blob: aae3fd4cef54cedc7c7890fceb8b675ecdf61489 [file] [log] [blame]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file contains the tests for the FencedAllocator class.
#include "base/callback.h"
#include "base/message_loop.h"
#include "base/mac/scoped_nsautorelease_pool.h"
#include "gpu/command_buffer/client/cmd_buffer_helper.h"
#include "gpu/command_buffer/client/fenced_allocator.h"
#include "gpu/command_buffer/service/cmd_buffer_engine.h"
#include "gpu/command_buffer/service/mocks.h"
#include "gpu/command_buffer/service/command_buffer_service.h"
#include "gpu/command_buffer/service/gpu_scheduler.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace gpu {
using testing::Return;
using testing::Mock;
using testing::Truly;
using testing::Sequence;
using testing::DoAll;
using testing::Invoke;
using testing::_;
class BaseFencedAllocatorTest : public testing::Test {
protected:
static const unsigned int kBufferSize = 1024;
virtual void SetUp() {
api_mock_.reset(new AsyncAPIMock);
// ignore noops in the mock - we don't want to inspect the internals of the
// helper.
EXPECT_CALL(*api_mock_, DoCommand(cmd::kNoop, 0, _))
.WillRepeatedly(Return(error::kNoError));
// Forward the SetToken calls to the engine
EXPECT_CALL(*api_mock_.get(), DoCommand(cmd::kSetToken, 1, _))
.WillRepeatedly(DoAll(Invoke(api_mock_.get(), &AsyncAPIMock::SetToken),
Return(error::kNoError)));
command_buffer_.reset(new CommandBufferService);
command_buffer_->Initialize(kBufferSize);
Buffer ring_buffer = command_buffer_->GetRingBuffer();
parser_ = new CommandParser(ring_buffer.ptr,
ring_buffer.size,
0,
ring_buffer.size,
0,
api_mock_.get());
gpu_scheduler_.reset(new GpuScheduler(
command_buffer_.get(), NULL, parser_));
command_buffer_->SetPutOffsetChangeCallback(NewCallback(
gpu_scheduler_.get(), &GpuScheduler::PutChanged));
api_mock_->set_engine(gpu_scheduler_.get());
helper_.reset(new CommandBufferHelper(command_buffer_.get()));
helper_->Initialize(kBufferSize);
}
int32 GetToken() {
return command_buffer_->GetState().token;
}
base::mac::ScopedNSAutoreleasePool autorelease_pool_;
MessageLoop message_loop_;
scoped_ptr<AsyncAPIMock> api_mock_;
scoped_ptr<CommandBufferService> command_buffer_;
scoped_ptr<GpuScheduler> gpu_scheduler_;
CommandParser* parser_;
scoped_ptr<CommandBufferHelper> helper_;
};
#ifndef _MSC_VER
const unsigned int BaseFencedAllocatorTest::kBufferSize;
#endif
// Test fixture for FencedAllocator test - Creates a FencedAllocator, using a
// CommandBufferHelper with a mock AsyncAPIInterface for its interface (calling
// it directly, not through the RPC mechanism), making sure Noops are ignored
// and SetToken are properly forwarded to the engine.
class FencedAllocatorTest : public BaseFencedAllocatorTest {
protected:
virtual void SetUp() {
BaseFencedAllocatorTest::SetUp();
allocator_.reset(new FencedAllocator(kBufferSize, helper_.get()));
}
virtual void TearDown() {
// If the GpuScheduler posts any tasks, this forces them to run.
MessageLoop::current()->RunAllPending();
EXPECT_TRUE(allocator_->CheckConsistency());
BaseFencedAllocatorTest::TearDown();
}
scoped_ptr<FencedAllocator> allocator_;
};
// Checks basic alloc and free.
TEST_F(FencedAllocatorTest, TestBasic) {
allocator_->CheckConsistency();
EXPECT_FALSE(allocator_->InUse());
const unsigned int kSize = 16;
FencedAllocator::Offset offset = allocator_->Alloc(kSize);
EXPECT_TRUE(allocator_->InUse());
EXPECT_NE(FencedAllocator::kInvalidOffset, offset);
EXPECT_GE(kBufferSize, offset+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
allocator_->Free(offset);
EXPECT_FALSE(allocator_->InUse());
EXPECT_TRUE(allocator_->CheckConsistency());
}
// Checks out-of-memory condition.
