| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "sql/database.h" |
| |
| #include <limits.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <memory> |
| #include <tuple> |
| |
| #include "base/check.h" |
| #include "base/containers/contains.h" |
| #include "base/dcheck_is_on.h" |
| #include "base/feature_list.h" |
| #include "base/files/file_path.h" |
| #include "base/files/file_util.h" |
| #include "base/format_macros.h" |
| #include "base/location.h" |
| #include "base/logging.h" |
| #include "base/memory/raw_ptr.h" |
| #include "base/no_destructor.h" |
| #include "base/notreached.h" |
| #include "base/numerics/safe_conversions.h" |
| #include "base/ranges/algorithm.h" |
| #include "base/sequence_checker.h" |
| #include "base/strings/strcat.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "base/strings/string_piece.h" |
| #include "base/strings/string_split.h" |
| #include "base/strings/string_util.h" |
| #include "base/strings/stringprintf.h" |
| #include "base/strings/utf_string_conversions.h" |
| #include "base/synchronization/lock.h" |
| #include "base/task/single_thread_task_runner.h" |
| #include "base/threading/scoped_blocking_call.h" |
| #include "base/trace_event/memory_dump_manager.h" |
| #include "base/trace_event/trace_event.h" |
| #include "base/tracing/protos/chrome_track_event.pbzero.h" |
| #include "base/types/pass_key.h" |
| #include "build/build_config.h" |
| #include "sql/database_memory_dump_provider.h" |
| #include "sql/initialization.h" |
| #include "sql/meta_table.h" |
| #include "sql/sql_features.h" |
| #include "sql/sqlite_result_code.h" |
| #include "sql/sqlite_result_code_values.h" |
| #include "sql/statement.h" |
| #include "sql/vfs_wrapper.h" |
| #include "third_party/sqlite/sqlite3.h" |
| |
| namespace sql { |
| |
| namespace { |
| |
| bool enable_mmap_by_default_ = true; |
| |
| // The name of the main database associated with a sqlite3* connection. |
| // |
| // SQLite has the ability to ATTACH multiple databases to the same connection. |
| // As a consequence, some SQLite APIs require the connection-specific database |
| // name. This is the right name to be passed to such APIs. |
| static constexpr char kSqliteMainDatabaseName[] = "main"; |
| |
| // Magic path value telling sqlite3_open_v2() to open an in-memory database. |
| static constexpr char kSqliteOpenInMemoryPath[] = ":memory:"; |
| |
| // Spin for up to a second waiting for the lock to clear when setting |
| // up the database. |
| // TODO(shess): Better story on this. http://crbug.com/56559 |
| const int kBusyTimeoutSeconds = 1; |
| |
| class ScopedBusyTimeout { |
| public: |
| explicit ScopedBusyTimeout(sqlite3* db) : db_(db) {} |
| ~ScopedBusyTimeout() { sqlite3_busy_timeout(db_, 0); } |
| |
| int SetTimeout(base::TimeDelta timeout) { |
| DCHECK_LT(timeout.InMilliseconds(), INT_MAX); |
| return sqlite3_busy_timeout(db_, |
| static_cast<int>(timeout.InMilliseconds())); |
| } |
| |
| private: |
| raw_ptr<sqlite3> db_; |
| }; |
| |
| // Helper to "safely" enable writable_schema. No error checking |
| // because it is reasonable to just forge ahead in case of an error. |
| // If turning it on fails, then most likely nothing will work, whereas |
| // if turning it off fails, it only matters if some code attempts to |
| // continue working with the database and tries to modify the |
| // sqlite_schema table (none of our code does this). |
| class ScopedWritableSchema { |
| public: |
| explicit ScopedWritableSchema(sqlite3* db) : db_(db) { |
| sqlite3_exec(db_, "PRAGMA writable_schema=1", nullptr, nullptr, nullptr); |
| } |
| ~ScopedWritableSchema() { |
| sqlite3_exec(db_, "PRAGMA writable_schema=0", nullptr, nullptr, nullptr); |
| } |
| |
| private: |
| raw_ptr<sqlite3> db_; |
| }; |
| |
| // Raze() helper that uses SQLite's online backup API. |
| // |
| // Returns the SQLite error code produced by sqlite3_backup_step(). SQLITE_DONE |
| // signals success. SQLITE_OK will never be returned. |
| // |
| // The implementation is tailored for the Raze() use case. In particular, the |
| // SQLite API use and and error handling is optimized for 1-page databases. |
| SqliteResultCode BackupDatabaseForRaze(sqlite3* source_db, |
| sqlite3* destination_db) { |
| DCHECK(source_db); |
| DCHECK(destination_db); |
| DCHECK_NE(source_db, destination_db); |
| |
| // https://www.sqlite.org/backup.html has a high-level overview of SQLite's |
| // backup support. https://www.sqlite.org/c3ref/backup_finish.html describes |
| // the API. |
| static constexpr char kMainDatabaseName[] = "main"; |
| sqlite3_backup* backup = sqlite3_backup_init( |
| destination_db, kMainDatabaseName, source_db, kMainDatabaseName); |
| if (!backup) { |
| // sqlite3_backup_init() fails if a transaction is ongoing. In particular, |
| // SQL statements that return multiple rows keep a read transaction open |
| // until all the Step() calls are executed. |
| return ToSqliteResultCode(chrome_sqlite3_extended_errcode(destination_db)); |
| } |
| |
| constexpr int kUnlimitedPageCount = -1; // Back up entire database. |
| auto sqlite_result_code = |
| ToSqliteResultCode(sqlite3_backup_step(backup, kUnlimitedPageCount)); |
| DCHECK_NE(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_backup_step() returned SQLITE_OK (instead of SQLITE_DONE) " |
| << "when asked to back up the entire database"; |
| |
| #if DCHECK_IS_ON() |
| if (sqlite_result_code == SqliteResultCode::kDone) { |
| // If successful, exactly one page should have been backed up. |
| DCHECK_EQ(sqlite3_backup_pagecount(backup), 1) |
| << __func__ << " was intended to be used with 1-page databases"; |
| } |
| #endif // DCHECK_IS_ON() |
| |
| // sqlite3_backup_finish() releases the sqlite3_backup object. |
| // |
| // It returns an error code only if the backup encountered a permanent error. |
| // We use the the sqlite3_backup_step() result instead, because it also tells |
| // us about temporary errors, like SQLITE_BUSY. |
| // |
| // We pass the sqlite3_backup_finish() result code through |
| // ToSqliteResultCode() to catch codes that should never occur, like |
| // SQLITE_MISUSE. |
| std::ignore = ToSqliteResultCode(sqlite3_backup_finish(backup)); |
| |
| return sqlite_result_code; |
| } |
| |
| bool ValidAttachmentPoint(base::StringPiece attachment_point) { |
| // SQLite could handle a much wider character set, with appropriate quoting. |
| // |
| // Chrome's constraint is easy to remember, and sufficient for the few |
| // existing use cases. ATTACH is a discouraged feature, so no new use cases |
| // are expected. |
| return base::ranges::all_of(attachment_point, |
| [](char ch) { return base::IsAsciiLower(ch); }); |
| } |
| |
| std::string AsUTF8ForSQL(const base::FilePath& path) { |
| #if BUILDFLAG(IS_WIN) |
| return base::WideToUTF8(path.value()); |
| #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA) |
| return path.value(); |
| #endif |
| } |
| |
| } // namespace |
| |
| // static |
| Database::ScopedErrorExpecterCallback* Database::current_expecter_cb_ = nullptr; |
| |
| // static |
| bool Database::IsExpectedSqliteError(int sqlite_error_code) { |
| DCHECK_NE(sqlite_error_code, SQLITE_OK) |
| << __func__ << " received non-error result code"; |
| DCHECK_NE(sqlite_error_code, SQLITE_DONE) |
| << __func__ << " received non-error result code"; |
| DCHECK_NE(sqlite_error_code, SQLITE_ROW) |
| << __func__ << " received non-error result code"; |
| |
| if (!current_expecter_cb_) |
| return false; |
| return current_expecter_cb_->Run(sqlite_error_code); |
| } |
| |
| // static |
| void Database::SetScopedErrorExpecter( |
| Database::ScopedErrorExpecterCallback* cb, |
| base::PassKey<test::ScopedErrorExpecter>) { |
| CHECK(!current_expecter_cb_); |
| current_expecter_cb_ = cb; |
| } |
| |
| // static |
| void Database::ResetScopedErrorExpecter( |
| base::PassKey<test::ScopedErrorExpecter>) { |
| CHECK(current_expecter_cb_); |
| current_expecter_cb_ = nullptr; |
| } |
| |
| // static |
| base::FilePath Database::JournalPath(const base::FilePath& db_path) { |
| return base::FilePath(db_path.value() + FILE_PATH_LITERAL("-journal")); |
| } |
| |
| // static |
| base::FilePath Database::WriteAheadLogPath(const base::FilePath& db_path) { |
| return base::FilePath(db_path.value() + FILE_PATH_LITERAL("-wal")); |
| } |
| |
| // static |
| base::FilePath Database::SharedMemoryFilePath(const base::FilePath& db_path) { |
| return base::FilePath(db_path.value() + FILE_PATH_LITERAL("-shm")); |
