blob: 7da3bc7906893f601d8ce16e2e4c16d3391088f4 [file] [log] [blame]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/dns/async_host_resolver.h"
#include "base/bind.h"
#include "base/memory/scoped_ptr.h"
#include "net/base/host_cache.h"
#include "net/base/net_log.h"
#include "net/base/rand_callback.h"
#include "net/base/sys_addrinfo.h"
#include "net/base/test_host_resolver_observer.h"
#include "net/dns/dns_test_util.h"
#include "net/socket/socket_test_util.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace {
void VerifyAddressList(const std::vector<const char*>& ip_addresses,
int port,
const AddressList& addrlist) {
ASSERT_LT(0u, ip_addresses.size());
ASSERT_NE(static_cast<addrinfo*>(NULL), addrlist.head());
IPAddressNumber ip_number;
const struct addrinfo* ainfo = addrlist.head();
for (std::vector<const char*>::const_iterator i = ip_addresses.begin();
i != ip_addresses.end(); ++i, ainfo = ainfo->ai_next) {
ASSERT_NE(static_cast<addrinfo*>(NULL), ainfo);
EXPECT_EQ(sizeof(struct sockaddr_in), ainfo->ai_addrlen);
const struct sockaddr* sa = ainfo->ai_addr;
const struct sockaddr_in* sa_in = (const struct sockaddr_in*) sa;
EXPECT_TRUE(htons(port) == sa_in->sin_port);
EXPECT_STREQ(*i, NetAddressToString(sa, ainfo->ai_addrlen).c_str());
}
ASSERT_EQ(static_cast<addrinfo*>(NULL), ainfo);
}
} // namespace
static const int kPortNum = 80;
static const size_t kMaxTransactions = 2;
static const size_t kMaxPendingRequests = 1;
static int transaction_ids[] = {0, 1, 2, 3};
// The following fixture sets up an environment for four different lookups
// with their data defined in dns_test_util.h. All tests make use of these
// predefined variables instead of each defining their own, to avoid
// boilerplate code in every test. Assuming every coming query is for a
// distinct hostname, as |kMaxTransactions| is set to 2 and
// |kMaxPendingRequests| is set to 1, first two queries start immediately
// and the next one is sent to pending queue; as a result, the next query
// should either fail itself or cause the pending query to fail depending
// on its priority.
class AsyncHostResolverTest : public testing::Test {
public:
AsyncHostResolverTest()
: info0_(HostPortPair(kT0HostName, kPortNum)),
info1_(HostPortPair(kT1HostName, kPortNum)),
info2_(HostPortPair(kT2HostName, kPortNum)),
info3_(HostPortPair(kT3HostName, kPortNum)),
ip_addresses0_(kT0IpAddresses,
kT0IpAddresses + arraysize(kT0IpAddresses)),
ip_addresses1_(kT1IpAddresses,
kT1IpAddresses + arraysize(kT1IpAddresses)),
ip_addresses2_(kT2IpAddresses,
kT2IpAddresses + arraysize(kT2IpAddresses)),
ip_addresses3_(kT3IpAddresses,
kT3IpAddresses + arraysize(kT3IpAddresses)),
test_prng_(std::deque<int>(
transaction_ids, transaction_ids + arraysize(transaction_ids))) {
rand_int_cb_ = base::Bind(&TestPrng::GetNext,
base::Unretained(&test_prng_));
// AF_INET only for now.
info0_.set_address_family(ADDRESS_FAMILY_IPV4);
info1_.set_address_family(ADDRESS_FAMILY_IPV4);
info2_.set_address_family(ADDRESS_FAMILY_IPV4);
info3_.set_address_family(ADDRESS_FAMILY_IPV4);
// Setup socket read/writes for transaction 0.
