blob: a554181dbbc2b9875162ccc86cf7fa8655ecc92a [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_spdy_stream.h"
#include <memory>
#include <utility>
#include "base/strings/string_number_conversions.h"
#include "net/quic/quic_connection.h"
#include "net/quic/quic_utils.h"
#include "net/quic/quic_write_blocked_list.h"
#include "net/quic/spdy_utils.h"
#include "net/quic/test_tools/quic_flow_controller_peer.h"
#include "net/quic/test_tools/quic_session_peer.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "net/quic/test_tools/reliable_quic_stream_peer.h"
#include "net/test/gtest_util.h"
#include "testing/gmock/include/gmock/gmock.h"
using base::StringPiece;
using std::min;
using std::string;
using testing::AnyNumber;
using testing::Invoke;
using testing::Return;
using testing::StrictMock;
using testing::_;
namespace net {
namespace test {
namespace {
const bool kShouldProcessData = true;
class TestStream : public QuicSpdyStream {
public:
TestStream(QuicStreamId id,
QuicSpdySession* session,
bool should_process_data)
: QuicSpdyStream(id, session),
should_process_data_(should_process_data) {}
void OnDataAvailable() override {
if (!should_process_data_) {
return;
}
char buffer[2048];
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = arraysize(buffer);
size_t bytes_read = Readv(&vec, 1);
data_ += string(buffer, bytes_read);
}
using ReliableQuicStream::WriteOrBufferData;
using ReliableQuicStream::CloseWriteSide;
const string& data() const { return data_; }
private:
bool should_process_data_;
string data_;
};
class QuicSpdyStreamTest : public ::testing::TestWithParam<QuicVersion> {
public:
QuicSpdyStreamTest() {
FLAGS_quic_always_log_bugs_for_tests = true;
headers_[":host"] = "www.google.com";
headers_[":path"] = "/index.hml";
headers_[":scheme"] = "https";
headers_["cookie"] =
"__utma=208381060.1228362404.1372200928.1372200928.1372200928.1; "
"__utmc=160408618; "
"GX=DQAAAOEAAACWJYdewdE9rIrW6qw3PtVi2-d729qaa-74KqOsM1NVQblK4VhX"
"hoALMsy6HOdDad2Sz0flUByv7etmo3mLMidGrBoljqO9hSVA40SLqpG_iuKKSHX"
"RW3Np4bq0F0SDGDNsW0DSmTS9ufMRrlpARJDS7qAI6M3bghqJp4eABKZiRqebHT"
"pMU-RXvTI5D5oCF1vYxYofH_l1Kviuiy3oQ1kS1enqWgbhJ2t61_SNdv-1XJIS0"
"O3YeHLmVCs62O6zp89QwakfAWK9d3IDQvVSJzCQsvxvNIvaZFa567MawWlXg0Rh"
"1zFMi5vzcns38-8_Sns; "
"GA=v*2%2Fmem*57968640*47239936%2Fmem*57968640*47114716%2Fno-nm-"
"yj*15%2Fno-cc-yj*5%2Fpc-ch*133685%2Fpc-s-cr*133947%2Fpc-s-t*1339"
"47%2Fno-nm-yj*4%2Fno-cc-yj*1%2Fceft-as*1%2Fceft-nqas*0%2Fad-ra-c"
"v_p%2Fad-nr-cv_p-f*1%2Fad-v-cv_p*859%2Fad-ns-cv_p-f*1%2Ffn-v-ad%"
"2Fpc-t*250%2Fpc-cm*461%2Fpc-s-cr*722%2Fpc-s-t*722%2Fau_p*4"
"SICAID=AJKiYcHdKgxum7KMXG0ei2t1-W4OD1uW-ecNsCqC0wDuAXiDGIcT_HA2o1"
"3Rs1UKCuBAF9g8rWNOFbxt8PSNSHFuIhOo2t6bJAVpCsMU5Laa6lewuTMYI8MzdQP"
"ARHKyW-koxuhMZHUnGBJAM1gJODe0cATO_KGoX4pbbFxxJ5IicRxOrWK_5rU3cdy6"
"edlR9FsEdH6iujMcHkbE5l18ehJDwTWmBKBzVD87naobhMMrF6VvnDGxQVGp9Ir_b"
"Rgj3RWUoPumQVCxtSOBdX0GlJOEcDTNCzQIm9BSfetog_eP_TfYubKudt5eMsXmN6"
"QnyXHeGeK2UINUzJ-D30AFcpqYgH9_1BvYSpi7fc7_ydBU8TaD8ZRxvtnzXqj0RfG"
"tuHghmv3aD-uzSYJ75XDdzKdizZ86IG6Fbn1XFhYZM-fbHhm3mVEXnyRW4ZuNOLFk"
"Fas6LMcVC6Q8QLlHYbXBpdNFuGbuZGUnav5C-2I_-46lL0NGg3GewxGKGHvHEfoyn"
"EFFlEYHsBQ98rXImL8ySDycdLEFvBPdtctPmWCfTxwmoSMLHU2SCVDhbqMWU5b0yr"
"JBCScs_ejbKaqBDoB7ZGxTvqlrB__2ZmnHHjCr8RgMRtKNtIeuZAo ";
}
void Initialize(bool stream_should_process_data) {
connection_ = new testing::StrictMock<MockQuicConnection>(
&helper_, &alarm_factory_, Perspective::IS_SERVER,
SupportedVersions(GetParam()));
session_.reset(new testing::StrictMock<MockQuicSpdySession>(connection_));
stream_ = new TestStream(kClientDataStreamId1, session_.get(),
stream_should_process_data);
session_->ActivateStream(stream_);
stream2_ = new TestStream(kClientDataStreamId2, session_.get(),
stream_should_process_data);
session_->ActivateStream(stream2_);
}
protected:
MockQuicConnectionHelper helper_;
MockAlarmFactory alarm_factory_;
MockQuicConnection* connection_;
std::unique_ptr<MockQuicSpdySession> session_;
// Owned by the |session_|.