| } |
| |
| Database::StatementRef::StatementRef(Database* database, |
| sqlite3_stmt* stmt, |
| bool was_valid) |
| : database_(database), stmt_(stmt), was_valid_(was_valid) { |
| DCHECK_EQ(database == nullptr, stmt == nullptr); |
| if (database) |
| database_->StatementRefCreated(this); |
| } |
| |
| Database::StatementRef::~StatementRef() { |
| if (database_) |
| database_->StatementRefDeleted(this); |
| Close(false); |
| } |
| |
| void Database::StatementRef::Close(bool forced) { |
| if (stmt_) { |
| // Call to InitScopedBlockingCall() cannot go at the beginning of the |
| // function because Close() is called unconditionally from destructor to |
| // clean database_. And if this is inactive statement this won't cause any |
| // disk access and destructor most probably will be called on thread not |
| // allowing disk access. |
| // TODO(paivanof@gmail.com): This should move to the beginning |
| // of the function. http://crbug.com/136655. |
| std::optional<base::ScopedBlockingCall> scoped_blocking_call; |
| InitScopedBlockingCall(FROM_HERE, &scoped_blocking_call); |
| |
| // `stmt_` references memory loaned from the sqlite3 library. Stop |
| // referencing it from the raw_ptr<> before returning it. This avoids the |
| // raw_ptr<> becoming dangling. |
| sqlite3_stmt* statement = stmt_; |
| stmt_ = nullptr; |
| |
| // sqlite3_finalize()'s result code is ignored because it reports the same |
| // error as the most recent sqlite3_step(). The result code is passed |
| // through ToSqliteResultCode() to catch issues like SQLITE_MISUSE. |
| std::ignore = ToSqliteResultCode(sqlite3_finalize(statement)); |
| } |
| database_ = nullptr; // The Database may be getting deleted. |
| |
| // Forced close is expected to happen from a statement error |
| // handler. In that case maintain the sense of |was_valid_| which |
| // previously held for this ref. |
| was_valid_ = was_valid_ && forced; |
| } |
| |
| static_assert(DatabaseOptions::kDefaultPageSize == SQLITE_DEFAULT_PAGE_SIZE, |
| "DatabaseOptions::kDefaultPageSize must match the value " |
| "configured into SQLite"); |
| |
| DatabaseDiagnostics::DatabaseDiagnostics() = default; |
| DatabaseDiagnostics::~DatabaseDiagnostics() = default; |
| |
| void DatabaseDiagnostics::WriteIntoTrace( |
| perfetto::TracedProto<TraceProto> context) const { |
| context->set_reported_sqlite_error_code(reported_sqlite_error_code); |
| context->set_error_code(error_code); |
| context->set_last_errno(last_errno); |
| context->set_sql_statement(sql_statement); |
| context->set_version(version); |
| for (const auto& sql : schema_sql_rows) { |
| context->add_schema_sql_rows(sql); |
| } |
| for (const auto& name : schema_other_row_names) { |
| context->add_schema_other_row_names(name); |
| } |
| context->set_has_valid_header(has_valid_header); |
| context->set_has_valid_schema(has_valid_schema); |
| context->set_error_message(error_message); |
| } |
| |
| // DatabaseOptions::explicit_locking needs to be set to false for historical |
| // reasons. |
| Database::Database() : Database({.exclusive_locking = false}) {} |
| |
| Database::Database(DatabaseOptions options) |
| : options_(options), mmap_disabled_(!enable_mmap_by_default_) { |
| DCHECK_GE(options.page_size, 512); |
| DCHECK_LE(options.page_size, 65536); |
| DCHECK(!(options.page_size & (options.page_size - 1))) |
| << "page_size must be a power of two"; |
| DCHECK(!options_.mmap_alt_status_discouraged || |
| options_.enable_views_discouraged) |
| << "mmap_alt_status requires views"; |
| |
| // It's valid to construct a database on a sequence and then pass it to a |
| // different sequence before usage. |
| DETACH_FROM_SEQUENCE(sequence_checker_); |
| } |
| |
| Database::~Database() { |
| Close(); |
| } |
| |
| // static |
| void Database::DisableMmapByDefault() { |
| enable_mmap_by_default_ = false; |
| } |
| |
| bool Database::Open(const base::FilePath& path) { |
| std::string path_string = AsUTF8ForSQL(path); |
| TRACE_EVENT1("sql", "Database::Open", "path", path_string); |
| |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| DCHECK(!path.empty()); |
| DCHECK_NE(path_string, kSqliteOpenInMemoryPath) |
| << "Path conflicts with SQLite magic identifier"; |
| |
| return OpenInternal(path_string, OpenMode::kRetryOnPoision); |
| } |
| |
| bool Database::OpenInMemory() { |
| TRACE_EVENT0("sql", "Database::OpenInMemory"); |
| |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| |
| in_memory_ = true; |
| return OpenInternal(kSqliteOpenInMemoryPath, OpenMode::kInMemory); |
| } |
| |
| bool Database::OpenTemporary(base::PassKey<Recovery>) { |
| TRACE_EVENT0("sql", "Database::OpenTemporary"); |
| |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| return OpenInternal(std::string(), OpenMode::kTemporary); |
| } |
| |
| void Database::CloseInternal(bool forced) { |
| TRACE_EVENT0("sql", "Database::CloseInternal"); |
| // TODO(shess): Calling "PRAGMA journal_mode = DELETE" at this point |
| // will delete the -journal file. For ChromiumOS or other more |
| // embedded systems, this is probably not appropriate, whereas on |
| // desktop it might make some sense. |
| |
| // sqlite3_close() needs all prepared statements to be finalized. |
| |
| // Release cached statements. |
| statement_cache_.clear(); |
| |
| // With cached statements released, in-use statements will remain. |
| // Closing the database while statements are in use is an API |
| // violation, except for forced close (which happens from within a |
| // statement's error handler). |
| DCHECK(forced || open_statements_.empty()); |
| |
| // Deactivate any outstanding statements so sqlite3_close() works. |
| for (StatementRef* statement_ref : open_statements_) |
| statement_ref->Close(forced); |
| open_statements_.clear(); |
| |
| if (is_open()) { |
| // Call to InitScopedBlockingCall() cannot go at the beginning of the |
| // function because Close() must be called from destructor to clean |
| // statement_cache_, it won't cause any disk access and it most probably |
| // will happen on thread not allowing disk access. |
| // TODO(paivanof@gmail.com): This should move to the beginning |
| // of the function. http://crbug.com/136655. |
| std::optional<base::ScopedBlockingCall> scoped_blocking_call; |
| InitScopedBlockingCall(FROM_HERE, &scoped_blocking_call); |
| |
| // Resetting acquires a lock to ensure no dump is happening on the database |
| // at the same time. Unregister takes ownership of provider and it is safe |
| // since the db is reset. memory_dump_provider_ could be null if db_ was |
| // poisoned. |
| if (memory_dump_provider_) { |
| memory_dump_provider_->ResetDatabase(); |
| base::trace_event::MemoryDumpManager::GetInstance() |
| ->UnregisterAndDeleteDumpProviderSoon( |
| std::move(memory_dump_provider_)); |
| } |
| |
| auto sqlite_result_code = ToSqliteResultCode(sqlite3_close(db_)); |
| |
| DCHECK_NE(sqlite_result_code, SqliteResultCode::kBusy) |
| << "sqlite3_close() called while prepared statements are still alive"; |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_close() failed in an unexpected way: " << GetErrorMessage(); |
| |
| // The reset must happen after the DCHECKs above. GetErrorMessage() needs a |
| // valid `db_` value. |
| db_ = nullptr; |
| } |
| } |
| |
| bool Database::is_open() const { |
| bool is_closed_due_to_poisoning = |
| poisoned_ && base::FeatureList::IsEnabled( |
| sql::features::kConsiderPoisonedDatabasesClosed); |
| return static_cast<bool>(db_) && !is_closed_due_to_poisoning; |
| } |
| |
| void Database::Close() { |
| TRACE_EVENT0("sql", "Database::Close"); |
| // If the database was already closed by RazeAndPoison(), then no |
| // need to close again. Clear the |poisoned_| bit so that incorrect |
| // API calls are caught. |
| if (poisoned_) { |
| poisoned_ = false; |
| return; |
| } |
| |
| CloseInternal(false); |
| } |
| |
| void Database::Preload() { |
| TRACE_EVENT0("sql", "Database::Preload"); |
| |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| if (!db_) { |
| DCHECK(poisoned_) << "Cannot preload null db"; |
| return; |
| } |
| |
| CHECK(!options_.exclusive_database_file_lock) |
| << "Cannot preload an exclusively locked database."; |
| |
| std::optional<base::ScopedBlockingCall> scoped_blocking_call; |
| InitScopedBlockingCall(FROM_HERE, &scoped_blocking_call); |
| |
| // Maximum number of bytes that will be prefetched from the database. |
| // |