TEST_F(FencedAllocatorTest, TestOutOfMemory) {
EXPECT_TRUE(allocator_->CheckConsistency());
const unsigned int kSize = 16;
const unsigned int kAllocCount = kBufferSize / kSize;
CHECK(kAllocCount * kSize == kBufferSize);
// Allocate several buffers to fill in the memory.
FencedAllocator::Offset offsets[kAllocCount];
for (unsigned int i = 0; i < kAllocCount; ++i) {
offsets[i] = allocator_->Alloc(kSize);
EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
EXPECT_GE(kBufferSize, offsets[i]+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
}
// This allocation should fail.
FencedAllocator::Offset offset_failed = allocator_->Alloc(kSize);
EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free one successful allocation, reallocate with half the size
allocator_->Free(offsets[0]);
EXPECT_TRUE(allocator_->CheckConsistency());
offsets[0] = allocator_->Alloc(kSize/2);
EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[0]);
EXPECT_GE(kBufferSize, offsets[0]+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
// This allocation should fail as well.
offset_failed = allocator_->Alloc(kSize);
EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free up everything.
for (unsigned int i = 0; i < kAllocCount; ++i) {
allocator_->Free(offsets[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
}
// Checks the free-pending-token mechanism.
TEST_F(FencedAllocatorTest, TestFreePendingToken) {
EXPECT_TRUE(allocator_->CheckConsistency());
const unsigned int kSize = 16;
const unsigned int kAllocCount = kBufferSize / kSize;
CHECK(kAllocCount * kSize == kBufferSize);
// Allocate several buffers to fill in the memory.
FencedAllocator::Offset offsets[kAllocCount];
for (unsigned int i = 0; i < kAllocCount; ++i) {
offsets[i] = allocator_->Alloc(kSize);
EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
EXPECT_GE(kBufferSize, offsets[i]+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
}
// This allocation should fail.
FencedAllocator::Offset offset_failed = allocator_->Alloc(kSize);
EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free one successful allocation, pending fence.
int32 token = helper_.get()->InsertToken();
allocator_->FreePendingToken(offsets[0], token);
EXPECT_TRUE(allocator_->CheckConsistency());
// The way we hooked up the helper and engine, it won't process commands
// until it has to wait for something. Which means the token shouldn't have
// passed yet at this point.
EXPECT_GT(token, GetToken());
// This allocation will need to reclaim the space freed above, so that should
// process the commands until the token is passed.
offsets[0] = allocator_->Alloc(kSize);
EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[0]);
EXPECT_GE(kBufferSize, offsets[0]+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
// Check that the token has indeed passed.
EXPECT_LE(token, GetToken());
// Free up everything.
for (unsigned int i = 0; i < kAllocCount; ++i) {
allocator_->Free(offsets[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
}
// Checks the free-pending-token mechanism using FreeUnused
TEST_F(FencedAllocatorTest, FreeUnused) {
EXPECT_TRUE(allocator_->CheckConsistency());
const unsigned int kSize = 16;
const unsigned int kAllocCount = kBufferSize / kSize;
CHECK(kAllocCount * kSize == kBufferSize);
// Allocate several buffers to fill in the memory.
FencedAllocator::Offset offsets[kAllocCount];
for (unsigned int i = 0; i < kAllocCount; ++i) {
offsets[i] = allocator_->Alloc(kSize);
EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
EXPECT_GE(kBufferSize, offsets[i]+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
}
EXPECT_TRUE(allocator_->InUse());
// No memory should be available.
EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
// Free one successful allocation, pending fence.
int32 token = helper_.get()->InsertToken();
allocator_->FreePendingToken(offsets[0], token);
EXPECT_TRUE(allocator_->CheckConsistency());
// Force the command buffer to process the token.
helper_->Finish();
// Tell the allocator to update what's available based on the current token.
allocator_->FreeUnused();
// Check that the new largest free size takes into account the unused block.
EXPECT_EQ(kSize, allocator_->GetLargestFreeSize());
// Free two more.
token = helper_.get()->InsertToken();
allocator_->FreePendingToken(offsets[1], token);
token = helper_.get()->InsertToken();
allocator_->FreePendingToken(offsets[2], token);
EXPECT_TRUE(allocator_->CheckConsistency());
// Check that nothing has changed.
EXPECT_EQ(kSize, allocator_->GetLargestFreeSize());
// Force the command buffer to process the token.
helper_->Finish();
// Tell the allocator to update what's available based on the current token.
allocator_->FreeUnused();
// Check that the new largest free size takes into account the unused blocks.
