blob: 0303a12154fb07a8f43a21502d35e685a5f54391 [file] [log] [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/threading/thread_local_storage.h"
#include <algorithm>
#include <atomic>
#include "base/check_op.h"
#include "base/compiler_specific.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/notreached.h"
#include "base/synchronization/lock.h"
#include "build/build_config.h"
#if BUILDFLAG(IS_MAC) && defined(ARCH_CPU_X86_64)
#include <pthread.h>
#include <type_traits>
#endif
using base::internal::PlatformThreadLocalStorage;
// Chrome Thread Local Storage (TLS)
//
// This TLS system allows Chrome to use a single OS level TLS slot process-wide,
// and allows us to control the slot limits instead of being at the mercy of the
// platform. To do this, Chrome TLS replicates an array commonly found in the OS
// thread metadata.
//
// Overview:
//
// OS TLS Slots Per-Thread Per-Process Global
// ...
// [] Chrome TLS Array Chrome TLS Metadata
// [] ----------> [][][][][ ][][][][] [][][][][ ][][][][]
// [] | |
// ... V V
// Metadata Version Slot Information
// Your Data!
//
// Using a single OS TLS slot, Chrome TLS allocates an array on demand for the
// lifetime of each thread that requests Chrome TLS data. Each per-thread TLS
// array matches the length of the per-process global metadata array.
//
// A per-process global TLS metadata array tracks information about each item in
// the per-thread array:
// * Status: Tracks if the slot is allocated or free to assign.
// * Destructor: An optional destructor to call on thread destruction for that
// specific slot.
// * Version: Tracks the current version of the TLS slot. Each TLS slot
// allocation is associated with a unique version number.
//
// Most OS TLS APIs guarantee that a newly allocated TLS slot is
// initialized to 0 for all threads. The Chrome TLS system provides
// this guarantee by tracking the version for each TLS slot here
// on each per-thread Chrome TLS array entry. Threads that access
// a slot with a mismatched version will receive 0 as their value.
// The metadata version is incremented when the client frees a
// slot. The per-thread metadata version is updated when a client
// writes to the slot. This scheme allows for constant time
// invalidation and avoids the need to iterate through each Chrome
// TLS array to mark the slot as zero.
//
// Just like an OS TLS API, clients of the Chrome TLS are responsible for
// managing any necessary lifetime of the data in their slots. The only
// convenience provided is automatic destruction when a thread ends. If a client
// frees a slot, that client is responsible for destroying the data in the slot.
namespace {
// In order to make TLS destructors work, we need to keep around a function
// pointer to the destructor for each slot. We keep this array of pointers in a
// global (static) array.
// We use the single OS-level TLS slot (giving us one pointer per thread) to
// hold a pointer to a per-thread array (table) of slots that we allocate to
// Chromium consumers.
// g_native_tls_key is the one native TLS that we use. It stores our table.
std::atomic<PlatformThreadLocalStorage::TLSKey> g_native_tls_key{
PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES};
// The OS TLS slot has the following states. The TLS slot's lower 2 bits contain
// the state, the upper bits the TlsVectorEntry*.
// * kUninitialized: Any call to Slot::Get()/Set() will create the base
// per-thread TLS state. kUninitialized must be null.
// * kInUse: value has been created and is in use.
// * kDestroying: Set when the thread is exiting prior to deleting any of the
// values stored in the TlsVectorEntry*. This state is necessary so that
// sequence/task checks won't be done while in the process of deleting the
// tls entries (see comments in SequenceCheckerImpl for more details).
// * kDestroyed: All of the values in the vector have been deallocated and
// the TlsVectorEntry has been deleted.
//
// Final States:
// * Windows: kDestroyed. Windows does not iterate through the OS TLS to clean
// up the values.
// * POSIX: kUninitialized. POSIX iterates through TLS until all slots contain
// nullptr.
//
// More details on this design:
// We need some type of thread-local state to indicate that the TLS system has
// been destroyed. To do so, we leverage the multi-pass nature of destruction
// of pthread_key.
//
// a) After destruction of TLS system, we set the pthread_key to a sentinel
// kDestroyed.
// b) All calls to Slot::Get() DCHECK that the state is not kDestroyed, and
// any system which might potentially invoke Slot::Get() after destruction
// of TLS must check ThreadLocalStorage::ThreadIsBeingDestroyed().