| // This limit is very aggressive. The main trade-off involved is that having |
| // SQLite block on reading from disk has a high impact on Chrome startup cost |
| // for the databases that are on the critical path to startup. So, the limit |
| // must exceed the expected sizes of databases on the critical path. |
| // |
| // On Windows 7, base::PreReadFile() falls back to a synchronous read, and |
| // blocks until the entire file is read into memory. This is a minor factor at |
| // this point, because Chrome has very limited support for Windows 7. |
| constexpr int kPreReadSize = 128 * 1024 * 1024; // 128 MB |
| base::PreReadFile(DbPath(), /*is_executable=*/false, kPreReadSize); |
| } |
| |
| // SQLite keeps unused pages associated with a database in a cache. It asks |
| // the cache for pages by an id, and if the page is present and the database is |
| // unchanged, it considers the content of the page valid and doesn't read it |
| // from disk. When memory-mapped I/O is enabled, on read SQLite uses page |
| // structures created from the memory map data before consulting the cache. On |
| // write SQLite creates a new in-memory page structure, copies the data from the |
| // memory map, and later writes it, releasing the updated page back to the |
| // cache. |
| // |
| // This means that in memory-mapped mode, the contents of the cached pages are |
| // not re-used for reads, but they are re-used for writes if the re-written page |
| // is still in the cache. The implementation of sqlite3_db_release_memory() as |
| // of SQLite 3.8.7.4 frees all pages from pcaches associated with the |
| // database, so it should free these pages. |
| // |
| // Unfortunately, the zero page is also freed. That page is never accessed |
| // using memory-mapped I/O, and the cached copy can be re-used after verifying |
| // the file change counter on disk. Also, fresh pages from cache receive some |
| // pager-level initialization before they can be used. Since the information |
| // involved will immediately be accessed in various ways, it is unclear if the |
| // additional overhead is material, or just moving processor cache effects |
| // around. |
| // |
| // TODO(shess): It would be better to release the pages immediately when they |
| // are no longer needed. This would basically happen after SQLite commits a |
| // transaction. I had implemented a pcache wrapper to do this, but it involved |
| // layering violations, and it had to be setup before any other sqlite call, |
| // which was brittle. Also, for large files it would actually make sense to |
| // maintain the existing pcache behavior for blocks past the memory-mapped |
| // segment. I think drh would accept a reasonable implementation of the overall |
| // concept for upstreaming to SQLite core. |
| // |
| // TODO(shess): Another possibility would be to set the cache size small, which |
| // would keep the zero page around, plus some pre-initialized pages, and SQLite |
| // can manage things. The downside is that updates larger than the cache would |
| // spill to the journal. That could be compensated by setting cache_spill to |
| // false. The downside then is that it allows open-ended use of memory for |
| // large transactions. |
| void Database::ReleaseCacheMemoryIfNeeded(bool implicit_change_performed) { |
| TRACE_EVENT0("sql", "Database::ReleaseCacheMemoryIfNeeded"); |
| // The database could have been closed during a transaction as part of error |
| // recovery. |
| if (!db_) { |
| DCHECK(poisoned_) << "Illegal use of Database without a db"; |
| return; |
| } |
| |
| // If memory-mapping is not enabled, the page cache helps performance. |
| if (!mmap_enabled_) |
| return; |
| |
| // On caller request, force the change comparison to fail. Done before the |
| // transaction-nesting test so that the signal can carry to transaction |
| // commit. |
| if (implicit_change_performed) |
| --total_changes_at_last_release_; |
| |
| // Cached pages may be re-used within the same transaction. |
| DCHECK_GE(transaction_nesting_, 0); |
| if (transaction_nesting_) |
| return; |
| |
| // If no changes have been made, skip flushing. This allows the first page of |
| // the database to remain in cache across multiple reads. |
| const int64_t total_changes = sqlite3_total_changes64(db_); |
| if (total_changes == total_changes_at_last_release_) |
| return; |
| |
| total_changes_at_last_release_ = total_changes; |
| |
| // Passing the result code through ToSqliteResultCode() to catch issues such |
| // as SQLITE_MISUSE. |
| std::ignore = ToSqliteResultCode(sqlite3_db_release_memory(db_)); |
| } |
| |
| base::FilePath Database::DbPath() const { |
| if (!is_open()) |
| return base::FilePath(); |
| |
| const char* path = sqlite3_db_filename(db_, "main"); |
| if (!path) |
| return base::FilePath(); |
| const base::StringPiece db_path(path); |
| #if BUILDFLAG(IS_WIN) |
| return base::FilePath(base::UTF8ToWide(db_path)); |
| #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA) |
| return base::FilePath(db_path); |
| #else |
| NOTREACHED(); |
| return base::FilePath(); |
| #endif |
| } |
| |
| std::string Database::CollectErrorInfo(int sqlite_error_code, |
| Statement* stmt, |
| DatabaseDiagnostics* diagnostics) const { |
| TRACE_EVENT0("sql", "Database::CollectErrorInfo"); |
| |
| DCHECK_NE(sqlite_error_code, SQLITE_OK) |
| << __func__ << " received non-error result code"; |
| DCHECK_NE(sqlite_error_code, SQLITE_DONE) |
| << __func__ << " received non-error result code"; |
| DCHECK_NE(sqlite_error_code, SQLITE_ROW) |
| << __func__ << " received non-error result code"; |
| |
| // Buffer for accumulating debugging info about the error. Place |
| // more-relevant information earlier, in case things overflow the |
| // fixed-size reporting buffer. |
| std::string debug_info; |
| |
| // The error message from the failed operation. |
| int error_code = GetErrorCode(); |
| base::StringAppendF(&debug_info, "db error: %d/%s\n", error_code, |
| GetErrorMessage()); |
| if (diagnostics) { |
| diagnostics->error_code = error_code; |
| diagnostics->error_message = GetErrorMessage(); |
| } |
| |
| // TODO(shess): |error| and |GetErrorCode()| should always be the same, but |
| // reading code does not entirely convince me. Remove if they turn out to be |
| // the same. |
| if (sqlite_error_code != GetErrorCode()) |
| base::StringAppendF(&debug_info, "reported error: %d\n", sqlite_error_code); |
| |
| // System error information. Interpretation of Windows errors is different |
| // from posix. |
| #if BUILDFLAG(IS_WIN) |
| int last_errno = GetLastErrno(); |
| base::StringAppendF(&debug_info, "LastError: %d\n", last_errno); |
| if (diagnostics) { |
| diagnostics->last_errno = last_errno; |
| } |
| #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA) |
| int last_errno = GetLastErrno(); |
| base::StringAppendF(&debug_info, "errno: %d\n", last_errno); |
| if (diagnostics) { |
| diagnostics->last_errno = last_errno; |
| } |
| #else |
| NOTREACHED(); // Add appropriate log info. |
| #endif |
| |
| if (stmt) { |
| std::string sql_string = stmt->GetSQLStatement(); |
| base::StringAppendF(&debug_info, "statement: %s\n", sql_string.c_str()); |
| if (diagnostics) { |
| diagnostics->sql_statement = sql_string; |
| } |
| } else { |
| base::StringAppendF(&debug_info, "statement: NULL\n"); |
| } |
| |
| // SQLITE_ERROR often indicates some sort of mismatch between the statement |
| // and the schema, possibly due to a failed schema migration. |
| if (sqlite_error_code == SQLITE_ERROR) { |
| static constexpr char kVersionSql[] = |
| "SELECT value FROM meta WHERE key='version'"; |
| sqlite3_stmt* sqlite_statement; |
| // When the number of bytes passed to sqlite3_prepare_v3() includes the null |
| // terminator, SQLite avoids a buffer copy. |
| int rc = sqlite3_prepare_v3(db_, kVersionSql, sizeof(kVersionSql), |
| SQLITE_PREPARE_NO_VTAB, &sqlite_statement, |
| /* pzTail= */ nullptr); |
| if (rc == SQLITE_OK) { |
| rc = sqlite3_step(sqlite_statement); |
| if (rc == SQLITE_ROW) { |
| int version = sqlite3_column_int(sqlite_statement, 0); |
| base::StringAppendF(&debug_info, "version: %d\n", version); |
| if (diagnostics) { |
| diagnostics->version = version; |
| } |
| } else if (rc == SQLITE_DONE) { |
| debug_info += "version: none\n"; |
| } else { |
| base::StringAppendF(&debug_info, "version: error %d\n", rc); |
| } |
| sqlite3_finalize(sqlite_statement); |
| } else { |