TestStream* stream_;
TestStream* stream2_;
SpdyHeaderBlock headers_;
};
INSTANTIATE_TEST_CASE_P(Tests,
QuicSpdyStreamTest,
::testing::ValuesIn(QuicSupportedVersions()));
TEST_P(QuicSpdyStreamTest, ProcessHeaders) {
Initialize(kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeadersPriority(kV3HighestPriority);
stream_->OnStreamHeaders(headers);
EXPECT_EQ("", stream_->data());
EXPECT_EQ(headers, stream_->decompressed_headers());
stream_->OnStreamHeadersComplete(false, headers.size());
EXPECT_EQ(kV3HighestPriority, stream_->priority());
EXPECT_EQ("", stream_->data());
EXPECT_EQ(headers, stream_->decompressed_headers());
EXPECT_FALSE(stream_->IsDoneReading());
}
TEST_P(QuicSpdyStreamTest, ProcessHeaderList) {
Initialize(kShouldProcessData);
size_t total_bytes = 0;
QuicHeaderList headers;
for (auto p : headers_) {
headers.OnHeader(p.first, p.second);
total_bytes += p.first.size() + p.second.size();
}
stream_->OnStreamHeadersPriority(kV3HighestPriority);
stream_->OnStreamHeaderList(false, total_bytes, headers);
EXPECT_EQ("", stream_->data());
EXPECT_FALSE(stream_->header_list().empty());
EXPECT_FALSE(stream_->IsDoneReading());
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersWithFin) {
Initialize(kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeadersPriority(kV3HighestPriority);
stream_->OnStreamHeaders(headers);
EXPECT_EQ("", stream_->data());
EXPECT_EQ(headers, stream_->decompressed_headers());
stream_->OnStreamHeadersComplete(true, headers.size());
EXPECT_EQ(kV3HighestPriority, stream_->priority());
EXPECT_EQ("", stream_->data());
EXPECT_EQ(headers, stream_->decompressed_headers());
EXPECT_FALSE(stream_->IsDoneReading());
EXPECT_TRUE(stream_->HasFinalReceivedByteOffset());
}
TEST_P(QuicSpdyStreamTest, ProcessHeaderListWithFin) {
Initialize(kShouldProcessData);
size_t total_bytes = 0;
QuicHeaderList headers;
for (auto p : headers_) {
headers.OnHeader(p.first, p.second);
total_bytes += p.first.size() + p.second.size();
}
stream_->OnStreamHeadersPriority(kV3HighestPriority);
stream_->OnStreamHeaderList(true, total_bytes, headers);
EXPECT_EQ("", stream_->data());
EXPECT_FALSE(stream_->header_list().empty());
EXPECT_FALSE(stream_->IsDoneReading());
EXPECT_TRUE(stream_->HasFinalReceivedByteOffset());
}
TEST_P(QuicSpdyStreamTest, ParseHeaderStatusCode) {
// A valid status code should be 3-digit integer. The first digit should be in
// the range of [1, 5]. All the others are invalid.
