(const_iterator::kForward);
return it;
}
// Erases the elements [first,last) and returns |last|.
iterator erase(const_iterator first, const_iterator last) {
DCHECK(first.owner_ == this && last.owner_ == this);
while (first != last) {
unset_bit(first.index_);
++first;
}
return last;
}
// Erases all values of |xs| into the present set.
void erase_all(const DenseSet& xs) {
DCHECK_EQ(words_.size(), xs.words_.size());
for (size_t i = 0; i < words_.size(); ++i) {
words_[i] &= ~xs.words_[i];
}
}
// Lookup.
// Returns 1 if |x| is an element, otherwise 0.
constexpr size_t count(T x) const { return contains(x) ? 1 : 0; }
// Returns an iterator to the element |x| if it exists, otherwise end().
constexpr const_iterator find(T x) const {
return contains(x) ? const_iterator(this, value_to_index(x)) : cend();
}
// Returns true if |x| is an element, else |false|.
constexpr bool contains(T x) const { return get_bit(value_to_index(x)); }
// Returns true if some element of |xs| is an element, else |false|.
bool contains_none(const DenseSet& xs) const {
return intersection(words_, xs.words_) == kOnlyZeros;
}
// Returns true if some element of |xs| is an element, else |false|.
bool contains_any(const DenseSet& xs) const {
return intersection(words_, xs.words_) != kOnlyZeros;
}
// Returns true if every elements of |xs| is an element, else |false|.
bool contains_all(const DenseSet& xs) const {
return intersection(words_, xs.words_) == xs.words_;
}
// Returns an iterator to the first element not less than the |x|, or end().
const_iterator lower_bound(T x) const {
const_iterator it(this, value_to_index(x));
it.Skip(Iterator::kForward);
return it;
}
// Returns an iterator to the first element greater than |x|, or end().
const_iterator upper_bound(T x) const {
const_iterator it(this, value_to_index(x) + 1);
it.Skip(Iterator::kForward);
return it;
}
private:
friend Iterator;
using Words = std::array<Word, kNumWords>;
// Needed to use std::conditional_t.
// Must be declared outside of index_to_value() to avoid compiler errors.
struct Wrapper {
using type = T;
};
static constexpr Index value_to_index(T x) {
DCHECK(index_to_value(0) <= x && x <= kMaxValue);
return base::checked_cast<Index>(x);
}
static constexpr T index_to_value(Index i) {
DCHECK_LE(i, base::checked_cast<Index>(kMaxValue));
using UnderlyingType =
typename std::conditional_t<std::is_enum<T>::value,
std::underlying_type<T>, Wrapper>::type;
return static_cast<T>(base::checked_cast<UnderlyingType>(i));
}
static constexpr Words intersection(const Words& lhs, const Words& rhs) {
DCHECK_EQ(lhs.size(), rhs.size());
Words result{};
for (size_t i = 0; i < lhs.size(); ++i) {
result[i] = lhs[i] & rhs[i];
}
return result;
}
constexpr bool get_bit(Index index) const {
DCHECK_LE(index, kMaxBitIndex);
size_t word = index / kBitsPerWord;
size_t bit = index % kBitsPerWord;
return words_[word] & (static_cast<Word>(1) << bit);
}
constexpr void set_bit(Index index) {
DCHECK_LE(index, kMaxBitIndex);
size_t word = index / kBitsPerWord;
size_t bit = index % kBitsPerWord;
words_[word] |= static_cast<Word>(1) << bit;
}
constexpr void unset_bit(Index index) {
DCHECK_LE(index, kMaxBitIndex);
size_t word = index / kBitsPerWord;
size_t bit = index % kBitsPerWord;
words_[word] &= ~(static_cast<Word>(1) << bit);
}
static constexpr Words kOnlyZeros = Words{};
Words words_{};
};
} // namespace autofill
#endif // COMPONENTS_AUTOFILL_CORE_COMMON_DENSE_SET_H_