| base::StringAppendF(&debug_info, "version: prepare error %d\n", rc); |
| } |
| |
| // Get all the SQL from sqlite_schema. |
| debug_info += "schema:\n"; |
| static constexpr char kSchemaSql[] = |
| "SELECT sql FROM sqlite_schema WHERE sql IS NOT NULL ORDER BY ROWID"; |
| rc = sqlite3_prepare_v3(db_, kSchemaSql, sizeof(kSchemaSql), |
| SQLITE_PREPARE_NO_VTAB, &sqlite_statement, |
| /* pzTail= */ nullptr); |
| if (rc == SQLITE_OK) { |
| while ((rc = sqlite3_step(sqlite_statement)) == SQLITE_ROW) { |
| std::string text; |
| base::StringAppendF(&text, "%s", |
| reinterpret_cast<const char*>( |
| sqlite3_column_text(sqlite_statement, 0))); |
| debug_info += text + "\n"; |
| if (diagnostics) { |
| diagnostics->schema_sql_rows.push_back(text); |
| } |
| } |
| |
| if (rc != SQLITE_DONE) |
| base::StringAppendF(&debug_info, "error %d\n", rc); |
| sqlite3_finalize(sqlite_statement); |
| } else { |
| base::StringAppendF(&debug_info, "prepare error %d\n", rc); |
| } |
| |
| // Automatically generated indices have a NULL 'sql' column. For those rows, |
| // we log the name column instead. |
| debug_info += "schema rows with only name:\n"; |
| static constexpr char kSchemaOtherRowNamesSql[] = |
| "SELECT name FROM sqlite_schema WHERE sql IS NULL ORDER BY ROWID"; |
| rc = sqlite3_prepare_v3(db_, kSchemaOtherRowNamesSql, |
| sizeof(kSchemaOtherRowNamesSql), |
| SQLITE_PREPARE_NO_VTAB, &sqlite_statement, |
| /* pzTail= */ nullptr); |
| if (rc == SQLITE_OK) { |
| while ((rc = sqlite3_step(sqlite_statement)) == SQLITE_ROW) { |
| std::string text; |
| base::StringAppendF(&text, "%s", |
| reinterpret_cast<const char*>( |
| sqlite3_column_text(sqlite_statement, 0))); |
| debug_info += text + "\n"; |
| if (diagnostics) { |
| diagnostics->schema_other_row_names.push_back(text); |
| } |
| } |
| |
| if (rc != SQLITE_DONE) |
| base::StringAppendF(&debug_info, "error %d\n", rc); |
| sqlite3_finalize(sqlite_statement); |
| } else { |
| base::StringAppendF(&debug_info, "prepare error %d\n", rc); |
| } |
| } |
| |
| return debug_info; |
| } |
| |
| // TODO(shess): Since this is only called in an error situation, it might be |
| // prudent to rewrite in terms of SQLite API calls, and mark the function const. |
| std::string Database::CollectCorruptionInfo() { |
| TRACE_EVENT0("sql", "Database::CollectCorruptionInfo"); |
| // If the file cannot be accessed it is unlikely that an integrity check will |
| // turn up actionable information. |
| const base::FilePath db_path = DbPath(); |
| int64_t db_size = -1; |
| if (!base::GetFileSize(db_path, &db_size) || db_size < 0) |
| return std::string(); |
| |
| // Buffer for accumulating debugging info about the error. Place |
| // more-relevant information earlier, in case things overflow the |
| // fixed-size reporting buffer. |
| std::string debug_info; |
| base::StringAppendF(&debug_info, "SQLITE_CORRUPT, db size %" PRId64 "\n", |
| db_size); |
| |
| // Only check files up to 8M to keep things from blocking too long. |
| const int64_t kMaxIntegrityCheckSize = 8192 * 1024; |
| if (db_size > kMaxIntegrityCheckSize) { |
| debug_info += "integrity_check skipped due to size\n"; |
| } else { |
| std::vector<std::string> messages; |
| |
| // TODO(shess): FullIntegrityCheck() splits into a vector while this joins |
| // into a string. Probably should be refactored. |
| const base::TimeTicks before = base::TimeTicks::Now(); |
| FullIntegrityCheck(&messages); |
| base::StringAppendF( |
| &debug_info, "integrity_check %" PRId64 " ms, %" PRIuS " records:\n", |
| (base::TimeTicks::Now() - before).InMilliseconds(), messages.size()); |
| |
| // SQLite returns up to 100 messages by default, trim deeper to |
| // keep close to the 2000-character size limit for dumping. |
| const size_t kMaxMessages = 20; |
| for (size_t i = 0; i < kMaxMessages && i < messages.size(); ++i) { |
| base::StringAppendF(&debug_info, "%s\n", messages[i].c_str()); |
| } |
| } |
| |
| return debug_info; |
| } |
| |
| bool Database::GetMmapAltStatus(int64_t* status) { |
| TRACE_EVENT0("sql", "Database::GetMmapAltStatus"); |
| |
| // The [meta] version uses a missing table as a signal for a fresh database. |
| // That will not work for the view, which would not exist in either a new or |
| // an existing database. A new database _should_ be only one page long, so |
| // just don't bother optimizing this case (start at offset 0). |
| // TODO(shess): Could the [meta] case also get simpler, then? |
| if (!DoesViewExist("MmapStatus")) { |
| *status = 0; |
| return true; |
| } |
| |
| const char* kMmapStatusSql = "SELECT * FROM MmapStatus"; |
| Statement s(GetUniqueStatement(kMmapStatusSql)); |
| if (s.Step()) |
| *status = s.ColumnInt64(0); |
| return s.Succeeded(); |
| } |
| |
| bool Database::SetMmapAltStatus(int64_t status) { |
| if (!BeginTransaction()) |
| return false; |
| |
| // View may not exist on first run. |
| if (!Execute("DROP VIEW IF EXISTS MmapStatus")) { |
| RollbackTransaction(); |
| return false; |
| } |
| |
| // Views live in the schema, so they cannot be parameterized. For an integer |
| // value, this construct should be safe from SQL injection, if the value |
| // becomes more complicated use "SELECT quote(?)" to generate a safe quoted |
| // value. |
| const std::string create_view_sql = base::StringPrintf( |
| "CREATE VIEW MmapStatus (value) AS SELECT %" PRId64, status); |
| if (!Execute(create_view_sql.c_str())) { |
| RollbackTransaction(); |
| return false; |
| } |
| |
| return CommitTransaction(); |
| } |
| |
| size_t Database::ComputeMmapSizeForOpen() { |
| TRACE_EVENT0("sql", "Database::ComputeMmapSizeForOpen"); |
| |
| std::optional<base::ScopedBlockingCall> scoped_blocking_call; |
| InitScopedBlockingCall(FROM_HERE, &scoped_blocking_call); |
| |
| // How much to map if no errors are found. 50MB encompasses the 99th |
| // percentile of Chrome databases in the wild, so this should be good. |
| const size_t kMmapEverything = 256 * 1024 * 1024; |
| |
| // Progress information is tracked in the [meta] table for databases which use |
| // sql::MetaTable, otherwise it is tracked in a special view. |
| // TODO(pwnall): Migrate all databases to using a meta table. |
| int64_t mmap_ofs = 0; |
| if (options_.mmap_alt_status_discouraged) { |
| if (!GetMmapAltStatus(&mmap_ofs)) |
| return 0; |
| } else { |
| // If [meta] doesn't exist, yet, it's a new database, assume the best. |
| // sql::MetaTable::Init() will preload kMmapSuccess. |
| if (!MetaTable::DoesTableExist(this)) |
| return kMmapEverything; |
| |
| if (!MetaTable::GetMmapStatus(this, &mmap_ofs)) |
| return 0; |
| } |
| |
| // Database read failed in the past, don't memory map. |
| if (mmap_ofs == MetaTable::kMmapFailure) |
| return 0; |
| |
| if (mmap_ofs != MetaTable::kMmapSuccess) { |
| // Continue reading from previous offset. |
| DCHECK_GE(mmap_ofs, 0); |
| |
| // GetSqliteVfsFile() returns null for in-memory and temporary databases. |
| // This is fine, we don't want to enable memory-mapping in those cases |
| // anyway. |
| // |
| // First, memory-mapping is a no-op for in-memory databases. |
| // |
| // Second, temporary databases are only used for corruption recovery, which |
| // occurs in response to I/O errors. An environment with heightened I/O |
| // errors translates into a higher risk of mmap-induced Chrome crashes. |
| sqlite3_int64 db_size = 0; |
| sqlite3_file* file = GetSqliteVfsFile(); |
| if (!file || file->pMethods->xFileSize(file, &db_size) != SQLITE_OK) |
| return 0; |
| |
| // Read more of the database looking for errors. The VFS interface is used |
| // to assure that the reads are valid for SQLite. |g_reads_allowed| is used |
| // to limit checking to 20MB per run of Chromium. |
| // |
| // Read the data left, or |g_reads_allowed|, whichever is smaller. |
| // |g_reads_allowed| limits the total amount of I/O to spend verifying data |
| // in a single Chromium run. |
| sqlite3_int64 amount = db_size - mmap_ofs; |
| if (amount < 0) |
| amount = 0; |
| if (amount > 0) { |
| static base::NoDestructor<base::Lock> lock; |
| base::AutoLock auto_lock(*lock); |
| static sqlite3_int64 g_reads_allowed = 20 * 1024 * 1024; |
| if (g_reads_allowed < amount) |
| amount = g_reads_allowed; |
| g_reads_allowed -= amount; |
| } |
| |
| // |amount| can be <= 0 if |g_reads_allowed| ran out of quota, or if the |
| // database was truncated after a previous pass. |
| if (amount <= 0 && mmap_ofs < db_size) { |
| DCHECK_EQ(0, amount); |