Initialize(kShouldProcessData);
int status_code = 0;
// Valid status code.
headers_.ReplaceOrAppendHeader(":status", "404");
EXPECT_TRUE(stream_->ParseHeaderStatusCode(&headers_, &status_code));
EXPECT_EQ(404, status_code);
// Invalid status codes.
headers_.ReplaceOrAppendHeader(":status", "010");
EXPECT_FALSE(stream_->ParseHeaderStatusCode(&headers_, &status_code));
headers_.ReplaceOrAppendHeader(":status", "600");
EXPECT_FALSE(stream_->ParseHeaderStatusCode(&headers_, &status_code));
headers_.ReplaceOrAppendHeader(":status", "200 ok");
EXPECT_FALSE(stream_->ParseHeaderStatusCode(&headers_, &status_code));
headers_.ReplaceOrAppendHeader(":status", "2000");
EXPECT_FALSE(stream_->ParseHeaderStatusCode(&headers_, &status_code));
headers_.ReplaceOrAppendHeader(":status", "+200");
EXPECT_FALSE(stream_->ParseHeaderStatusCode(&headers_, &status_code));
headers_.ReplaceOrAppendHeader(":status", "+20");
EXPECT_FALSE(stream_->ParseHeaderStatusCode(&headers_, &status_code));
// Leading or trailing spaces are also invalid.
headers_.ReplaceOrAppendHeader(":status", " 200");
EXPECT_FALSE(stream_->ParseHeaderStatusCode(&headers_, &status_code));
headers_.ReplaceOrAppendHeader(":status", "200 ");
EXPECT_FALSE(stream_->ParseHeaderStatusCode(&headers_, &status_code));
headers_.ReplaceOrAppendHeader(":status", " 200 ");
EXPECT_FALSE(stream_->ParseHeaderStatusCode(&headers_, &status_code));
headers_.ReplaceOrAppendHeader(":status", " ");
EXPECT_FALSE(stream_->ParseHeaderStatusCode(&headers_, &status_code));
}
TEST_P(QuicSpdyStreamTest, MarkHeadersConsumed) {
Initialize(kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
EXPECT_EQ(headers, stream_->decompressed_headers());
headers.erase(0, 10);
stream_->MarkHeadersConsumed(10);
EXPECT_EQ(headers, stream_->decompressed_headers());
stream_->MarkHeadersConsumed(headers.length());
EXPECT_EQ("", stream_->decompressed_headers());
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBody) {
Initialize(kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
stream_->OnStreamHeaders(headers);
EXPECT_EQ("", stream_->data());
EXPECT_EQ(headers, stream_->decompressed_headers());
stream_->OnStreamHeadersComplete(false, headers.size());
EXPECT_EQ(headers, stream_->decompressed_headers());
stream_->MarkHeadersConsumed(headers.length());
QuicStreamFrame frame(kClientDataStreamId1, false, 0, StringPiece(body));
stream_->OnStreamFrame(frame);
EXPECT_EQ("", stream_->decompressed_headers());
EXPECT_EQ(body, stream_->data());
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyFragments) {
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
for (size_t fragment_size = 1; fragment_size < body.size(); ++fragment_size) {
Initialize(kShouldProcessData);
for (size_t offset = 0; offset < headers.size(); offset += fragment_size) {
size_t remaining_data = headers.size() - offset;
StringPiece fragment(headers.data() + offset,
min(fragment_size, remaining_data));
stream_->OnStreamHeaders(fragment);
}
stream_->OnStreamHeadersComplete(false, headers.size());
ASSERT_EQ(headers, stream_->decompressed_headers()) << "fragment_size: "
<< fragment_size;
stream_->MarkHeadersConsumed(headers.length());
for (size_t offset = 0; offset < body.size(); offset += fragment_size) {
size_t remaining_data = body.size() - offset;
StringPiece fragment(body.data() + offset,
min(fragment_size, remaining_data));
QuicStreamFrame frame(kClientDataStreamId1, false, offset,
StringPiece(fragment));
stream_->OnStreamFrame(frame);
}
ASSERT_EQ(body, stream_->data()) << "fragment_size: " << fragment_size;
}
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyFragmentsSplit) {
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
for (size_t split_point = 1; split_point < body.size() - 1; ++split_point) {
Initialize(kShouldProcessData);
StringPiece headers1(headers.data(), split_point);
stream_->OnStreamHeaders(headers1);
StringPiece headers2(headers.data() + split_point,
headers.size() - split_point);
stream_->OnStreamHeaders(headers2);
stream_->OnStreamHeadersComplete(false, headers.size());
ASSERT_EQ(headers, stream_->decompressed_headers()) << "split_point: "
<< split_point;
stream_->MarkHeadersConsumed(headers.length());
StringPiece fragment1(body.data(), split_point);
QuicStreamFrame frame1(kClientDataStreamId1, false, 0,
StringPiece(fragment1));
