blob: 3cc3e5e157bf0d56d0a6a12a016121fda749e19e [file] [log] [blame]
use proc_macro2::TokenStream;
use quote::{format_ident, quote, quote_spanned, ToTokens};
use syn::spanned::Spanned;
/// The prefix attached to a Gtest factory function by the
/// RUST_GTEST_TEST_SUITE_FACTORY() macro.
const RUST_GTEST_FACTORY_PREFIX: &str = "RustGtestFactory_";
/// The `gtest` macro can be placed on a function to make it into a Gtest unit
/// test, when linked into a C++ binary that invokes Gtest.
///
/// The `gtest` macro takes two arguments, which are Rust identifiers. The first
/// is the name of the test suite and the second is the name of the test, each
/// of which are converted to a string and given to Gtest. The name of the test
/// function itself does not matter, and need not be unique (it's placed into a
/// unique module based on the Gtest suite + test names.
///
/// The test function must have no arguments. The return value must be either
/// `()` or `std::result::Result<(), E>`. If another return type is found, the
/// test will fail when run. If the return type is a `Result`, then an `Err` is
/// treated as a test failure.
///
/// # Examples
/// ```
/// #[gtest(MathTest, Addition)]
/// fn my_test() {
/// expect_eq!(1 + 1, 2);
/// }
/// ```
///
/// The above adds the function to the Gtest binary as `MathTest.Addtition`:
/// ```
/// [ RUN ] MathTest.Addition
/// [ OK ] MathTest.Addition (0 ms)
/// ```
///
/// A test with a Result return type, and which uses the `?` operator. It will
/// fail if the test returns an `Err`, and print the resulting error string:
/// ```
/// #[gtest(ResultTest, CheckThingWithResult)]
/// fn my_test() -> std::result::Result<(), String> {
/// call_thing_with_result()?;
/// }
/// ```
#[proc_macro_attribute]
pub fn gtest(
arg_stream: proc_macro::TokenStream,
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
enum GtestAttributeArgument {
TestSuite,
TestName,
}
// Returns a string representation of an identifier argument to the attribute.
// For example, for #[gtest(Foo, Bar)], this function would return "Foo" for
// position 0 and "Bar" for position 1. If the argument is not a Rust
// identifier or not present, it returns a compiler error as a TokenStream
// to be emitted.
fn get_arg_string(
args: &syn::AttributeArgs,
which: GtestAttributeArgument,
) -> Result<String, TokenStream> {
let pos = match which {
GtestAttributeArgument::TestSuite => 0,
GtestAttributeArgument::TestName => 1,
};
match &args[pos] {
syn::NestedMeta::Meta(syn::Meta::Path(path)) if path.segments.len() == 1 => {
Ok(path.segments[0].ident.to_string())
}
_ => {
let error_stream = match which {
GtestAttributeArgument::TestSuite => {
quote_spanned! {
args[pos].span() =>
compile_error!(
"Expected a test suite name, written as an identifier."
);
}
}
GtestAttributeArgument::TestName => {
quote_spanned! {
args[pos].span() =>
compile_error!(
"Expected a test name, written as an identifier."
);
}
}
};
Err(error_stream)
}
}
}
/// Parses `#[gtest_suite(path::to::RustType)]` and returns
/// `path::to::RustType`.
fn parse_gtest_suite(attr: &syn::Attribute) -> Result<TokenStream, TokenStream> {
let parsed = match attr.parse_meta() {
Ok(syn::Meta::List(list)) if list.nested.len() == 1 => match &list.nested[0] {
syn::NestedMeta::Meta(syn::Meta::Path(fn_path)) => Ok(fn_path.into_token_stream()),
x => Err(x.span()),
},
Ok(x) => Err(x.span()),
Err(x) => Err(x.span()),
};
parsed.or_else(|span| {
Err(quote_spanned! { span =>
compile_error!(
"invalid syntax for gtest_suite macro, \
expected `#[gtest_suite(path::to:RustType)]`");
})
})
}
let args = syn::parse_macro_input!(arg_stream as syn::AttributeArgs);
let mut input_fn = syn::parse_macro_input!(input as syn::ItemFn);
// Populated data from the #[gtest_suite] macro arguments.