| } else { |
| static const int kPageSize = 4096; |
| char buf[kPageSize]; |
| while (amount > 0) { |
| int rc = file->pMethods->xRead(file, buf, sizeof(buf), mmap_ofs); |
| if (rc == SQLITE_OK) { |
| mmap_ofs += sizeof(buf); |
| amount -= sizeof(buf); |
| } else if (rc == SQLITE_IOERR_SHORT_READ) { |
| // Reached EOF for a database with page size < |kPageSize|. |
| mmap_ofs = db_size; |
| break; |
| } else { |
| // TODO(shess): Consider calling OnSqliteError(). |
| mmap_ofs = MetaTable::kMmapFailure; |
| break; |
| } |
| } |
| |
| // Log these events after update to distinguish meta update failure. |
| if (mmap_ofs >= db_size) { |
| mmap_ofs = MetaTable::kMmapSuccess; |
| } else { |
| DCHECK(mmap_ofs > 0 || mmap_ofs == MetaTable::kMmapFailure); |
| } |
| |
| if (options_.mmap_alt_status_discouraged) { |
| if (!SetMmapAltStatus(mmap_ofs)) |
| return 0; |
| } else { |
| if (!MetaTable::SetMmapStatus(this, mmap_ofs)) |
| return 0; |
| } |
| } |
| } |
| |
| if (mmap_ofs == MetaTable::kMmapFailure) |
| return 0; |
| if (mmap_ofs == MetaTable::kMmapSuccess) |
| return kMmapEverything; |
| return mmap_ofs; |
| } |
| |
| int Database::SqlitePrepareFlags() const { |
| return options_.enable_virtual_tables_discouraged ? 0 |
| : SQLITE_PREPARE_NO_VTAB; |
| } |
| |
| sqlite3_file* Database::GetSqliteVfsFile() { |
| DCHECK(db_) << "Database not opened"; |
| |
| // sqlite3_file_control() accepts a null pointer to mean the "main" database |
| // attached to a connection. https://www.sqlite.org/c3ref/file_control.html |
| constexpr const char* kMainDatabaseName = nullptr; |
| |
| sqlite3_file* result = nullptr; |
| auto sqlite_result_code = ToSqliteResultCode(sqlite3_file_control( |
| db_, kMainDatabaseName, SQLITE_FCNTL_FILE_POINTER, &result)); |
| |
| // SQLITE_FCNTL_FILE_POINTER is handled directly by SQLite, not by the VFS. It |
| // is only supposed to fail with SQLITE_ERROR if the database name is not |
| // recognized. However, "main" should always be recognized. |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_file_control(SQLITE_FCNTL_FILE_POINTER) failed"; |
| |
| // SQLite does not return null when called on an in-memory or temporary |
| // database. Instead, it returns returns a VFS file object with a null |
| // pMethods member. |
| DCHECK(result) |
| << "sqlite3_file_control() succeded but returned a null sqlite3_file*"; |
| if (!result->pMethods) { |
| // If this assumption fails, sql::Database will still function correctly, |
| // but will miss some configuration optimizations. The DCHECK is here to |
| // alert us (via test failures and ASAN canary builds) of such cases. |
| DCHECK_EQ(DbPath().AsUTF8Unsafe(), "") |
| << "sqlite3_file_control() returned a sqlite3_file* with null pMethods " |
| << "in a case when it shouldn't have."; |
| |
| return nullptr; |
| } |
| |
| return result; |
| } |
| |
| void Database::TrimMemory() { |
| TRACE_EVENT0("sql", "Database::TrimMemory"); |
| |
| if (!db_) |
| return; |
| |
| // Passing the result code through ToSqliteResultCode() to catch issues such |
| // as SQLITE_MISUSE. |
| std::ignore = ToSqliteResultCode(sqlite3_db_release_memory(db_)); |
| |
| // It is tempting to use sqlite3_release_memory() here as well. However, the |
| // API is documented to be a no-op unless SQLite is built with |
| // SQLITE_ENABLE_MEMORY_MANAGEMENT. We do not use this option, because it is |
| // incompatible with per-database page cache pools. Behind the scenes, |
| // SQLITE_ENABLE_MEMORY_MANAGEMENT causes SQLite to use a global page cache |
| // pool, and sqlite3_release_memory() releases unused pages from this global |
| // pool. |
| #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) |
| #error "This method assumes SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined" |
| #endif // defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) |
| } |
| |
| // Create an in-memory database with the existing database's page |
| // size, then backup that database over the existing database. |
| bool Database::Raze() { |
| TRACE_EVENT0("sql", "Database::Raze"); |
| |
| std::optional<base::ScopedBlockingCall> scoped_blocking_call; |
| InitScopedBlockingCall(FROM_HERE, &scoped_blocking_call); |
| |
| if (!db_) { |
| DCHECK(poisoned_) << "Cannot raze null db"; |
| return false; |
| } |
| |
| DCHECK_GE(transaction_nesting_, 0); |
| if (transaction_nesting_ > 0) { |
| DLOG(DCHECK) << "Cannot raze within a transaction"; |
| return false; |
| } |
| |
| sql::Database null_db(sql::DatabaseOptions{ |
| .exclusive_locking = true, |
| .page_size = options_.page_size, |
| .cache_size = 0, |
| .enable_views_discouraged = options_.enable_views_discouraged, |
| .enable_virtual_tables_discouraged = |
| options_.enable_virtual_tables_discouraged, |
| }); |
| if (!null_db.OpenInMemory()) { |
| DLOG(DCHECK) << "Unable to open in-memory database."; |
| return false; |
| } |
| |
| #if BUILDFLAG(IS_ANDROID) |
| // Android compiles with SQLITE_DEFAULT_AUTOVACUUM. Unfortunately, |
| // in-memory databases do not respect this define. |
| // TODO(shess): Figure out a way to set this without using platform |
| // specific code. AFAICT from sqlite3.c, the only way to do it |
| // would be to create an actual filesystem database, which is |
| // unfortunate. |
| if (!null_db.Execute("PRAGMA auto_vacuum = 1")) |
| return false; |
| #endif |
| |
| // The page size doesn't take effect until a database has pages, and |
| // at this point the null database has none. Changing the schema |
| // version will create the first page. This will not affect the |
| // schema version in the resulting database, as SQLite's backup |
| // implementation propagates the schema version from the original |
| // database to the new version of the database, incremented by one |
| // so that other readers see the schema change and act accordingly. |
| if (!null_db.Execute("PRAGMA schema_version = 1")) |
| return false; |
| |
| // SQLite tracks the expected number of database pages in the first |
| // page, and if it does not match the total retrieved from a |
| // filesystem call, treats the database as corrupt. This situation |
| // breaks almost all SQLite calls. "PRAGMA writable_schema" can be |
| // used to hint to SQLite to soldier on in that case, specifically |
| // for purposes of recovery. [See SQLITE_CORRUPT_BKPT case in |
| // sqlite3.c lockBtree().] |
| // TODO(shess): With this, "PRAGMA auto_vacuum" and "PRAGMA |
| // page_size" can be used to query such a database. |
| ScopedWritableSchema writable_schema(db_); |
| |
| #if BUILDFLAG(IS_WIN) |
| // On Windows, truncate silently fails when applied to memory-mapped files. |
| // Disable memory-mapping so that the truncate succeeds. Note that other |
| // Database connections may have memory-mapped the file, so this may not |
| // entirely prevent the problem. |
| // [Source: <https://sqlite.org/mmap.html> plus experiments.] |
| std::ignore = Execute("PRAGMA mmap_size = 0"); |
| #endif |
| |
| SqliteResultCode sqlite_result_code = BackupDatabaseForRaze(null_db.db_, db_); |
| |
| // The destination database was locked. |
| if (sqlite_result_code == SqliteResultCode::kBusy) |
| return false; |
| |
| // SQLITE_NOTADB can happen if page 1 of db_ exists, but is not |
| // formatted correctly. SQLITE_IOERR_SHORT_READ can happen if db_ |
| // isn't even big enough for one page. Either way, reach in and |
| // truncate it before trying again. |
| // TODO(shess): Maybe it would be worthwhile to just truncate from |
| // the get-go? |
| if (sqlite_result_code == SqliteResultCode::kNotADatabase || |
| sqlite_result_code == SqliteResultCode::kIoShortRead) { |
| sqlite3_file* file = GetSqliteVfsFile(); |
| if (!file || file->pMethods->xTruncate(file, 0) != SQLITE_OK) { |
| DLOG(DCHECK) << "Failed to truncate file."; |
| return false; |
| } |
| |
| sqlite_result_code = BackupDatabaseForRaze(null_db.db_, db_); |
| if (sqlite_result_code != SqliteResultCode::kDone) |
| return false; |
| } |
| |
| // Page size of |db_| and |null_db| differ. |
| if (sqlite_result_code == SqliteResultCode::kReadOnly) { |
| // Enter TRUNCATE mode to change page size. |
| // TODO(shuagga@microsoft.com): Need a guarantee here that there is no other |
| // database connection open. |
| std::ignore = Execute("PRAGMA journal_mode=TRUNCATE;"); |
| const std::string page_size_sql = base::StrCat( |
| {"PRAGMA page_size=", base::NumberToString(options_.page_size)}); |