stream_->OnStreamFrame(frame1);
StringPiece fragment2(body.data() + split_point, body.size() - split_point);
QuicStreamFrame frame2(kClientDataStreamId1, false, split_point,
StringPiece(fragment2));
stream_->OnStreamFrame(frame2);
ASSERT_EQ(body, stream_->data()) << "split_point: " << split_point;
}
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyReadv) {
Initialize(!kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
QuicStreamFrame frame(kClientDataStreamId1, false, 0, StringPiece(body));
stream_->OnStreamFrame(frame);
stream_->MarkHeadersConsumed(headers.length());
char buffer[2048];
ASSERT_LT(body.length(), arraysize(buffer));
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = arraysize(buffer);
size_t bytes_read = stream_->Readv(&vec, 1);
EXPECT_EQ(body.length(), bytes_read);
EXPECT_EQ(body, string(buffer, bytes_read));
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyMarkConsumed) {
Initialize(!kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
QuicStreamFrame frame(kClientDataStreamId1, false, 0, StringPiece(body));
stream_->OnStreamFrame(frame);
stream_->MarkHeadersConsumed(headers.length());
struct iovec vec;
EXPECT_EQ(1, stream_->GetReadableRegions(&vec, 1));
EXPECT_EQ(body.length(), vec.iov_len);
EXPECT_EQ(body, string(static_cast<char*>(vec.iov_base), vec.iov_len));
stream_->MarkConsumed(body.length());
EXPECT_EQ(body.length(), stream_->flow_controller()->bytes_consumed());
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyIncrementalReadv) {
Initialize(!kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
QuicStreamFrame frame(kClientDataStreamId1, false, 0, StringPiece(body));
stream_->OnStreamFrame(frame);
stream_->MarkHeadersConsumed(headers.length());
char buffer[1];
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = arraysize(buffer);
for (size_t i = 0; i < body.length(); ++i) {
size_t bytes_read = stream_->Readv(&vec, 1);
ASSERT_EQ(1u, bytes_read);
EXPECT_EQ(body.data()[i], buffer[0]);
}
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersUsingReadvWithMultipleIovecs) {
Initialize(!kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
QuicStreamFrame frame(kClientDataStreamId1, false, 0, StringPiece(body));
stream_->OnStreamFrame(frame);
stream_->MarkHeadersConsumed(headers.length());
char buffer1[1];
char buffer2[1];
struct iovec vec[2];
vec[0].iov_base = buffer1;
vec[0].iov_len = arraysize(buffer1);
vec[1].iov_base = buffer2;
vec[1].iov_len = arraysize(buffer2);
for (size_t i = 0; i < body.length(); i += 2) {
size_t bytes_read = stream_->Readv(vec, 2);
ASSERT_EQ(2u, bytes_read) << i;
ASSERT_EQ(body.data()[i], buffer1[0]) << i;
ASSERT_EQ(body.data()[i + 1], buffer2[0]) << i;
}
}
TEST_P(QuicSpdyStreamTest, StreamFlowControlBlocked) {
// Tests that we send a BLOCKED frame to the peer when we attempt to write,
// but are flow control blocked.
Initialize(kShouldProcessData);
// Set a small flow control limit.
const uint64_t kWindow = 36;
QuicFlowControllerPeer::SetSendWindowOffset(stream_->flow_controller(),
kWindow);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::SendWindowOffset(
stream_->flow_controller()));
// Try to send more data than the flow control limit allows.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body;
const uint64_t kOverflow = 15;
GenerateBody(&body, kWindow + kOverflow);
EXPECT_CALL(*connection_, SendBlocked(kClientDataStreamId1));
EXPECT_CALL(*session_, WritevData(stream_, kClientDataStreamId1, _, _, _, _))
.WillOnce(Return(QuicConsumedData(kWindow, true)));
stream_->WriteOrBufferData(body, false, nullptr);
// Should have sent as much as possible, resulting in no send window left.
EXPECT_EQ(0u,
QuicFlowControllerPeer::SendWindowSize(stream_->flow_controller()));
// And we should have queued the overflowed data.
EXPECT_EQ(kOverflow, ReliableQuicStreamPeer::SizeOfQueuedData(stream_));
}
TEST_P(QuicSpdyStreamTest, StreamFlowControlNoWindowUpdateIfNotConsumed) {
// The flow control receive window decreases whenever we add new bytes to the
// sequencer, whether they are consumed immediately or buffered. However we
// only send WINDOW_UPDATE frames based on increasing number of bytes
// consumed.
// Don't process data - it will be buffered instead.
Initialize(!kShouldProcessData);
// Expect no WINDOW_UPDATE frames to be sent.