// c) After a full pass of the pthread_keys, on the next invocation of
// ConstructTlsVector(), we'll then set the key to nullptr.
// d) At this stage, the TLS system is back in its uninitialized state.
// e) If in the second pass of destruction of pthread_keys something were to
// re-initialize TLS [this should never happen! Since the only code which
// uses Chrome TLS is Chrome controlled, we should really be striving for
// single-pass destruction], then TLS will be re-initialized and then go
// through the 2-pass destruction system again. Everything should just
// work (TM).
// The state of the tls-entry.
enum class TlsVectorState {
kUninitialized = 0,
// In the process of destroying the entries in the vector.
kDestroying,
// All of the entries and the vector has been destroyed.
kDestroyed,
// The vector has been initialized and is in use.
kInUse,
kMaxValue = kInUse
};
// Bit-mask used to store TlsVectorState.
constexpr uintptr_t kVectorStateBitMask = 3;
static_assert(static_cast<int>(TlsVectorState::kMaxValue) <=
kVectorStateBitMask,
"number of states must fit in header");
static_assert(static_cast<int>(TlsVectorState::kUninitialized) == 0,
"kUninitialized must be null");
// The maximum number of slots in our thread local storage stack.
constexpr size_t kThreadLocalStorageSize = 256;
enum TlsStatus {
FREE,
IN_USE,
};
struct TlsMetadata {
TlsStatus status;
base::ThreadLocalStorage::TLSDestructorFunc destructor;
// Incremented every time a slot is reused. Used to detect reuse of slots.
uint32_t version;
// Tracks slot creation order. Used to destroy slots in the reverse order:
// from last created to first created.
uint32_t sequence_num;
};
struct TlsVectorEntry {
// `data` is not a raw_ptr<...> for performance reasons (based on analysis of
// sampling profiler data and tab_search:top100:2020).
RAW_PTR_EXCLUSION void* data;
uint32_t version;
};
// This lock isn't needed until after we've constructed the per-thread TLS
// vector, so it's safe to use.
base::Lock* GetTLSMetadataLock() {
static auto* lock = new base::Lock();
return lock;
}
TlsMetadata g_tls_metadata[kThreadLocalStorageSize];
size_t g_last_assigned_slot = 0;
uint32_t g_sequence_num = 0;
// The maximum number of times to try to clear slots by calling destructors.
// Use pthread naming convention for clarity.
constexpr size_t kMaxDestructorIterations = kThreadLocalStorageSize;
// Sets the value and state of the vector.
void SetTlsVectorValue(PlatformThreadLocalStorage::TLSKey key,
TlsVectorEntry* tls_data,
TlsVectorState state) {
DCHECK(tls_data || (state == TlsVectorState::kUninitialized) ||
(state == TlsVectorState::kDestroyed));
PlatformThreadLocalStorage::SetTLSValue(
key, reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(tls_data) |
static_cast<uintptr_t>(state)));
}
// Returns the tls vector and current state from the raw tls value.
TlsVectorState GetTlsVectorStateAndValue(void* tls_value,
TlsVectorEntry** entry = nullptr) {
if (entry) {
*entry = reinterpret_cast<TlsVectorEntry*>(
reinterpret_cast<uintptr_t>(tls_value) & ~kVectorStateBitMask);
}
return static_cast<TlsVectorState>(reinterpret_cast<uintptr_t>(tls_value) &
kVectorStateBitMask);
}
// Returns the tls vector and state using the tls key.
TlsVectorState GetTlsVectorStateAndValue(PlatformThreadLocalStorage::TLSKey key,
TlsVectorEntry** entry = nullptr) {
// Only on x86_64, the implementation is not stable on ARM64. For instance, in
// macOS 11, the TPIDRRO_EL0 registers holds the CPU index in the low bits,
// which is not the case in macOS 12. See libsyscall/os/tsd.h in XNU
// (_os_tsd_get_direct() is used by pthread_getspecific() internally).
#if BUILDFLAG(IS_MAC) && defined(ARCH_CPU_X86_64)
// On macOS, pthread_getspecific() is in libSystem, so a call to it has to go
// through PLT. However, and contrary to some other platforms, *all* TLS keys
// are in a static array in the thread structure. So they are *always* at a
// fixed offset from the segment register holding the thread structure
// address.