| if (!Execute(page_size_sql.c_str())) { |
| return false; |
| } |
| // Page size isn't changed until the database is vacuumed. |
| std::ignore = Execute("VACUUM"); |
| // Re-enter WAL mode. |
| if (UseWALMode()) { |
| std::ignore = Execute("PRAGMA journal_mode=WAL;"); |
| } |
| |
| sqlite_result_code = BackupDatabaseForRaze(null_db.db_, db_); |
| if (sqlite_result_code != SqliteResultCode::kDone) |
| return false; |
| } |
| |
| if (sqlite_result_code != SqliteResultCode::kDone) { |
| NOTIMPLEMENTED() << "Unhandled sqlite3_backup_step() error: " |
| << sqlite_result_code; |
| return false; |
| } |
| |
| // Checkpoint to propagate transactions to the database file and empty the WAL |
| // file. |
| // The database can still contain old data if the Checkpoint fails so fail the |
| // Raze. |
| return CheckpointDatabase(); |
| } |
| |
| bool Database::RazeAndPoison() { |
| TRACE_EVENT0("sql", "Database::RazeAndPoison"); |
| |
| if (!db_) { |
| DCHECK(poisoned_) << "Cannot raze null db"; |
| return false; |
| } |
| |
| // Raze() cannot run in a transaction. |
| RollbackAllTransactions(); |
| |
| bool result = Raze(); |
| |
| CloseInternal(true); |
| |
| // Mark the database so that future API calls fail appropriately, |
| // but don't DCHECK (because after calling this function they are |
| // expected to fail). |
| poisoned_ = true; |
| |
| return result; |
| } |
| |
| void Database::Poison() { |
| TRACE_EVENT0("sql", "Database::Poison"); |
| |
| if (!db_) { |
| DCHECK(poisoned_) << "Cannot poison null db"; |
| return; |
| } |
| |
| RollbackAllTransactions(); |
| CloseInternal(true); |
| |
| // Mark the database so that future API calls fail appropriately, |
| // but don't DCHECK (because after calling this function they are |
| // expected to fail). |
| poisoned_ = true; |
| } |
| |
| // TODO(shess): To the extent possible, figure out the optimal |
| // ordering for these deletes which will prevent other Database connections |
| // from seeing odd behavior. For instance, it may be necessary to |
| // manually lock the main database file in a SQLite-compatible fashion |
| // (to prevent other processes from opening it), then delete the |
| // journal files, then delete the main database file. Another option |
| // might be to lock the main database file and poison the header with |
| // junk to prevent other processes from opening it successfully (like |
| // Gears "SQLite poison 3" trick). |
| // |
| // static |
| bool Database::Delete(const base::FilePath& path) { |
| TRACE_EVENT1("sql", "Database::Delete", "path", path.MaybeAsASCII()); |
| |
| base::ScopedBlockingCall scoped_blocking_call(FROM_HERE, |
| base::BlockingType::MAY_BLOCK); |
| |
| base::FilePath journal_path = Database::JournalPath(path); |
| base::FilePath wal_path = Database::WriteAheadLogPath(path); |
| |
| std::string journal_str = AsUTF8ForSQL(journal_path); |
| std::string wal_str = AsUTF8ForSQL(wal_path); |
| std::string path_str = AsUTF8ForSQL(path); |
| |
| EnsureSqliteInitialized(); |
| |
| sqlite3_vfs* vfs = sqlite3_vfs_find(nullptr); |
| CHECK(vfs); |
| CHECK(vfs->xDelete); |
| CHECK(vfs->xAccess); |
| |
| // We only work with the VFS implementations listed below. If you're trying to |
| // use this code with any other VFS, you're not in a good place. |
| CHECK(strncmp(vfs->zName, "unix", 4) == 0 || |
| strncmp(vfs->zName, "win32", 5) == 0 || |
| strcmp(vfs->zName, "storage_service") == 0); |
| |
| vfs->xDelete(vfs, journal_str.c_str(), 0); |
| vfs->xDelete(vfs, wal_str.c_str(), 0); |
| vfs->xDelete(vfs, path_str.c_str(), 0); |
| |
| int journal_exists = 0; |
| vfs->xAccess(vfs, journal_str.c_str(), SQLITE_ACCESS_EXISTS, &journal_exists); |
| |
| int wal_exists = 0; |
| vfs->xAccess(vfs, wal_str.c_str(), SQLITE_ACCESS_EXISTS, &wal_exists); |
| |
| int path_exists = 0; |
| vfs->xAccess(vfs, path_str.c_str(), SQLITE_ACCESS_EXISTS, &path_exists); |
| |
| return !journal_exists && !wal_exists && !path_exists; |
| } |
| |
| bool Database::BeginTransaction() { |
| TRACE_EVENT0("sql", "Database::BeginTransaction"); |
| |
| if (needs_rollback_) { |
| DCHECK_GT(transaction_nesting_, 0); |
| |
| // When we're going to rollback, fail on this begin and don't actually |
| // mark us as entering the nested transaction. |
| return false; |
| } |
| |
| bool success = true; |
| DCHECK_GE(transaction_nesting_, 0); |
| if (!transaction_nesting_) { |
| needs_rollback_ = false; |
| |
| Statement begin(GetCachedStatement(SQL_FROM_HERE, "BEGIN TRANSACTION")); |
| if (!begin.Run()) |
| return false; |
| } |
| ++transaction_nesting_; |
| return success; |
| } |
| |
| void Database::RollbackTransaction() { |
| TRACE_EVENT0("sql", "Database::RollbackTransaction"); |
| |
| DCHECK_GE(transaction_nesting_, 0); |
| if (!transaction_nesting_) { |
| DCHECK(poisoned_) << "Rolling back a nonexistent transaction"; |
| return; |
| } |
| |
| DCHECK_GT(transaction_nesting_, 0); |
| --transaction_nesting_; |
| |
| if (transaction_nesting_ > 0) { |
| // Mark the outermost transaction as needing rollback. |
| needs_rollback_ = true; |
| return; |
| } |
| |
| DoRollback(); |
| } |
| |
| bool Database::CommitTransaction() { |
| TRACE_EVENT0("sql", "Database::CommitTransaction"); |
| |
| DCHECK_GE(transaction_nesting_, 0); |
| if (!transaction_nesting_) { |
| DCHECK(poisoned_) << "Committing a nonexistent transaction"; |
| return false; |
| } |
| |
| DCHECK_GT(transaction_nesting_, 0); |
| --transaction_nesting_; |
| |
| if (transaction_nesting_ > 0) { |
| // Mark any nested transactions as failing after we've already got one. |
| return !needs_rollback_; |
| } |
| |
| if (needs_rollback_) { |
| DoRollback(); |
| return false; |
| } |
| |
| Statement commit(GetCachedStatement(SQL_FROM_HERE, "COMMIT")); |
| |
| bool succeeded = commit.Run(); |
| |
| // Release dirty cache pages after the transaction closes. |
| ReleaseCacheMemoryIfNeeded(false); |
| |
| return succeeded; |
| } |
| |
| void Database::RollbackAllTransactions() { |
| TRACE_EVENT0("sql", "Database::RollbackAllTransactions"); |
| |
| DCHECK_GE(transaction_nesting_, 0); |
| if (transaction_nesting_ > 0) { |
| transaction_nesting_ = 0; |
| DoRollback(); |
| } |
| } |
| |
| bool Database::AttachDatabase(const base::FilePath& other_db_path, |
| base::StringPiece attachment_point, |
| InternalApiToken) { |
| TRACE_EVENT0("sql", "Database::AttachDatabase"); |
| |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| DCHECK(ValidAttachmentPoint(attachment_point)); |
| |
| Statement statement(GetUniqueStatement("ATTACH ? AS ?")); |
| #if BUILDFLAG(IS_WIN) |
| statement.BindString16(0, base::AsStringPiece16(other_db_path.value())); |
| #else |
| statement.BindString(0, other_db_path.value()); |
| #endif |
| statement.BindString(1, attachment_point); |
| return statement.Run(); |
| } |
| |
| bool Database::DetachDatabase(base::StringPiece attachment_point, |
| InternalApiToken) { |
| TRACE_EVENT0("sql", "Database::DetachDatabase"); |
| |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| DCHECK(ValidAttachmentPoint(attachment_point)); |
| |
| Statement statement(GetUniqueStatement("DETACH ?")); |
| statement.BindString(0, attachment_point); |
| return statement.Run(); |
| } |
| |
| // TODO(crbug.com/1230443): Change this to execute exactly one statement. |
| SqliteResultCode Database::ExecuteAndReturnResultCode(const char* sql) { |
| TRACE_EVENT0("sql", "Database::ExecuteAndReturnErrorCode"); |
| |
| DCHECK(sql); |
| |
| if (!db_) { |
| DCHECK(poisoned_) << "Illegal use of Database without a db"; |
| return SqliteResultCode::kError; |
| } |
| |
| std::optional<base::ScopedBlockingCall> scoped_blocking_call; |
| InitScopedBlockingCall(FROM_HERE, &scoped_blocking_call); |
| |
| SqliteResultCode sqlite_result_code = SqliteResultCode::kOk; |
| while ((sqlite_result_code == SqliteResultCode::kOk) && *sql) { |
| sqlite3_stmt* sqlite_statement; |
| const char* leftover_sql; |
| sqlite_result_code = ToSqliteResultCode( |
| sqlite3_prepare_v3(db_, sql, /* nByte= */ -1, SqlitePrepareFlags(), |
| &sqlite_statement, &leftover_sql)); |
| |
| #if DCHECK_IS_ON() |
| // Report SQL compilation errors. On developer machines, the errors are most |
| // likely caused by invalid SQL in an under-development feature. In |
| // production, SQL compilation errors are caused by database schema |
| // corruption. |
| // |
| // DCHECK would not be appropriate here, because on-disk data is always |