//
// The Rust type wrapping a C++ TestSuite (subclass of `testing::Test`), which
// is created and returned by a C++ factory function. If no type is
// specified, then this is left as None, and the default C++ factory
// function will be used to make a `testing::Test` directly.
let mut gtest_test_suite_wrapper_type: Option<TokenStream> = None;
// Look through other attributes on the test function, parse the ones related to
// Gtests, and put the rest back into `attrs`.
input_fn.attrs = {
let mut keep = Vec::new();
for attr in std::mem::take(&mut input_fn.attrs) {
if attr.path.is_ident("gtest_suite") {
let rust_type_name = match parse_gtest_suite(&attr) {
Ok(tokens) => tokens,
Err(error_tokens) => return error_tokens.into(),
};
gtest_test_suite_wrapper_type = Some(rust_type_name);
} else {
keep.push(attr)
}
}
keep
};
// No longer mut.
let input_fn = input_fn;
let gtest_test_suite_wrapper_type = gtest_test_suite_wrapper_type;
if let Some(asyncness) = input_fn.sig.asyncness {
// TODO(crbug.com/1288947): We can support async functions once we have
// block_on() support which will run a RunLoop until the async test
// completes. The run_test_fn just needs to be generated to `block_on(||
// #test_fn)` instead of calling `#test_fn` synchronously.
return quote_spanned! {
asyncness.span =>
compile_error!("async functions are not supported.");
}
.into();
}
let (test_suite_name, test_name) = match args.len() {
2 => {
let suite = match get_arg_string(&args, GtestAttributeArgument::TestSuite) {
Ok(ok) => ok,
Err(error_stream) => return error_stream.into(),
};
let test = match get_arg_string(&args, GtestAttributeArgument::TestName) {
Ok(ok) => ok,
Err(error_stream) => return error_stream.into(),
};
(suite, test)
}
0 | 1 => {
return quote! {
compile_error!(
"Expected two arguments. For example: #[gtest(TestSuite, TestName)].");
}
.into();
}
x => {
return quote_spanned! {
args[x.min(2)].span() =>
compile_error!(
"Expected two arguments. For example: #[gtest(TestSuite, TestName)].");
}
.into();
}
};
// We put the test function and all the code we generate around it into a
// submodule which is uniquely named for the super module based on the Gtest
// suite and test names. A result of this is that if two tests have the same
// test suite + name, a compiler error would report the conflict.
let test_mod = format_ident!("__test_{}_{}", test_suite_name, test_name);
// The run_test_fn identifier is marked #[no_mangle] to work around a codegen
// bug where the function is seen as dead and the compiler omits it from the
// object files. Since it's #[no_mangle], the identifier must be globally
// unique or we have an ODR violation. To produce a unique identifier, we
// roll our own name mangling by combining the file name and path from
// the source tree root with the Gtest suite and test names and the function
// itself.
//
// Note that an adversary could still produce a bug here by placing two equal
// Gtest suite and names in a single .rs file but in separate inline
// submodules.
let mangled_function_name = |f: &syn::ItemFn| -> syn::Ident {
let file_name = file!().replace(|c: char| !c.is_ascii_alphanumeric(), "_");
format_ident!("{}_{}_{}_{}", file_name, test_suite_name, test_name, f.sig.ident)
};
let run_test_fn = format_ident!("run_test_{}", mangled_function_name(&input_fn));
// The identifier of the function which contains the body of the test.
let test_fn = &input_fn.sig.ident;
// Implements ToTokens to generate a reference to a static-lifetime,
// null-terminated, C-String literal. It is represented as an array of type
// std::os::raw::c_char which can be either signed or unsigned depending on
// the platform, and it can be passed directly to C++. This differs from
// byte strings and CStr which work with `u8`.
//
// TODO(crbug.com/1298175): Would it make sense to write a c_str_literal!()
// macro that takes a Rust string literal and produces a null-terminated
// array of `c_char`? Then you could write `c_str_literal!(file!())` for
// example, or implement a `file_c_str!()` in this way. Explore using https://crates.io/crates/cstr.
//
// TODO(danakj): Write unit tests for this, and consider pulling this out into
// its own crate, if we don't replace it with c_str_literal!() or the "cstr"
// crate.
struct CStringLiteral<'a>(&'a str);
impl quote::ToTokens for CStringLiteral<'_> {
fn to_tokens(&self, tokens: &mut proc_macro2::TokenStream) {
let mut c_chars = self.0.chars().map(|c| c as std::os::raw::c_char).collect::<Vec<_>>();
c_chars.push(0);
// Verify there's no embedded nulls as that would be invalid if the literal were
// put in a std::ffi::CString.
assert_eq!(c_chars.iter().filter(|x| **x == 0).count(), 1);
let comment = format!("\"{}\" as [c_char]", self.0);
tokens.extend(quote! {
{
#[doc=#comment]
&[#(#c_chars as std::os::raw::c_char),*]
}
});
}
}
// C-compatible string literals, that can be inserted into the quote! macro.