writes0_.push_back(
MockWrite(true, reinterpret_cast<const char*>(kT0QueryDatagram),
arraysize(kT0QueryDatagram)));
reads0_.push_back(
MockRead(true, reinterpret_cast<const char*>(kT0ResponseDatagram),
arraysize(kT0ResponseDatagram)));
data0_.reset(new StaticSocketDataProvider(&reads0_[0], reads0_.size(),
&writes0_[0], writes0_.size()));
// Setup socket read/writes for transaction 1.
writes1_.push_back(
MockWrite(true, reinterpret_cast<const char*>(kT1QueryDatagram),
arraysize(kT1QueryDatagram)));
reads1_.push_back(
MockRead(true, reinterpret_cast<const char*>(kT1ResponseDatagram),
arraysize(kT1ResponseDatagram)));
data1_.reset(new StaticSocketDataProvider(&reads1_[0], reads1_.size(),
&writes1_[0], writes1_.size()));
// Setup socket read/writes for transaction 2.
writes2_.push_back(
MockWrite(true, reinterpret_cast<const char*>(kT2QueryDatagram),
arraysize(kT2QueryDatagram)));
reads2_.push_back(
MockRead(true, reinterpret_cast<const char*>(kT2ResponseDatagram),
arraysize(kT2ResponseDatagram)));
data2_.reset(new StaticSocketDataProvider(&reads2_[0], reads2_.size(),
&writes2_[0], writes2_.size()));
// Setup socket read/writes for transaction 3.
writes3_.push_back(
MockWrite(true, reinterpret_cast<const char*>(kT3QueryDatagram),
arraysize(kT3QueryDatagram)));
reads3_.push_back(
MockRead(true, reinterpret_cast<const char*>(kT3ResponseDatagram),
arraysize(kT3ResponseDatagram)));
data3_.reset(new StaticSocketDataProvider(&reads3_[0], reads3_.size(),
&writes3_[0], writes3_.size()));
factory_.AddSocketDataProvider(data0_.get());
factory_.AddSocketDataProvider(data1_.get());
factory_.AddSocketDataProvider(data2_.get());
factory_.AddSocketDataProvider(data3_.get());
IPEndPoint dns_server;
bool rv0 = CreateDnsAddress(kDnsIp, kDnsPort, &dns_server);
DCHECK(rv0);
resolver_.reset(
new AsyncHostResolver(
dns_server, kMaxTransactions, kMaxPendingRequests, rand_int_cb_,
HostCache::CreateDefaultCache(), &factory_, NULL));
}
protected:
AddressList addrlist0_, addrlist1_, addrlist2_, addrlist3_;
HostResolver::RequestInfo info0_, info1_, info2_, info3_;
std::vector<MockWrite> writes0_, writes1_, writes2_, writes3_;
std::vector<MockRead> reads0_, reads1_, reads2_, reads3_;
scoped_ptr<StaticSocketDataProvider> data0_, data1_, data2_, data3_;
std::vector<const char*> ip_addresses0_, ip_addresses1_,
ip_addresses2_, ip_addresses3_;
MockClientSocketFactory factory_;
TestPrng test_prng_;
RandIntCallback rand_int_cb_;
scoped_ptr<HostResolver> resolver_;
TestOldCompletionCallback callback0_, callback1_, callback2_, callback3_;
};
TEST_F(AsyncHostResolverTest, EmptyHostLookup) {
info0_.set_host_port_pair(HostPortPair("", kPortNum));
int rv = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_NAME_NOT_RESOLVED, rv);
}
TEST_F(AsyncHostResolverTest, IPv4LiteralLookup) {
const char* kIPLiteral = "192.168.1.2";
info0_.set_host_port_pair(HostPortPair(kIPLiteral, kPortNum));
info0_.set_host_resolver_flags(HOST_RESOLVER_CANONNAME);
int rv = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
EXPECT_EQ(OK, rv);
std::vector<const char*> ip_addresses(1, kIPLiteral);
VerifyAddressList(ip_addresses, kPortNum, addrlist0_);
EXPECT_STREQ(kIPLiteral, addrlist0_.head()->ai_canonname);
}
TEST_F(AsyncHostResolverTest, IPv6LiteralLookup) {
info0_.set_host_port_pair(HostPortPair("2001:db8:0::42", kPortNum));
int rv = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
// When support for IPv6 is added, this should succeed.