| // subject to corruption, so Chrome cannot assume that the database schema |
| // will remain intact. |
| if (sqlite_result_code == SqliteResultCode::kError) { |
| DLOG(ERROR) << "SQL compilation error: " << GetErrorMessage() |
| << ". Statement: " << sql; |
| } |
| #endif // DCHECK_IS_ON() |
| |
| // Stop if compiling the SQL statement fails. |
| if (sqlite_result_code != SqliteResultCode::kOk) { |
| DCHECK_NE(sqlite_result_code, SqliteResultCode::kDone) |
| << "sqlite3_prepare_v3() returned unexpected non-error result code"; |
| DCHECK_NE(sqlite_result_code, SqliteResultCode::kRow) |
| << "sqlite3_prepare_v3() returned unexpected non-error result code"; |
| break; |
| } |
| |
| sql = leftover_sql; |
| |
| // This happens if |sql| originally only contained comments or whitespace. |
| // TODO(shess): Audit to see if this can become a DCHECK(). Having |
| // extraneous comments and whitespace in the SQL statements increases |
| // runtime cost and can easily be shifted out to the C++ layer. |
| if (!sqlite_statement) |
| continue; |
| |
| while (true) { |
| sqlite_result_code = ToSqliteResultCode(sqlite3_step(sqlite_statement)); |
| if (sqlite_result_code != SqliteResultCode::kRow) |
| break; |
| |
| // TODO(shess): Audit to see if this can become a DCHECK. I think PRAGMA |
| // is the only legitimate case for this. Previously recorded histograms |
| // show significant use of this code path. |
| } |
| |
| // sqlite3_finalize() returns SQLITE_OK if the most recent sqlite3_step() |
| // returned SQLITE_DONE or SQLITE_ROW, otherwise the error code. |
| sqlite_result_code = ToSqliteResultCode(sqlite3_finalize(sqlite_statement)); |
| DCHECK_NE(sqlite_result_code, SqliteResultCode::kDone) |
| << "sqlite3_finalize() returned unexpected non-error result code"; |
| DCHECK_NE(sqlite_result_code, SqliteResultCode::kRow) |
| << "sqlite3_finalize() returned unexpected non-error result code"; |
| |
| // sqlite3_exec() does this, presumably to avoid spinning the parser for |
| // trailing whitespace. |
| // TODO(shess): Audit to see if this can become a DCHECK. |
| while (base::IsAsciiWhitespace(*sql)) { |
| sql++; |
| } |
| } |
| |
| // Most calls to Execute() modify the database. The main exceptions would be |
| // calls such as CREATE TABLE IF NOT EXISTS which could modify the database |
| // but sometimes don't. |
| ReleaseCacheMemoryIfNeeded(true); |
| |
| DCHECK_NE(sqlite_result_code, SqliteResultCode::kDone) |
| << __func__ << " about to return unexpected non-error result code"; |
| DCHECK_NE(sqlite_result_code, SqliteResultCode::kRow) |
| << __func__ << " about to return unexpected non-error result code"; |
| return sqlite_result_code; |
| } |
| |
| bool Database::Execute(const char* sql) { |
| TRACE_EVENT1("sql", "Database::Execute", "query", TRACE_STR_COPY(sql)); |
| |
| if (!db_) { |
| DCHECK(poisoned_) << "Illegal use of Database without a db"; |
| return false; |
| } |
| |
| SqliteResultCode sqlite_result_code = ExecuteAndReturnResultCode(sql); |
| if (sqlite_result_code != SqliteResultCode::kOk) |
| OnSqliteError(ToSqliteErrorCode(sqlite_result_code), nullptr, sql); |
| |
| return sqlite_result_code == SqliteResultCode::kOk; |
| } |
| |
| bool Database::ExecuteWithTimeout(const char* sql, base::TimeDelta timeout) { |
| TRACE_EVENT0("sql", "Database::ExecuteWithTimeout"); |
| |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| if (!db_) { |
| DCHECK(poisoned_) << "Illegal use of Database without a db"; |
| return false; |
| } |
| |
| ScopedBusyTimeout busy_timeout(db_); |
| busy_timeout.SetTimeout(timeout); |
| return Execute(sql); |
| } |
| |
| bool Database::ExecuteScriptForTesting(const char* sql_script) { |
| DCHECK(sql_script); |
| if (!db_) { |
| DCHECK(poisoned_) << "Illegal use of Database without a db"; |
| return false; |
| } |
| |
| std::optional<base::ScopedBlockingCall> scoped_blocking_call; |
| InitScopedBlockingCall(FROM_HERE, &scoped_blocking_call); |
| |
| while (*sql_script) { |
| sqlite3_stmt* sqlite_statement; |
| auto sqlite_result_code = ToSqliteResultCode( |
| sqlite3_prepare_v3(db_, sql_script, /*nByte=*/-1, SqlitePrepareFlags(), |
| &sqlite_statement, &sql_script)); |
| if (sqlite_result_code != SqliteResultCode::kOk) |
| return false; |
| |
| if (!sqlite_statement) { |
| // Trailing comment or whitespace after the last semicolon. |
| return true; |
| } |
| |
| // TODO(pwnall): Investigate restricting ExecuteScriptForTesting() to |
| // statements that don't produce any result rows. |
| do { |
| sqlite_result_code = ToSqliteResultCode(sqlite3_step(sqlite_statement)); |
| } while (sqlite_result_code == SqliteResultCode::kRow); |
| |
| // sqlite3_finalize() returns SQLITE_OK if the most recent sqlite3_step() |
| // returned SQLITE_DONE or SQLITE_ROW, otherwise the error code. |
| sqlite_result_code = ToSqliteResultCode(sqlite3_finalize(sqlite_statement)); |
| if (sqlite_result_code != SqliteResultCode::kOk) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| scoped_refptr<Database::StatementRef> Database::GetCachedStatement( |
| StatementID id, |
| const char* sql) { |
| auto it = statement_cache_.find(id); |
| if (it != statement_cache_.end()) { |
| // Statement is in the cache. It should still be valid. We're the only |
| // entity invalidating cached statements, and we remove them from the cache |
| // when we do that. |
| DCHECK(it->second->is_valid()); |
| DCHECK_EQ(std::string(sqlite3_sql(it->second->stmt())), std::string(sql)) |
| << "GetCachedStatement used with same ID but different SQL"; |
| |
| // Reset the statement so it can be reused. |
| // |
| // ToSqliteResultCode() is called to ensure that sqlite3_reset() doesn't |
| // return a concerning code, such as SQLITE_MISUSE. The processed error code |
| // is ignored because sqlite3_reset() returns an error code if the last |
| // sqlite3_step() failed, and that error was already reported when we ran |
| // sqlite3_step(), via Statement::Run() or Statement::Step(). |
| std::ignore = ToSqliteResultCode(sqlite3_reset(it->second->stmt())); |
| return it->second; |
| } |
| |
| scoped_refptr<StatementRef> statement = GetUniqueStatement(sql); |
| if (statement->is_valid()) { |
| statement_cache_[id] = statement; // Only cache valid statements. |
| DCHECK_EQ(std::string(sqlite3_sql(statement->stmt())), std::string(sql)) |
| << "Input SQL does not match SQLite's normalized version"; |
| } |
| return statement; |
| } |
| |
| scoped_refptr<Database::StatementRef> Database::GetUniqueStatement( |
| const char* sql) { |
| return GetStatementImpl(sql, /*is_readonly=*/false); |
| } |
| |
| scoped_refptr<Database::StatementRef> Database::GetReadonlyStatement( |
| const char* sql) { |
| return GetStatementImpl(sql, /*is_readonly=*/true); |
| } |
| |
| scoped_refptr<Database::StatementRef> Database::GetStatementImpl( |
| const char* sql, |
| bool is_readonly) { |
| DCHECK(sql); |
| |
| // Return inactive statement. |
| if (!db_) |
| return base::MakeRefCounted<StatementRef>(nullptr, nullptr, poisoned_); |
| |
| std::optional<base::ScopedBlockingCall> scoped_blocking_call; |
| InitScopedBlockingCall(FROM_HERE, &scoped_blocking_call); |
| |
| #if DCHECK_IS_ON() |
| const char* unused_sql = nullptr; |
| const char** unused_sql_ptr = &unused_sql; |
| #else |
| constexpr const char** unused_sql_ptr = nullptr; |
| #endif // DCHECK_IS_ON() |
| // TODO(pwnall): Cached statements (but not unique statements) should be |
| // prepared with prepFlags set to SQLITE_PREPARE_PERSISTENT. |
| sqlite3_stmt* sqlite_statement; |
| auto sqlite_result_code = ToSqliteResultCode( |
| sqlite3_prepare_v3(db_, sql, /* nByte= */ -1, SqlitePrepareFlags(), |
| &sqlite_statement, unused_sql_ptr)); |
| |
| #if DCHECK_IS_ON() |
| // Report SQL compilation errors. On developer machines, the errors are most |
| // likely caused by invalid SQL in an under-development feature. In |
| // production, SQL compilation errors are caused by database schema |
| // corruption. |
| // |
| // DCHECK would not be appropriate here, because on-disk data is always |
| // subject to corruption, so Chrome cannot assume that the database schema |
| // will remain intact. |
| if (sqlite_result_code == SqliteResultCode::kError) { |
| DLOG(ERROR) << "SQL compilation error: " << GetErrorMessage() |
| << ". Statement: " << sql; |
| } |
| #endif // DCHECK_IS_ON() |
| |
| if (sqlite_result_code != SqliteResultCode::kOk) { |
| DCHECK_NE(sqlite_result_code, SqliteResultCode::kDone) |