EXPECT_EQ(kSize * 3, allocator_->GetLargestFreeSize());
EXPECT_TRUE(allocator_->InUse());
// Free up everything.
for (unsigned int i = 3; i < kAllocCount; ++i) {
allocator_->Free(offsets[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
EXPECT_FALSE(allocator_->InUse());
}
// Tests GetLargestFreeSize
TEST_F(FencedAllocatorTest, TestGetLargestFreeSize) {
EXPECT_TRUE(allocator_->CheckConsistency());
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
FencedAllocator::Offset offset = allocator_->Alloc(kBufferSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
allocator_->Free(offset);
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
const unsigned int kSize = 16;
offset = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
// The following checks that the buffer is allocated "smartly" - which is
// dependent on the implementation. But both first-fit or best-fit would
// ensure that.
EXPECT_EQ(kBufferSize - kSize, allocator_->GetLargestFreeSize());
// Allocate 2 more buffers (now 3), and then free the first two. This is to
// ensure a hole. Note that this is dependent on the first-fit current
// implementation.
FencedAllocator::Offset offset1 = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
FencedAllocator::Offset offset2 = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset2);
allocator_->Free(offset);
allocator_->Free(offset1);
EXPECT_EQ(kBufferSize - 3 * kSize, allocator_->GetLargestFreeSize());
offset = allocator_->Alloc(kBufferSize - 3 * kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
EXPECT_EQ(2 * kSize, allocator_->GetLargestFreeSize());
offset1 = allocator_->Alloc(2 * kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
allocator_->Free(offset);
allocator_->Free(offset1);
allocator_->Free(offset2);
}
// Tests GetLargestFreeOrPendingSize
TEST_F(FencedAllocatorTest, TestGetLargestFreeOrPendingSize) {
EXPECT_TRUE(allocator_->CheckConsistency());
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
FencedAllocator::Offset offset = allocator_->Alloc(kBufferSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
EXPECT_EQ(0u, allocator_->GetLargestFreeOrPendingSize());
allocator_->Free(offset);
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
const unsigned int kSize = 16;
offset = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
// The following checks that the buffer is allocates "smartly" - which is
// dependent on the implementation. But both first-fit or best-fit would
// ensure that.
EXPECT_EQ(kBufferSize - kSize, allocator_->GetLargestFreeOrPendingSize());
// Allocate 2 more buffers (now 3), and then free the first two. This is to
// ensure a hole. Note that this is dependent on the first-fit current
// implementation.
FencedAllocator::Offset offset1 = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
FencedAllocator::Offset offset2 = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset2);
allocator_->Free(offset);
allocator_->Free(offset1);
EXPECT_EQ(kBufferSize - 3 * kSize,
allocator_->GetLargestFreeOrPendingSize());
// Free the last one, pending a token.
int32 token = helper_.get()->InsertToken();
allocator_->FreePendingToken(offset2, token);
// Now all the buffers have been freed...
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
// .. but one is still waiting for the token.
EXPECT_EQ(kBufferSize - 3 * kSize,
allocator_->GetLargestFreeSize());
// The way we hooked up the helper and engine, it won't process commands
// until it has to wait for something. Which means the token shouldn't have
// passed yet at this point.
EXPECT_GT(token, GetToken());
// This allocation will need to reclaim the space freed above, so that should
// process the commands until the token is passed, but it will succeed.
offset = allocator_->Alloc(kBufferSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
// Check that the token has indeed passed.
EXPECT_LE(token, GetToken());
allocator_->Free(offset);
// Everything now has been freed...
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
// ... for real.
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
}
// Test fixture for FencedAllocatorWrapper test - Creates a
// FencedAllocatorWrapper, using a CommandBufferHelper with a mock
// AsyncAPIInterface for its interface (calling it directly, not through the
// RPC mechanism), making sure Noops are ignored and SetToken are properly
// forwarded to the engine.
class FencedAllocatorWrapperTest : public BaseFencedAllocatorTest {
protected:
virtual void SetUp() {
BaseFencedAllocatorTest::SetUp();
// Though allocating this buffer isn't strictly necessary, it makes
// allocations point to valid addresses, so they could be used for
// something.
buffer_.reset(new char[kBufferSize]);
allocator_.reset(new FencedAllocatorWrapper(kBufferSize, helper_.get(),
buffer_.get()));
}
virtual void TearDown() {
// If the GpuScheduler posts any tasks, this forces them to run.