let test_suite_name_c_bytes = CStringLiteral(&test_suite_name);
let test_name_c_bytes = CStringLiteral(&test_name);
let file_c_bytes = CStringLiteral(file!());
let gtest_factory_fn = match &gtest_test_suite_wrapper_type {
Some(rust_type) => {
// Get the Gtest factory function pointer from the the TestSuite trait.
quote! { <#rust_type as ::rust_gtest_interop::TestSuite>::gtest_factory_fn_ptr() }
}
None => {
// If the #[gtest] macros didn't specify a test suite, then we use
// `rust_gtest_interop::rust_gtest_default_factory() which makes a TestSuite
// with `testing::Test` directly.
quote! { ::rust_gtest_interop::__private::rust_gtest_default_factory }
}
};
let test_fn_call = match &gtest_test_suite_wrapper_type {
Some(_rust_type) => {
// SAFETY: Our lambda casts the `suite` reference and does not move from it, and
// the resulting type is not Unpin.
quote! {
let p = unsafe {
suite.map_unchecked_mut(|suite: &mut ::rust_gtest_interop::OpaqueTestingTest| {
suite.as_mut()
})
};
#test_fn(p)
}
}
None => quote! { #test_fn() },
};
let output = quote! {
mod #test_mod {
use super::*;
#[::rust_gtest_interop::small_ctor::ctor]
unsafe fn register_test() {
let r = ::rust_gtest_interop::__private::TestRegistration {
func: #run_test_fn,
test_suite_name: #test_suite_name_c_bytes,
test_name: #test_name_c_bytes,
file: #file_c_bytes,
line: line!(),
factory: #gtest_factory_fn,
};
::rust_gtest_interop::__private::register_test(r);
}
// The function is extern "C" so `register_test()` can pass this fn as a pointer to C++
// where it's registered with gtest.
//
// TODO(crbug.com/1296284): Removing #[no_mangle] makes rustc drop the symbol for the
// test function in the generated rlib which produces linker errors. If we resolve the
// linked bug and emit real object files from rustc for linking, then all the required
// symbols are present and `#[no_mangle]` should go away along with the custom-mangling
// of `run_test_fn`. We can not use `pub` to resolve this unfortunately. When `#[used]`
// is fixed in https://github.com/rust-lang/rust/issues/47384, this may also be
// resolved as well.
#[no_mangle]
extern "C" fn #run_test_fn(
suite: std::pin::Pin<&mut ::rust_gtest_interop::OpaqueTestingTest>
) {
let catch_result = std::panic::catch_unwind(std::panic::AssertUnwindSafe(|| {
#test_fn_call
}));
use ::rust_gtest_interop::TestResult;
let err_message: Option<String> = match catch_result {
Ok(fn_result) => TestResult::into_error_message(fn_result),
Err(_) => Some("Test panicked".to_string()),
};
if let Some(m) = err_message.as_ref() {
::rust_gtest_interop::__private::add_failure_at(file!(), line!(), &m);
}
}
#input_fn
}
};
output.into()
}
/// The `#[extern_test_suite()]` macro is used to implement the unsafe
/// `TestSuite` trait.
///
/// The `TestSuite` trait is used to mark a Rust type as being a wrapper of a
/// C++ subclass of `testing::Test`. This makes it valid to cast from a `*mut
/// testing::Test` to a pointer of the marked Rust type.
///
/// It also marks a promise that on the C++, there exists an instantiation of
/// the RUST_GTEST_TEST_SUITE_FACTORY() macro for the C++ subclass type which
/// will be linked with the Rust crate.
///
/// The macro takes a single parameter which is the fully specified C++ typename
/// of the C++ subclass for which the implementing Rust type is a wrapper. It
/// expects the body of the trait implementation to be empty, as it will fill in
/// the required implementation.
///
/// # Example
/// If in C++ we have:
/// ```cpp
/// class GoatTestSuite : public testing::Test {}
/// RUST_GTEST_TEST_SUITE_FACTORY(GoatTestSuite);
/// ```
///
/// And in Rust we have a `ffi::GoatTestSuite` type generated to wrap the C++
/// type. The the type can be marked as a valid TestSuite with the
/// `#[extern_test_suite]` macro: ```rs
/// #[extern_test_suite("GoatTestSuite")]
/// unsafe impl rust_gtest_interop::TestSuite for ffi::GoatTestSuite {}
/// ```
///
/// # Internals
/// The #[cpp_prefix("STRING_")] attribute can follow `#[extern_test_suite()]`
/// to control the path to the C++ Gtest factory function. This is used for
/// connecting to different C++ macros than the usual
/// RUST_GTEST_TEST_SUITE_FACTORY().