//
// We could use _pthread_getspecific_direct(), but it is not
// exported. However, on all macOS versions we support, the TLS array is at
// %gs. This is used in V8 and PartitionAlloc, and can also be seen by looking
// at pthread_getspecific() disassembly:
//
// libsystem_pthread.dylib`pthread_getspecific:
// libsystem_pthread.dylib[0x7ff800316099] <+0>: movq %gs:(,%rdi,8), %rax
// libsystem_pthread.dylib[0x7ff8003160a2] <+9>: retq
//
// This function is essentially inlining the content of pthread_getspecific()
// here.
//
// Note that this likely ends up being even faster than thread_local for
// typical Chromium builds where the code is in a dynamic library. For the
// static executable case, this is likely equivalent.
static_assert(
std::is_same_v<PlatformThreadLocalStorage::TLSKey, pthread_key_t>,
"The special-case below assumes that the platform TLS implementation is "
"pthread.");
intptr_t platform_tls_value;
asm("movq %%gs:(,%1,8), %0;" : "=r"(platform_tls_value) : "r"(key));
return GetTlsVectorStateAndValue(reinterpret_cast<void*>(platform_tls_value),
entry);
#else
return GetTlsVectorStateAndValue(PlatformThreadLocalStorage::GetTLSValue(key),
entry);
#endif
}
// This function is called to initialize our entire Chromium TLS system.
// It may be called very early, and we need to complete most all of the setup
// (initialization) before calling *any* memory allocator functions, which may
// recursively depend on this initialization.
// As a result, we use Atomics, and avoid anything (like a singleton) that might
// require memory allocations.
TlsVectorEntry* ConstructTlsVector() {
PlatformThreadLocalStorage::TLSKey key =
g_native_tls_key.load(std::memory_order_relaxed);
if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
CHECK(PlatformThreadLocalStorage::AllocTLS(&key));
// The TLS_KEY_OUT_OF_INDEXES is used to find out whether the key is set or
// not in NoBarrier_CompareAndSwap, but Posix doesn't have invalid key, we
// define an almost impossible value be it.
// If we really get TLS_KEY_OUT_OF_INDEXES as value of key, just alloc
// another TLS slot.
if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
PlatformThreadLocalStorage::TLSKey tmp = key;
CHECK(PlatformThreadLocalStorage::AllocTLS(&key) &&
key != PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES);
PlatformThreadLocalStorage::FreeTLS(tmp);
}
// Atomically test-and-set the tls_key. If the key is
// TLS_KEY_OUT_OF_INDEXES, go ahead and set it. Otherwise, do nothing, as
// another thread already did our dirty work.
PlatformThreadLocalStorage::TLSKey old_key =
PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES;
if (!g_native_tls_key.compare_exchange_strong(old_key, key,
std::memory_order_relaxed,
std::memory_order_relaxed)) {
// We've been shortcut. Another thread replaced g_native_tls_key first so
// we need to destroy our index and use the one the other thread got
// first.
PlatformThreadLocalStorage::FreeTLS(key);
key = g_native_tls_key.load(std::memory_order_relaxed);
}
}
CHECK_EQ(GetTlsVectorStateAndValue(key), TlsVectorState::kUninitialized);
// Some allocators, such as TCMalloc, make use of thread local storage. As a
// result, any attempt to call new (or malloc) will lazily cause such a system
// to initialize, which will include registering for a TLS key. If we are not
// careful here, then that request to create a key will call new back, and
// we'll have an infinite loop. We avoid that as follows: Use a stack
// allocated vector, so that we don't have dependence on our allocator until
// our service is in place. (i.e., don't even call new until after we're
// setup)
TlsVectorEntry stack_allocated_tls_data[kThreadLocalStorageSize];
memset(stack_allocated_tls_data, 0, sizeof(stack_allocated_tls_data));
// Ensure that any rentrant calls change the temp version.
SetTlsVectorValue(key, stack_allocated_tls_data, TlsVectorState::kInUse);
// Allocate an array to store our data.
TlsVectorEntry* tls_data = new TlsVectorEntry[kThreadLocalStorageSize];
memcpy(tls_data, stack_allocated_tls_data, sizeof(stack_allocated_tls_data));
SetTlsVectorValue(key, tls_data, TlsVectorState::kInUse);
return tls_data;
}
void OnThreadExitInternal(TlsVectorEntry* tls_data) {
DCHECK(tls_data);
// Some allocators, such as TCMalloc, use TLS. As a result, when a thread
// terminates, one of the destructor calls we make may be to shut down an
// allocator. We have to be careful that after we've shutdown all of the known
// destructors (perchance including an allocator), that we don't call the
// allocator and cause it to resurrect itself (with no possibly destructor
// call to follow). We handle this problem as follows: Switch to using a stack
// allocated vector, so that we don't have dependence on our allocator after
// we have called all g_tls_metadata destructors. (i.e., don't even call
// delete[] after we're done with destructors.)