MessageLoop::current()->RunAllPending();
EXPECT_TRUE(allocator_->CheckConsistency());
BaseFencedAllocatorTest::TearDown();
}
scoped_ptr<FencedAllocatorWrapper> allocator_;
scoped_array<char> buffer_;
};
// Checks basic alloc and free.
TEST_F(FencedAllocatorWrapperTest, TestBasic) {
allocator_->CheckConsistency();
const unsigned int kSize = 16;
void *pointer = allocator_->Alloc(kSize);
ASSERT_TRUE(pointer);
EXPECT_LE(buffer_.get(), static_cast<char *>(pointer));
EXPECT_GE(kBufferSize, static_cast<char *>(pointer) - buffer_.get() + kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
allocator_->Free(pointer);
EXPECT_TRUE(allocator_->CheckConsistency());
char *pointer_char = allocator_->AllocTyped<char>(kSize);
ASSERT_TRUE(pointer_char);
EXPECT_LE(buffer_.get(), pointer_char);
EXPECT_GE(buffer_.get() + kBufferSize, pointer_char + kSize);
allocator_->Free(pointer_char);
EXPECT_TRUE(allocator_->CheckConsistency());
unsigned int *pointer_uint = allocator_->AllocTyped<unsigned int>(kSize);
ASSERT_TRUE(pointer_uint);
EXPECT_LE(buffer_.get(), reinterpret_cast<char *>(pointer_uint));
EXPECT_GE(buffer_.get() + kBufferSize,
reinterpret_cast<char *>(pointer_uint + kSize));
// Check that it did allocate kSize * sizeof(unsigned int). We can't tell
// directly, except from the remaining size.
EXPECT_EQ(kBufferSize - kSize * sizeof(*pointer_uint),
allocator_->GetLargestFreeSize());
allocator_->Free(pointer_uint);
}
// Checks out-of-memory condition.
TEST_F(FencedAllocatorWrapperTest, TestOutOfMemory) {
allocator_->CheckConsistency();
const unsigned int kSize = 16;
const unsigned int kAllocCount = kBufferSize / kSize;
CHECK(kAllocCount * kSize == kBufferSize);
// Allocate several buffers to fill in the memory.
void *pointers[kAllocCount];
for (unsigned int i = 0; i < kAllocCount; ++i) {
pointers[i] = allocator_->Alloc(kSize);
EXPECT_TRUE(pointers[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
// This allocation should fail.
void *pointer_failed = allocator_->Alloc(kSize);
EXPECT_FALSE(pointer_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free one successful allocation, reallocate with half the size
allocator_->Free(pointers[0]);
EXPECT_TRUE(allocator_->CheckConsistency());
pointers[0] = allocator_->Alloc(kSize/2);
EXPECT_TRUE(pointers[0]);
EXPECT_TRUE(allocator_->CheckConsistency());
// This allocation should fail as well.
pointer_failed = allocator_->Alloc(kSize);
EXPECT_FALSE(pointer_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free up everything.
for (unsigned int i = 0; i < kAllocCount; ++i) {
allocator_->Free(pointers[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
}
// Checks the free-pending-token mechanism.
TEST_F(FencedAllocatorWrapperTest, TestFreePendingToken) {
allocator_->CheckConsistency();
const unsigned int kSize = 16;
const unsigned int kAllocCount = kBufferSize / kSize;
CHECK(kAllocCount * kSize == kBufferSize);
// Allocate several buffers to fill in the memory.
void *pointers[kAllocCount];
for (unsigned int i = 0; i < kAllocCount; ++i) {
pointers[i] = allocator_->Alloc(kSize);
EXPECT_TRUE(pointers[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
// This allocation should fail.
void *pointer_failed = allocator_->Alloc(kSize);
EXPECT_FALSE(pointer_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free one successful allocation, pending fence.
int32 token = helper_.get()->InsertToken();
allocator_->FreePendingToken(pointers[0], token);
EXPECT_TRUE(allocator_->CheckConsistency());
// The way we hooked up the helper and engine, it won't process commands
// until it has to wait for something. Which means the token shouldn't have
// passed yet at this point.
EXPECT_GT(token, GetToken());
// This allocation will need to reclaim the space freed above, so that should
// process the commands until the token is passed.
pointers[0] = allocator_->Alloc(kSize);
EXPECT_TRUE(pointers[0]);
EXPECT_TRUE(allocator_->CheckConsistency());
// Check that the token has indeed passed.
EXPECT_LE(token, GetToken());
// Free up everything.
for (unsigned int i = 0; i < kAllocCount; ++i) {
allocator_->Free(pointers[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
}
} // namespace gpu