EXPECT_CALL(*connection_, SendWindowUpdate(_, _)).Times(0);
// Set a small flow control receive window.
const uint64_t kWindow = 36;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(),
kWindow);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowOffset(
stream_->flow_controller()));
// Stream receives enough data to fill a fraction of the receive window.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body;
GenerateBody(&body, kWindow / 3);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
QuicStreamFrame frame1(kClientDataStreamId1, false, 0, StringPiece(body));
stream_->OnStreamFrame(frame1);
EXPECT_EQ(kWindow - (kWindow / 3), QuicFlowControllerPeer::ReceiveWindowSize(
stream_->flow_controller()));
// Now receive another frame which results in the receive window being over
// half full. This should all be buffered, decreasing the receive window but
// not sending WINDOW_UPDATE.
QuicStreamFrame frame2(kClientDataStreamId1, false, kWindow / 3,
StringPiece(body));
stream_->OnStreamFrame(frame2);
EXPECT_EQ(
kWindow - (2 * kWindow / 3),
QuicFlowControllerPeer::ReceiveWindowSize(stream_->flow_controller()));
}
TEST_P(QuicSpdyStreamTest, StreamFlowControlWindowUpdate) {
// Tests that on receipt of data, the stream updates its receive window offset
// appropriately, and sends WINDOW_UPDATE frames when its receive window drops
// too low.
Initialize(kShouldProcessData);
// Set a small flow control limit.
const uint64_t kWindow = 36;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(),
kWindow);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowOffset(
stream_->flow_controller()));
// Stream receives enough data to fill a fraction of the receive window.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body;
GenerateBody(&body, kWindow / 3);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
stream_->MarkHeadersConsumed(headers.length());
QuicStreamFrame frame1(kClientDataStreamId1, false, 0, StringPiece(body));
stream_->OnStreamFrame(frame1);
EXPECT_EQ(kWindow - (kWindow / 3), QuicFlowControllerPeer::ReceiveWindowSize(
stream_->flow_controller()));
// Now receive another frame which results in the receive window being over
// half full. This will trigger the stream to increase its receive window
// offset and send a WINDOW_UPDATE. The result will be again an available
// window of kWindow bytes.
QuicStreamFrame frame2(kClientDataStreamId1, false, kWindow / 3,
StringPiece(body));
EXPECT_CALL(*connection_,
SendWindowUpdate(kClientDataStreamId1,
QuicFlowControllerPeer::ReceiveWindowOffset(
stream_->flow_controller()) +
2 * kWindow / 3));
stream_->OnStreamFrame(frame2);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowSize(
stream_->flow_controller()));
}
TEST_P(QuicSpdyStreamTest, ConnectionFlowControlWindowUpdate) {
// Tests that on receipt of data, the connection updates its receive window
// offset appropriately, and sends WINDOW_UPDATE frames when its receive
// window drops too low.
Initialize(kShouldProcessData);
// Set a small flow control limit for streams and connection.
const uint64_t kWindow = 36;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetReceiveWindowOffset(stream2_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream2_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetReceiveWindowOffset(session_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(session_->flow_controller(),
kWindow);
// Supply headers to both streams so that they are happy to receive data.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
stream_->MarkHeadersConsumed(headers.length());
stream2_->OnStreamHeaders(headers);
stream2_->OnStreamHeadersComplete(false, headers.size());
stream2_->MarkHeadersConsumed(headers.length());
// Each stream gets a quarter window of data. This should not trigger a
// WINDOW_UPDATE for either stream, nor for the connection.
string body;
GenerateBody(&body, kWindow / 4);
QuicStreamFrame frame1(kClientDataStreamId1, false, 0, StringPiece(body));
stream_->OnStreamFrame(frame1);
QuicStreamFrame frame2(kClientDataStreamId2, false, 0, StringPiece(body));
stream2_->OnStreamFrame(frame2);
// Now receive a further single byte on one stream - again this does not
// trigger a stream WINDOW_UPDATE, but now the connection flow control window
// is over half full and thus a connection WINDOW_UPDATE is sent.
EXPECT_CALL(*connection_, SendWindowUpdate(kClientDataStreamId1, _)).Times(0);
EXPECT_CALL(*connection_, SendWindowUpdate(kClientDataStreamId2, _)).Times(0);
EXPECT_CALL(*connection_,
SendWindowUpdate(0, QuicFlowControllerPeer::ReceiveWindowOffset(
session_->flow_controller()) +
1 + kWindow / 2));
QuicStreamFrame frame3(kClientDataStreamId1, false, (kWindow / 4),
StringPiece("a"));
stream_->OnStreamFrame(frame3);
}
TEST_P(QuicSpdyStreamTest, StreamFlowControlViolation) {
// Tests that on if the peer sends too much data (i.e. violates the flow
// control protocol), then we terminate the connection.
// Stream should not process data, so that data gets buffered in the
// sequencer, triggering flow control limits.