EXPECT_EQ(ERR_NAME_NOT_RESOLVED, rv);
}
TEST_F(AsyncHostResolverTest, CachedLookup) {
int rv = resolver_->ResolveFromCache(info0_, &addrlist0_, BoundNetLog());
EXPECT_EQ(ERR_DNS_CACHE_MISS, rv);
// Cache the result of |info0_| lookup.
rv = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
rv = callback0_.WaitForResult();
EXPECT_EQ(OK, rv);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_);
// Now lookup |info0_| from cache only, store results in |addrlist1_|,
// should succeed synchronously.
rv = resolver_->ResolveFromCache(info0_, &addrlist1_, BoundNetLog());
EXPECT_EQ(OK, rv);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist1_);
}
TEST_F(AsyncHostResolverTest, InvalidHostNameLookup) {
const std::string kHostName1(64, 'a');
info0_.set_host_port_pair(HostPortPair(kHostName1, kPortNum));
int rv = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_NAME_NOT_RESOLVED, rv);
const std::string kHostName2(4097, 'b');
info0_.set_host_port_pair(HostPortPair(kHostName2, kPortNum));
rv = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_NAME_NOT_RESOLVED, rv);
}
TEST_F(AsyncHostResolverTest, Lookup) {
int rv = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv);
rv = callback0_.WaitForResult();
EXPECT_EQ(OK, rv);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_);
}
TEST_F(AsyncHostResolverTest, ConcurrentLookup) {
int rv0 = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
int rv1 = resolver_->Resolve(info1_, &addrlist1_, &callback1_, NULL,
BoundNetLog());
int rv2 = resolver_->Resolve(info2_, &addrlist2_, &callback2_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv0);
EXPECT_EQ(ERR_IO_PENDING, rv1);
EXPECT_EQ(ERR_IO_PENDING, rv2);
rv0 = callback0_.WaitForResult();
EXPECT_EQ(OK, rv0);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_);
rv1 = callback1_.WaitForResult();
EXPECT_EQ(OK, rv1);
VerifyAddressList(ip_addresses1_, kPortNum, addrlist1_);
rv2 = callback2_.WaitForResult();
EXPECT_EQ(OK, rv2);
VerifyAddressList(ip_addresses2_, kPortNum, addrlist2_);
EXPECT_EQ(3u, factory_.udp_client_sockets().size());
}
TEST_F(AsyncHostResolverTest, SameHostLookupsConsumeSingleTransaction) {
// We pass the info0_ to all requests.
int rv0 = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
int rv1 = resolver_->Resolve(info0_, &addrlist1_, &callback1_, NULL,
BoundNetLog());
int rv2 = resolver_->Resolve(info0_, &addrlist2_, &callback2_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv0);
EXPECT_EQ(ERR_IO_PENDING, rv1);
EXPECT_EQ(ERR_IO_PENDING, rv2);
rv0 = callback0_.WaitForResult();
EXPECT_EQ(OK, rv0);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_);
rv1 = callback1_.WaitForResult();
EXPECT_EQ(OK, rv1);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist1_);
rv2 = callback2_.WaitForResult();
EXPECT_EQ(OK, rv2);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist2_);
// Although we have three lookups, a single UDP socket was used.