TlsVectorEntry stack_allocated_tls_data[kThreadLocalStorageSize];
memcpy(stack_allocated_tls_data, tls_data, sizeof(stack_allocated_tls_data));
// Ensure that any re-entrant calls change the temp version.
PlatformThreadLocalStorage::TLSKey key =
g_native_tls_key.load(std::memory_order_relaxed);
SetTlsVectorValue(key, stack_allocated_tls_data, TlsVectorState::kDestroying);
delete[] tls_data; // Our last dependence on an allocator.
size_t remaining_attempts = kMaxDestructorIterations + 1;
bool need_to_scan_destructors = true;
while (need_to_scan_destructors) {
need_to_scan_destructors = false;
// Snapshot the TLS Metadata so we don't have to lock on every access.
TlsMetadata tls_metadata[kThreadLocalStorageSize];
{
base::AutoLock auto_lock(*GetTLSMetadataLock());
memcpy(tls_metadata, g_tls_metadata, sizeof(g_tls_metadata));
}
// We destroy slots in reverse order (i.e. destroy the first-created slot
// last), for the following reasons:
// 1) Slots that are created early belong to basic services (like an
// allocator) and might have to be recreated by destructors of other
// services. So we save iterations here by destroying them last.
// 2) Perfetto tracing service allocates a slot early and relies on it to
// keep emitting trace events while destructors of other slots are called,
// so it's important to keep it live to avoid use-after-free errors.
// To achieve this, we sort all slots in the order of decreasing sequence
// numbers.
struct OrderedSlot {
uint32_t sequence_num;
uint16_t slot;
} slot_destruction_order[kThreadLocalStorageSize];
for (uint16_t i = 0; i < kThreadLocalStorageSize; ++i) {
slot_destruction_order[i].sequence_num = tls_metadata[i].sequence_num;
slot_destruction_order[i].slot = i;
}
std::sort(std::begin(slot_destruction_order),
std::end(slot_destruction_order),
[](const OrderedSlot& s1, const OrderedSlot& s2) {
return s1.sequence_num > s2.sequence_num;
});
for (const auto& ordered_slot : slot_destruction_order) {
size_t slot = ordered_slot.slot;
void* tls_value = stack_allocated_tls_data[slot].data;
if (!tls_value || tls_metadata[slot].status == TlsStatus::FREE ||
stack_allocated_tls_data[slot].version != tls_metadata[slot].version)
continue;
base::ThreadLocalStorage::TLSDestructorFunc destructor =
tls_metadata[slot].destructor;
if (!destructor)
continue;
stack_allocated_tls_data[slot].data = nullptr; // pre-clear the slot.
destructor(tls_value);
// Any destructor might have called a different service, which then set a
// different slot to a non-null value. Hence we need to check the whole
// vector again. This is a pthread standard.
need_to_scan_destructors = true;
}
if (--remaining_attempts == 0) {
NOTREACHED(); // Destructors might not have been called.
break;
}
}
// Remove our stack allocated vector.
SetTlsVectorValue(key, nullptr, TlsVectorState::kDestroyed);
}
} // namespace
namespace base {
namespace internal {
#if BUILDFLAG(IS_WIN)
void PlatformThreadLocalStorage::OnThreadExit() {
PlatformThreadLocalStorage::TLSKey key =
g_native_tls_key.load(std::memory_order_relaxed);
if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES)
return;
TlsVectorEntry* tls_vector = nullptr;
const TlsVectorState state = GetTlsVectorStateAndValue(key, &tls_vector);
// On Windows, thread destruction callbacks are only invoked once per module,
// so there should be no way that this could be invoked twice.
DCHECK_NE(state, TlsVectorState::kDestroyed);
// Maybe we have never initialized TLS for this thread.
if (state == TlsVectorState::kUninitialized)
return;
OnThreadExitInternal(tls_vector);
}
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
void PlatformThreadLocalStorage::OnThreadExit(void* value) {
// On posix this function may be called twice. The first pass calls dtors and
// sets state to kDestroyed. The second pass sets kDestroyed to
// kUninitialized.