#[proc_macro_attribute]
pub fn extern_test_suite(
arg_stream: proc_macro::TokenStream,
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let args = syn::parse_macro_input!(arg_stream as syn::AttributeArgs);
// TODO(b/229791967): With CXX it is not possible to get the C++ typename and
// path from the Rust wrapper type, so we require specifying it by hand in
// the macro. It would be nice to remove this opportunity for mistakes.
let cpp_type = match if args.len() == 1 { Some(&args[0]) } else { None } {
Some(syn::NestedMeta::Lit(syn::Lit::Str(lit_str))) => {
// TODO(danakj): This code drops the C++ namespaces, because we can't produce a
// mangled name and can't generate bindings involving fn pointers,
// so we require the C++ function to be `extern "C"` which means it
// has no namespace. Eventually we should drop the `extern "C"` on
// the C++ side and use the full path here.
let string = lit_str.value();
let class_name = string.split("::").last();
match class_name {
Some(name) => format_ident!("{}", name).into_token_stream(),
None => {
return quote_spanned! {lit_str.span() => compile_error!(
"invalid C++ class name"
)}
.into();
}
}
}
_ => {
return quote! {compiler_error!(
"expected C++ type as argument to extern_test_suite"
)}
.into();
}
};
/// Parses `#[cpp_prefix("PREFIX_STRING_")]` and returns `"PREFIX_STRING_"`.
fn parse_cpp_prefix(attr: &syn::Attribute) -> Result<String, TokenStream> {
let parsed = match attr.parse_meta() {
Ok(syn::Meta::List(list)) if list.nested.len() == 1 => match &list.nested[0] {
syn::NestedMeta::Lit(syn::Lit::Str(lit_str)) => Ok(lit_str.value()),
x => Err(x.span()),
},
Ok(x) => Err(x.span()),
Err(x) => Err(x.span()),
};
parsed.map_err(|span| {
quote_spanned! { span =>
compile_error!(
"invalid syntax for extern_test_suite macro, \
expected `#[cpp_prefix("PREFIX_STRING_")]`");
}
})
}
let mut trait_impl = syn::parse_macro_input!(input as syn::ItemImpl);
if !trait_impl.items.is_empty() {
return quote_spanned! {trait_impl.items[0].span() => compile_error!(
"expected empty trait impl"
)}
.into();
}
let mut cpp_prefix = RUST_GTEST_FACTORY_PREFIX.to_owned();
// Look through other attributes on `trait_impl`, parse the ones related to
// Gtests, and put the rest back into `attrs`.
trait_impl.attrs = {
let mut keep = Vec::new();
for attr in std::mem::take(&mut trait_impl.attrs) {
if attr.path.is_ident("cpp_prefix") {
cpp_prefix = match parse_cpp_prefix(&attr) {
Ok(tokens) => tokens,
Err(error_tokens) => return error_tokens.into(),
};
} else {
keep.push(attr)
}
}
keep
};
// No longer mut.
let trait_impl = trait_impl;
let cpp_prefix = cpp_prefix;
let trait_name = match &trait_impl.trait_ {
Some((_, path, _)) => path,
None => {
return quote! {compile_error!(
"expected impl rust_gtest_interop::TestSuite trait"
)}
.into();
}
};
let rust_type = match &*trait_impl.self_ty {
syn::Type::Path(type_path) => type_path,
_ => {
return quote_spanned! {trait_impl.self_ty.span() => compile_error!(
"expected type that wraps C++ subclass of `testing::Test`"
)}
.into();
}
};
// TODO(danakj): We should generate a C++ mangled name here, then we don't
// require the function to be `extern "C"` (or have the author write the
// mangled name themselves).
let cpp_fn_name = format_ident!("{}{}", cpp_prefix, cpp_type.into_token_stream().to_string());
let output = quote! {
unsafe impl #trait_name for #rust_type {
fn gtest_factory_fn_ptr() -> rust_gtest_interop::GtestFactoryFunction {
extern "C" {
fn #cpp_fn_name(
f: extern "C" fn(
test_body: ::std::pin::Pin<&mut ::rust_gtest_interop::OpaqueTestingTest>
)
) -> ::std::pin::Pin<&'static mut ::rust_gtest_interop::OpaqueTestingTest>;
}
#cpp_fn_name
}
}
};
output.into()
}