EXPECT_EQ(1u, factory_.udp_client_sockets().size());
}
TEST_F(AsyncHostResolverTest, CancelLookup) {
HostResolver::RequestHandle req0 = NULL, req2 = NULL;
int rv0 = resolver_->Resolve(info0_, &addrlist0_, &callback0_, &req0,
BoundNetLog());
int rv1 = resolver_->Resolve(info1_, &addrlist1_, &callback1_, NULL,
BoundNetLog());
int rv2 = resolver_->Resolve(info2_, &addrlist2_, &callback2_, &req2,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv0);
EXPECT_EQ(ERR_IO_PENDING, rv1);
EXPECT_EQ(ERR_IO_PENDING, rv2);
resolver_->CancelRequest(req0);
resolver_->CancelRequest(req2);
MessageLoop::current()->RunAllPending();
EXPECT_FALSE(callback0_.have_result());
EXPECT_FALSE(callback2_.have_result());
rv1 = callback1_.WaitForResult();
EXPECT_EQ(OK, rv1);
VerifyAddressList(ip_addresses1_, kPortNum, addrlist1_);
}
// Tests the following scenario: start two resolutions for the same host,
// cancel one of them, make sure that the other one completes.
TEST_F(AsyncHostResolverTest, CancelSameHostLookup) {
HostResolver::RequestHandle req0 = NULL;
// Pass the info0_ to both requests.
int rv0 = resolver_->Resolve(info0_, &addrlist0_, &callback0_, &req0,
BoundNetLog());
int rv1 = resolver_->Resolve(info0_, &addrlist1_, &callback1_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv0);
EXPECT_EQ(ERR_IO_PENDING, rv1);
resolver_->CancelRequest(req0);
MessageLoop::current()->RunAllPending();
EXPECT_FALSE(callback0_.have_result());
rv1 = callback1_.WaitForResult();
EXPECT_EQ(OK, rv1);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist1_);
EXPECT_EQ(1u, factory_.udp_client_sockets().size());
}
// Test that a queued lookup completes.
TEST_F(AsyncHostResolverTest, QueuedLookup) {
// kMaxTransactions is 2, thus the following requests consume all
// available transactions.
int rv0 = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
int rv1 = resolver_->Resolve(info1_, &addrlist1_, &callback1_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv0);
EXPECT_EQ(ERR_IO_PENDING, rv1);
// The following request will end up in queue.
int rv2 = resolver_->Resolve(info2_, &addrlist2_, &callback2_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv2);
EXPECT_EQ(1u,
static_cast<AsyncHostResolver*>(resolver_.get())->GetNumPending());
// Make sure all requests complete.
rv0 = callback0_.WaitForResult();
EXPECT_EQ(OK, rv0);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_);
rv1 = callback1_.WaitForResult();
EXPECT_EQ(OK, rv1);
VerifyAddressList(ip_addresses1_, kPortNum, addrlist1_);
rv2 = callback2_.WaitForResult();
EXPECT_EQ(OK, rv2);
VerifyAddressList(ip_addresses2_, kPortNum, addrlist2_);
}
// Test that cancelling a queued lookup works.
TEST_F(AsyncHostResolverTest, CancelPendingLookup) {
// kMaxTransactions is 2, thus the following requests consume all
// available transactions.
int rv0 = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
int rv1 = resolver_->Resolve(info1_, &addrlist1_, &callback1_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv0);
EXPECT_EQ(ERR_IO_PENDING, rv1);
// The following request will end up in queue.
HostResolver::RequestHandle req2 = NULL;
int rv2 = resolver_->Resolve(info2_, &addrlist2_, &callback2_, &req2,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv2);
EXPECT_EQ(1u,
static_cast<AsyncHostResolver*>(resolver_.get())->GetNumPending());
resolver_->CancelRequest(req2);
// Make sure first two requests complete while the cancelled one doesn't.