TlsVectorEntry* tls_vector = nullptr;
const TlsVectorState state = GetTlsVectorStateAndValue(value, &tls_vector);
if (state == TlsVectorState::kDestroyed) {
PlatformThreadLocalStorage::TLSKey key =
g_native_tls_key.load(std::memory_order_relaxed);
SetTlsVectorValue(key, nullptr, TlsVectorState::kUninitialized);
return;
}
OnThreadExitInternal(tls_vector);
}
#endif // BUILDFLAG(IS_WIN)
} // namespace internal
// static
bool ThreadLocalStorage::HasBeenDestroyed() {
PlatformThreadLocalStorage::TLSKey key =
g_native_tls_key.load(std::memory_order_relaxed);
if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES)
return false;
const TlsVectorState state = GetTlsVectorStateAndValue(key);
return state == TlsVectorState::kDestroying ||
state == TlsVectorState::kDestroyed;
}
void ThreadLocalStorage::Slot::Initialize(TLSDestructorFunc destructor) {
PlatformThreadLocalStorage::TLSKey key =
g_native_tls_key.load(std::memory_order_relaxed);
if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES ||
GetTlsVectorStateAndValue(key) == TlsVectorState::kUninitialized) {
ConstructTlsVector();
}
// Grab a new slot.
{
base::AutoLock auto_lock(*GetTLSMetadataLock());
for (size_t i = 0; i < kThreadLocalStorageSize; ++i) {
// Tracking the last assigned slot is an attempt to find the next
// available slot within one iteration. Under normal usage, slots remain
// in use for the lifetime of the process (otherwise before we reclaimed
// slots, we would have run out of slots). This makes it highly likely the
// next slot is going to be a free slot.
size_t slot_candidate =
(g_last_assigned_slot + 1 + i) % kThreadLocalStorageSize;
if (g_tls_metadata[slot_candidate].status == TlsStatus::FREE) {
g_tls_metadata[slot_candidate].status = TlsStatus::IN_USE;
g_tls_metadata[slot_candidate].destructor = destructor;
g_tls_metadata[slot_candidate].sequence_num = ++g_sequence_num;
g_last_assigned_slot = slot_candidate;
DCHECK_EQ(kInvalidSlotValue, slot_);
slot_ = slot_candidate;
version_ = g_tls_metadata[slot_candidate].version;
break;
}
}
}
CHECK_LT(slot_, kThreadLocalStorageSize);
}
void ThreadLocalStorage::Slot::Free() {
DCHECK_LT(slot_, kThreadLocalStorageSize);
{
base::AutoLock auto_lock(*GetTLSMetadataLock());
g_tls_metadata[slot_].status = TlsStatus::FREE;
g_tls_metadata[slot_].destructor = nullptr;
++(g_tls_metadata[slot_].version);
}
slot_ = kInvalidSlotValue;
}
void* ThreadLocalStorage::Slot::Get() const {
TlsVectorEntry* tls_data = nullptr;
const TlsVectorState state = GetTlsVectorStateAndValue(
g_native_tls_key.load(std::memory_order_relaxed), &tls_data);
DCHECK_NE(state, TlsVectorState::kDestroyed);
if (!tls_data)
return nullptr;
DCHECK_LT(slot_, kThreadLocalStorageSize);
// Version mismatches means this slot was previously freed.
if (tls_data[slot_].version != version_)
return nullptr;
return tls_data[slot_].data;
}
void ThreadLocalStorage::Slot::Set(void* value) {
TlsVectorEntry* tls_data = nullptr;
const TlsVectorState state = GetTlsVectorStateAndValue(
g_native_tls_key.load(std::memory_order_relaxed), &tls_data);
DCHECK_NE(state, TlsVectorState::kDestroyed);
if (UNLIKELY(!tls_data)) {
if (!value)
return;
tls_data = ConstructTlsVector();
}
DCHECK_LT(slot_, kThreadLocalStorageSize);
tls_data[slot_].data = value;
tls_data[slot_].version = version_;
}
ThreadLocalStorage::Slot::Slot(TLSDestructorFunc destructor) {
Initialize(destructor);
}
ThreadLocalStorage::Slot::~Slot() {
Free();
}
} // namespace base