Initialize(!kShouldProcessData);
// Set a small flow control limit.
const uint64_t kWindow = 50;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
// Receive data to overflow the window, violating flow control.
string body;
GenerateBody(&body, kWindow + 1);
QuicStreamFrame frame(kClientDataStreamId1, false, 0, StringPiece(body));
EXPECT_CALL(*connection_,
CloseConnection(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA, _, _));
stream_->OnStreamFrame(frame);
}
TEST_P(QuicSpdyStreamTest, TestHandlingQuicRstStreamNoError) {
Initialize(kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
if (GetParam() <= QUIC_VERSION_28) {
EXPECT_CALL(*session_, SendRstStream(_, _, _));
}
stream_->OnStreamReset(
QuicRstStreamFrame(stream_->id(), QUIC_STREAM_NO_ERROR, 0));
EXPECT_TRUE(stream_->write_side_closed());
if (GetParam() > QUIC_VERSION_28) {
EXPECT_FALSE(stream_->reading_stopped());
} else {
EXPECT_TRUE(stream_->reading_stopped());
}
}
TEST_P(QuicSpdyStreamTest, ConnectionFlowControlViolation) {
// Tests that on if the peer sends too much data (i.e. violates the flow
// control protocol), at the connection level (rather than the stream level)
// then we terminate the connection.
// Stream should not process data, so that data gets buffered in the
// sequencer, triggering flow control limits.
Initialize(!kShouldProcessData);
// Set a small flow control window on streams, and connection.
const uint64_t kStreamWindow = 50;
const uint64_t kConnectionWindow = 10;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kStreamWindow);
QuicFlowControllerPeer::SetReceiveWindowOffset(session_->flow_controller(),
kConnectionWindow);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
// Send enough data to overflow the connection level flow control window.
string body;
GenerateBody(&body, kConnectionWindow + 1);
EXPECT_LT(body.size(), kStreamWindow);
QuicStreamFrame frame(kClientDataStreamId1, false, 0, StringPiece(body));
EXPECT_CALL(*connection_,
CloseConnection(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA, _, _));
stream_->OnStreamFrame(frame);
}
TEST_P(QuicSpdyStreamTest, StreamFlowControlFinNotBlocked) {
// An attempt to write a FIN with no data should not be flow control blocked,
// even if the send window is 0.
Initialize(kShouldProcessData);
// Set a flow control limit of zero.
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(), 0);
EXPECT_EQ(0u, QuicFlowControllerPeer::ReceiveWindowOffset(
stream_->flow_controller()));
// Send a frame with a FIN but no data. This should not be blocked.
string body = "";
bool fin = true;
EXPECT_CALL(*connection_, SendBlocked(kClientDataStreamId1)).Times(0);
EXPECT_CALL(*session_, WritevData(stream_, kClientDataStreamId1, _, _, _, _))
.WillOnce(Return(QuicConsumedData(0, fin)));
stream_->WriteOrBufferData(body, fin, nullptr);
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailers) {
// Test that receiving trailing headers from the peer works, and can be read
// from the stream and consumed.
Initialize(kShouldProcessData);
// Receive initial headers.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
stream_->MarkHeadersConsumed(stream_->decompressed_headers().size());
// Receive trailing headers.
SpdyHeaderBlock trailers_block;
trailers_block["key1"] = "value1";
trailers_block["key2"] = "value2";
trailers_block["key3"] = "value3";
trailers_block[kFinalOffsetHeaderKey] = "0";
string trailers = SpdyUtils::SerializeUncompressedHeaders(trailers_block);
stream_->OnStreamHeaders(trailers);
stream_->OnStreamHeadersComplete(/*fin=*/true, trailers.size());
// The trailers should be decompressed, and readable from the stream.
EXPECT_TRUE(stream_->trailers_decompressed());
const string decompressed_trailers = stream_->decompressed_trailers();
EXPECT_EQ(trailers, decompressed_trailers);
// Consuming the trailers erases them from the stream.
stream_->MarkTrailersConsumed(decompressed_trailers.size());
EXPECT_EQ("", stream_->decompressed_trailers());
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersWithoutOffset) {
// Test that receiving trailers without a final offset field is an error.
Initialize(kShouldProcessData);
// Receive initial headers.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
stream_->MarkHeadersConsumed(stream_->decompressed_headers().size());
const string body = "this is the body";
// Receive trailing headers, without kFinalOffsetHeaderKey.
SpdyHeaderBlock trailers_block;
trailers_block["key1"] = "value1";
trailers_block["key2"] = "value2";
trailers_block["key3"] = "value3";
string trailers = SpdyUtils::SerializeUncompressedHeaders(trailers_block);
stream_->OnStreamHeaders(trailers);
// Verify that the trailers block didn't contain a final offset.