MessageLoop::current()->RunAllPending();
EXPECT_FALSE(callback2_.have_result());
rv0 = callback0_.WaitForResult();
EXPECT_EQ(OK, rv0);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_);
rv1 = callback1_.WaitForResult();
EXPECT_EQ(OK, rv1);
VerifyAddressList(ip_addresses1_, kPortNum, addrlist1_);
}
TEST_F(AsyncHostResolverTest, ResolverDestructionCancelsLookups) {
int rv0 = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
int rv1 = resolver_->Resolve(info1_, &addrlist1_, &callback1_, NULL,
BoundNetLog());
// This one is queued.
int rv2 = resolver_->Resolve(info2_, &addrlist2_, &callback2_, NULL,
BoundNetLog());
EXPECT_EQ(1u,
static_cast<AsyncHostResolver*>(resolver_.get())->GetNumPending());
EXPECT_EQ(ERR_IO_PENDING, rv0);
EXPECT_EQ(ERR_IO_PENDING, rv1);
EXPECT_EQ(ERR_IO_PENDING, rv2);
resolver_.reset();
MessageLoop::current()->RunAllPending();
EXPECT_FALSE(callback0_.have_result());
EXPECT_FALSE(callback1_.have_result());
EXPECT_FALSE(callback2_.have_result());
}
// Test that when the number of pending lookups is at max, a new lookup
// with a priority lower than all of those in the queue fails.
TEST_F(AsyncHostResolverTest, OverflowQueueWithLowPriorityLookup) {
int rv0 = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
int rv1 = resolver_->Resolve(info1_, &addrlist1_, &callback1_, NULL,
BoundNetLog());
// This one is queued and fills up the queue since its size is 1.
int rv2 = resolver_->Resolve(info2_, &addrlist2_, &callback2_, NULL,
BoundNetLog());
EXPECT_EQ(1u,
static_cast<AsyncHostResolver*>(resolver_.get())->GetNumPending());
EXPECT_EQ(ERR_IO_PENDING, rv0);
EXPECT_EQ(ERR_IO_PENDING, rv1);
EXPECT_EQ(ERR_IO_PENDING, rv2);
// This one fails.
info3_.set_priority(LOWEST);
int rv3 = resolver_->Resolve(info3_, &addrlist3_, &callback3_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, rv3);
MessageLoop::current()->RunAllPending();
EXPECT_FALSE(callback3_.have_result());
}
// Test that when the number of pending lookups is at max, a new lookup
// with a priority higher than any of those in the queue succeeds and
// causes the lowest priority lookup in the queue to fail.
TEST_F(AsyncHostResolverTest, OverflowQueueWithHighPriorityLookup) {
int rv0 = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
int rv1 = resolver_->Resolve(info1_, &addrlist1_, &callback1_, NULL,
BoundNetLog());
// Next lookup is queued. Since this will be ejected from the queue and
// will not consume a socket from our factory, we are not passing it
// predefined members.
HostResolver::RequestInfo info(HostPortPair("cnn.com", 80));
info.set_address_family(ADDRESS_FAMILY_IPV4);
AddressList addrlist_fail;
TestOldCompletionCallback callback_fail;
int rv_fail = resolver_->Resolve(info, &addrlist_fail, &callback_fail, NULL,
BoundNetLog());
EXPECT_EQ(1u,
static_cast<AsyncHostResolver*>(resolver_.get())->GetNumPending());
EXPECT_EQ(ERR_IO_PENDING, rv0);
EXPECT_EQ(ERR_IO_PENDING, rv1);
EXPECT_EQ(ERR_IO_PENDING, rv_fail);
// Lookup 2 causes the above to fail, but itself should succeed.
info2_.set_priority(HIGHEST);
int rv2 = resolver_->Resolve(info2_, &addrlist2_, &callback2_, NULL,
BoundNetLog());
rv0 = callback0_.WaitForResult();
EXPECT_EQ(OK, rv0);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_);
rv1 = callback1_.WaitForResult();
EXPECT_EQ(OK, rv1);
VerifyAddressList(ip_addresses1_, kPortNum, addrlist1_);
rv_fail = callback_fail.WaitForResult();
EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, rv_fail);
EXPECT_EQ(static_cast<addrinfo*>(NULL), addrlist_fail.head());
rv2 = callback2_.WaitForResult();
EXPECT_EQ(OK, rv2);
VerifyAddressList(ip_addresses2_, kPortNum, addrlist2_);
}
// Test that registering, unregistering, and notifying of observers of
// resolution start, completion and cancellation (both due to CancelRequest
// and resolver destruction) work.