EXPECT_EQ("", trailers_block[kFinalOffsetHeaderKey].as_string());
// Receipt of the malformed trailers will close the connection.
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
stream_->OnStreamHeadersComplete(/*fin=*/true, trailers.size());
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersWithoutFin) {
// Test that received Trailers must always have the FIN set.
Initialize(kShouldProcessData);
// Receive initial headers.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
// Receive trailing headers with FIN deliberately set to false.
SpdyHeaderBlock trailers_block;
string trailers = SpdyUtils::SerializeUncompressedHeaders(trailers_block);
stream_->OnStreamHeaders(trailers);
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
stream_->OnStreamHeadersComplete(/*fin=*/false, trailers.size());
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersAfterFin) {
// If Trailers are sent, neither Headers nor Body should contain a FIN.
Initialize(kShouldProcessData);
// Receive initial headers with FIN set.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(/*fin=*/true, headers.size());
// Receive trailing headers after FIN already received.
SpdyHeaderBlock trailers_block;
string trailers = SpdyUtils::SerializeUncompressedHeaders(trailers_block);
stream_->OnStreamHeaders(trailers);
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
stream_->OnStreamHeadersComplete(/*fin=*/true, trailers.size());
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersAfterBodyWithFin) {
// If body data are received with a FIN, no trailers should then arrive.
Initialize(kShouldProcessData);
// Receive initial headers without FIN set.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(/*fin=*/false, headers.size());
// Receive body data, with FIN.
QuicStreamFrame frame(kClientDataStreamId1, /*fin=*/true, 0, "body");
stream_->OnStreamFrame(frame);
// Receive trailing headers after FIN already received.
SpdyHeaderBlock trailers_block;
string trailers = SpdyUtils::SerializeUncompressedHeaders(trailers_block);
stream_->OnStreamHeaders(trailers);
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
stream_->OnStreamHeadersComplete(/*fin=*/true, trailers.size());
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersWithOffset) {
// Test that when receiving trailing headers with an offset before response
// body, stream is closed at the right offset.
Initialize(kShouldProcessData);
// Receive initial headers.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
stream_->MarkHeadersConsumed(stream_->decompressed_headers().size());
const string body = "this is the body";
// Receive trailing headers.
SpdyHeaderBlock trailers_block;
trailers_block["key1"] = "value1";
trailers_block["key2"] = "value2";
trailers_block["key3"] = "value3";
trailers_block[kFinalOffsetHeaderKey] = base::IntToString(body.size());
string trailers = SpdyUtils::SerializeUncompressedHeaders(trailers_block);
stream_->OnStreamHeaders(trailers);
stream_->OnStreamHeadersComplete(/*fin=*/true, trailers.size());
// The trailers should be decompressed, and readable from the stream.
EXPECT_TRUE(stream_->trailers_decompressed());
const string decompressed_trailers = stream_->decompressed_trailers();
EXPECT_EQ(trailers, decompressed_trailers);
// Consuming the trailers erases them from the stream.
stream_->MarkTrailersConsumed(decompressed_trailers.size());
stream_->MarkTrailersDelivered();
EXPECT_EQ("", stream_->decompressed_trailers());
EXPECT_FALSE(stream_->IsDoneReading());
// Receive and consume body.
QuicStreamFrame frame(kClientDataStreamId1, /*fin=*/false, 0, body);
stream_->OnStreamFrame(frame);
EXPECT_EQ(body, stream_->data());
EXPECT_TRUE(stream_->IsDoneReading());
}
TEST_P(QuicSpdyStreamTest, ClosingStreamWithNoTrailers) {
// Verify that a stream receiving headers, body, and no trailers is correctly
// marked as done reading on consumption of headers and body.
Initialize(kShouldProcessData);
// Receive and consume initial headers with FIN not set.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(/*fin=*/false, headers.size());
stream_->MarkHeadersConsumed(headers.size());
// Receive and consume body with FIN set, and no trailers.
const string kBody = string(1024, 'x');
QuicStreamFrame frame(kClientDataStreamId1, /*fin=*/true, 0, kBody);
stream_->OnStreamFrame(frame);
EXPECT_TRUE(stream_->IsDoneReading());
}
TEST_P(QuicSpdyStreamTest, WritingTrailersSendsAFin) {
// Test that writing trailers will send a FIN, as Trailers are the last thing
// to be sent on a stream.
Initialize(kShouldProcessData);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _))
.Times(AnyNumber())
.WillRepeatedly(Invoke(MockQuicSession::ConsumeAllData));
// Write the initial headers, without a FIN.