TEST_F(AsyncHostResolverTest, Observers) {
TestHostResolverObserver observer;
resolver_->AddObserver(&observer);
int rv0 = resolver_->Resolve(info0_, &addrlist0_, &callback0_, NULL,
BoundNetLog());
int rv1 = resolver_->Resolve(info1_, &addrlist1_, &callback1_, NULL,
BoundNetLog());
// We will cancel this one.
HostResolver::RequestHandle req2 = NULL;
int rv2 = resolver_->Resolve(info2_, &addrlist2_, &callback2_, &req2,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv0);
EXPECT_EQ(ERR_IO_PENDING, rv1);
EXPECT_EQ(ERR_IO_PENDING, rv2);
// Cancel lookup 2.
resolver_->CancelRequest(req2);
// Lookup 0 and 1 should succeed.
rv0 = callback0_.WaitForResult();
EXPECT_EQ(OK, rv0);
VerifyAddressList(ip_addresses0_, kPortNum, addrlist0_);
rv1 = callback1_.WaitForResult();
EXPECT_EQ(OK, rv1);
VerifyAddressList(ip_addresses1_, kPortNum, addrlist1_);
// Next lookup should not have finished.
MessageLoop::current()->RunAllPending();
EXPECT_FALSE(callback2_.have_result());
// Verify observer calls.
EXPECT_EQ(3u, observer.start_log.size());
EXPECT_EQ(2u, observer.finish_log.size());
EXPECT_EQ(1u, observer.cancel_log.size());
// Lookup 0 started and finished.
EXPECT_TRUE(observer.start_log[0] ==
TestHostResolverObserver::StartOrCancelEntry(0, info0_));
EXPECT_TRUE(observer.finish_log[0] ==
TestHostResolverObserver::FinishEntry(0, true, info0_));
// Ditto for lookup 1.
EXPECT_TRUE(observer.start_log[1] ==
TestHostResolverObserver::StartOrCancelEntry(1, info1_));
EXPECT_TRUE(observer.finish_log[1] ==
TestHostResolverObserver::FinishEntry(1, true, info1_));
// Lookup 2 was cancelled, hence, failed to finish.
EXPECT_TRUE(observer.start_log[2] ==
TestHostResolverObserver::StartOrCancelEntry(2, info2_));
EXPECT_TRUE(observer.cancel_log[0] ==
TestHostResolverObserver::StartOrCancelEntry(2, info2_));
// Unregister observer.
resolver_->RemoveObserver(&observer);
// We will do lookup 2 again but will not cancel it this time.
rv2 = resolver_->Resolve(info2_, &addrlist2_, &callback2_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv2);
// Run lookup 2 to completion.
rv2 = callback2_.WaitForResult();
EXPECT_EQ(OK, rv2);
VerifyAddressList(ip_addresses2_, kPortNum, addrlist2_);
// Observer log should stay the same.
EXPECT_EQ(3u, observer.start_log.size());
EXPECT_EQ(2u, observer.finish_log.size());
EXPECT_EQ(1u, observer.cancel_log.size());
// Re-register observer.
resolver_->AddObserver(&observer);
// Start lookup 3.
int rv3 = resolver_->Resolve(info3_, &addrlist3_, &callback3_, NULL,
BoundNetLog());
EXPECT_EQ(ERR_IO_PENDING, rv3);
// Destroy the resolver and make sure that observer was notified of just
// the resolution start.
resolver_.reset();
EXPECT_EQ(4u, observer.start_log.size()); // Was incremented by 1.
EXPECT_EQ(2u, observer.finish_log.size());
EXPECT_EQ(2u, observer.cancel_log.size());
EXPECT_TRUE(observer.start_log[3] ==
TestHostResolverObserver::StartOrCancelEntry(4, info3_));
}
} // namespace net