EXPECT_CALL(*session_, WriteHeaders(_, _, _, _, _));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Writing trailers implicitly sends a FIN.
SpdyHeaderBlock trailers;
trailers["trailer key"] = "trailer value";
EXPECT_CALL(*session_, WriteHeaders(_, _,
/*fin=*/true, _, _));
stream_->WriteTrailers(std::move(trailers), nullptr);
EXPECT_TRUE(stream_->fin_sent());
}
TEST_P(QuicSpdyStreamTest, WritingTrailersFinalOffset) {
// Test that when writing trailers, the trailers that are actually sent to the
// peer contain the final offset field indicating last byte of data.
Initialize(kShouldProcessData);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _))
.Times(AnyNumber())
.WillRepeatedly(Invoke(MockQuicSession::ConsumeAllData));
// Write the initial headers.
EXPECT_CALL(*session_, WriteHeaders(_, _, _, _, _));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Write non-zero body data to force a non-zero final offset.
const int kBodySize = 1 * 1024; // 1 MB
stream_->WriteOrBufferData(string(kBodySize, 'x'), false, nullptr);
// The final offset field in the trailing headers is populated with the
// number of body bytes written (including queued bytes).
SpdyHeaderBlock trailers;
trailers["trailer key"] = "trailer value";
SpdyHeaderBlock trailers_with_offset = trailers;
trailers_with_offset[kFinalOffsetHeaderKey] = base::IntToString(kBodySize);
EXPECT_CALL(*session_, WriteHeaders(_, testing::Eq(trailers_with_offset),
/*fin=*/true, _, _));
stream_->WriteTrailers(std::move(trailers), nullptr);
}
TEST_P(QuicSpdyStreamTest, WritingTrailersClosesWriteSide) {
// Test that if trailers are written after all other data has been written
// (headers and body), that this closes the stream for writing.
Initialize(kShouldProcessData);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _))
.Times(AnyNumber())
.WillRepeatedly(Invoke(MockQuicSession::ConsumeAllData));
// Write the initial headers.
EXPECT_CALL(*session_, WriteHeaders(_, _, _, _, _));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Write non-zero body data.
const int kBodySize = 1 * 1024; // 1 MB
stream_->WriteOrBufferData(string(kBodySize, 'x'), false, nullptr);
EXPECT_EQ(0u, stream_->queued_data_bytes());
// Headers and body have been fully written, there is no queued data. Writing
// trailers marks the end of this stream, and thus the write side is closed.
EXPECT_CALL(*session_, WriteHeaders(_, _,
/*fin=*/true, _, _));
stream_->WriteTrailers(SpdyHeaderBlock(), nullptr);
EXPECT_TRUE(stream_->write_side_closed());
}
TEST_P(QuicSpdyStreamTest, WritingTrailersWithQueuedBytes) {
// Test that the stream is not closed for writing when trailers are sent
// while there are still body bytes queued.
Initialize(kShouldProcessData);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _))
.Times(AnyNumber())
.WillRepeatedly(Invoke(MockQuicSession::ConsumeAllData));
// Write the initial headers.
EXPECT_CALL(*session_, WriteHeaders(_, _, _, _, _));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Write non-zero body data, but only consume partially, ensuring queueing.
const int kBodySize = 1 * 1024; // 1 MB
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _))
.WillOnce(Return(QuicConsumedData(kBodySize - 1, false)));
stream_->WriteOrBufferData(string(kBodySize, 'x'), false, nullptr);
EXPECT_EQ(1u, stream_->queued_data_bytes());
// Writing trailers will send a FIN, but not close the write side of the
// stream as there are queued bytes.
EXPECT_CALL(*session_, WriteHeaders(_, _,
/*fin=*/true, _, _));
stream_->WriteTrailers(SpdyHeaderBlock(), nullptr);
EXPECT_TRUE(stream_->fin_sent());
EXPECT_FALSE(stream_->write_side_closed());
}
TEST_P(QuicSpdyStreamTest, WritingTrailersAfterFIN) {
// Test that it is not possible to write Trailers after a FIN has been sent.
Initialize(kShouldProcessData);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _))
.Times(AnyNumber())
.WillRepeatedly(Invoke(MockQuicSession::ConsumeAllData));
// Write the initial headers, with a FIN.
EXPECT_CALL(*session_, WriteHeaders(_, _, _, _, _));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/true, nullptr);
EXPECT_TRUE(stream_->fin_sent());
// Writing Trailers should fail, as the FIN has already been sent.
// populated with the number of body bytes written.
EXPECT_DFATAL(stream_->WriteTrailers(SpdyHeaderBlock(), nullptr),
"Trailers cannot be sent after a FIN");
}
} // namespace
} // namespace test
} // namespace net