| << "sqlite3_prepare_v3() returned unexpected non-error result code"; |
| DCHECK_NE(sqlite_result_code, SqliteResultCode::kRow) |
| << "sqlite3_prepare_v3() returned unexpected non-error result code"; |
| OnSqliteError(ToSqliteErrorCode(sqlite_result_code), nullptr, sql); |
| return base::MakeRefCounted<StatementRef>(nullptr, nullptr, false); |
| } |
| |
| // If readonly statement is expected and the statement is not readonly, return |
| // an invalid statement and close the created statement. |
| if (is_readonly && sqlite3_stmt_readonly(sqlite_statement) == 0) { |
| DLOG(ERROR) << "Readonly SQL statement failed readonly test " << sql; |
| // Make a `StatementRef` that will close the created statement. |
| base::MakeRefCounted<StatementRef>(this, sqlite_statement, true); |
| |
| return base::MakeRefCounted<StatementRef>(nullptr, nullptr, false); |
| } |
| |
| #if DCHECK_IS_ON() |
| DCHECK_EQ(unused_sql, sql + strlen(sql)) |
| << "Unused text: " << std::string(unused_sql) << "\n" |
| << "in prepared SQL statement: " << std::string(sql); |
| #endif // DCHECK_IS_ON() |
| |
| DCHECK(sqlite_statement) << "No SQL statement in string: " << sql; |
| |
| return base::MakeRefCounted<StatementRef>(this, sqlite_statement, true); |
| } |
| |
| std::string Database::GetSchema() { |
| // The ORDER BY should not be necessary, but relying on organic |
| // order for something like this is questionable. |
| static const char kSql[] = |
| "SELECT type, name, tbl_name, sql " |
| "FROM sqlite_schema ORDER BY 1, 2, 3, 4"; |
| Statement statement(GetUniqueStatement(kSql)); |
| |
| std::string schema; |
| while (statement.Step()) { |
| schema += statement.ColumnString(0); |
| schema += '|'; |
| schema += statement.ColumnString(1); |
| schema += '|'; |
| schema += statement.ColumnString(2); |
| schema += '|'; |
| schema += statement.ColumnString(3); |
| schema += '\n'; |
| } |
| |
| return schema; |
| } |
| |
| bool Database::IsSQLValid(const char* sql) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| |
| std::optional<base::ScopedBlockingCall> scoped_blocking_call; |
| InitScopedBlockingCall(FROM_HERE, &scoped_blocking_call); |
| if (!db_) { |
| DCHECK(poisoned_) << "Illegal use of Database without a db"; |
| return false; |
| } |
| |
| #if DCHECK_IS_ON() |
| const char* unused_sql = nullptr; |
| const char** unused_sql_ptr = &unused_sql; |
| #else |
| constexpr const char** unused_sql_ptr = nullptr; |
| #endif // DCHECK_IS_ON() |
| |
| sqlite3_stmt* sqlite_statement = nullptr; |
| auto sqlite_result_code = ToSqliteResultCode( |
| sqlite3_prepare_v3(db_, sql, /* nByte= */ -1, SqlitePrepareFlags(), |
| &sqlite_statement, unused_sql_ptr)); |
| if (sqlite_result_code != SqliteResultCode::kOk) |
| return false; |
| |
| #if DCHECK_IS_ON() |
| DCHECK_EQ(unused_sql, sql + strlen(sql)) |
| << "Unused text: " << std::string(unused_sql) << "\n" |
| << "in SQL statement: " << std::string(sql); |
| #endif // DCHECK_IS_ON() |
| |
| DCHECK(sqlite_statement) << "No SQL statement in string: " << sql; |
| |
| sqlite_result_code = ToSqliteResultCode(sqlite3_finalize(sqlite_statement)); |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_finalize() failed for valid statement"; |
| return true; |
| } |
| |
| bool Database::DoesIndexExist(base::StringPiece index_name) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| return DoesSchemaItemExist(index_name, "index"); |
| } |
| |
| bool Database::DoesTableExist(base::StringPiece table_name) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| return DoesSchemaItemExist(table_name, "table"); |
| } |
| |
| bool Database::DoesViewExist(base::StringPiece view_name) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| return DoesSchemaItemExist(view_name, "view"); |
| } |
| |
| bool Database::DoesSchemaItemExist(base::StringPiece name, |
| base::StringPiece type) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| |
| static const char kSql[] = |
| "SELECT 1 FROM sqlite_schema WHERE type=? AND name=?"; |
| Statement statement(GetUniqueStatement(kSql)); |
| |
| if (!statement.is_valid()) { |
| // The database is corrupt. |
| return false; |
| } |
| |
| statement.BindString(0, type); |
| statement.BindString(1, name); |
| |
| return statement.Step(); // Table exists if any row was returned. |
| } |
| |
| bool Database::DoesColumnExist(const char* table_name, |
| const char* column_name) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| |
| if (!db_) { |
| DCHECK(poisoned_) << "Illegal use of Database without a db"; |
| return false; |
| } |
| |
| // sqlite3_table_column_metadata uses out-params to return column definition |
| // details, such as the column type and whether it allows NULL values. These |
| // aren't needed to compute the current method's result, so we pass in nullptr |
| // for all the out-params. |
| auto sqlite_result_code = ToSqliteResultCode(sqlite3_table_column_metadata( |
| db_, "main", table_name, column_name, /* pzDataType= */ nullptr, |
| /* pzCollSeq= */ nullptr, /* pNotNull= */ nullptr, |
| /* pPrimaryKey= */ nullptr, /* pAutoinc= */ nullptr)); |
| return sqlite_result_code == SqliteResultCode::kOk; |
| } |
| |
| int64_t Database::GetLastInsertRowId() const { |
| if (!db_) { |
| DCHECK(poisoned_) << "Illegal use of Database without a db"; |
| return 0; |
| } |
| int64_t last_rowid = sqlite3_last_insert_rowid(db_); |
| DCHECK(last_rowid != 0) << "No successful INSERT in a table with ROWID"; |
| return last_rowid; |
| } |
| |
| int64_t Database::GetLastChangeCount() { |
| if (!db_) { |
| DCHECK(poisoned_) << "Illegal use of Database without a db"; |
| return 0; |
| } |
| return sqlite3_changes64(db_); |
| } |
| |
| int Database::GetMemoryUsage() { |
| if (!db_) { |
| DCHECK(poisoned_) << "Illegal use of Database without a db"; |
| return 0; |
| } |
| |
| // The following calls all set the high watermark to zero. |
| // See https://www.sqlite.org/c3ref/c_dbstatus_options.html |
| int high_watermark = 0; |
| |
| int cache_memory = 0, schema_memory = 0, statement_memory = 0; |
| |
| auto sqlite_result_code = ToSqliteResultCode(sqlite3_db_status( |
| db_, SQLITE_DBSTATUS_CACHE_USED, &cache_memory, &high_watermark, |
| /*resetFlg=*/0)); |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_db_status(SQLITE_DBSTATUS_CACHE_USED) failed"; |
| |
| #if DCHECK_IS_ON() |
| int shared_cache_memory = 0; |
| sqlite_result_code = ToSqliteResultCode( |
| sqlite3_db_status(db_, SQLITE_DBSTATUS_CACHE_USED_SHARED, |
| &shared_cache_memory, &high_watermark, /*resetFlg=*/0)); |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_db_status(SQLITE_DBSTATUS_CACHE_USED_SHARED) failed"; |
| DCHECK_EQ(shared_cache_memory, cache_memory) |
| << "Memory counting assumes that each database uses a private page cache"; |
| #endif // DCHECK_IS_ON() |
| |
| sqlite_result_code = ToSqliteResultCode(sqlite3_db_status( |
| db_, SQLITE_DBSTATUS_SCHEMA_USED, &schema_memory, &high_watermark, |
| /*resetFlg=*/0)); |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_db_status(SQLITE_DBSTATUS_SCHEMA_USED) failed"; |
| |
| sqlite_result_code = ToSqliteResultCode(sqlite3_db_status( |
| db_, SQLITE_DBSTATUS_STMT_USED, &statement_memory, &high_watermark, |
| /*resetFlg=*/0)); |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_db_status(SQLITE_DBSTATUS_STMT_USED) failed"; |
| |
| return cache_memory + schema_memory + statement_memory; |
| } |
| |
| int Database::GetErrorCode() const { |
| if (!db_) |
| return SQLITE_ERROR; |
| return sqlite3_extended_errcode(db_); |
| } |
| |
| int Database::GetLastErrno() const { |
| if (!db_) |
| return -1; |
| |
| int err = 0; |
| if (SQLITE_OK != sqlite3_file_control(db_, nullptr, SQLITE_LAST_ERRNO, &err)) |
| return -2; |
| |
| return err; |
| } |
| |
| const char* Database::GetErrorMessage() const { |
| if (!db_) |
| return "sql::Database is not opened."; |
| return sqlite3_errmsg(db_); |
| } |
| |
| bool Database::OpenInternal(const std::string& db_file_path, |
| Database::OpenMode mode) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| TRACE_EVENT1("sql", "Database::OpenInternal", "path", db_file_path); |
| |
| DCHECK(mode != OpenMode::kTemporary || db_file_path.empty()) |
| << "Temporary databases should be open with an empty file path"; |
| |
| if (mode == OpenMode::kInMemory) { |
| DCHECK_EQ(db_file_path, kSqliteOpenInMemoryPath) |
| << "In-memory databases should be open with the magic :memory: path"; |
| } else { |
| DCHECK_NE(db_file_path, kSqliteOpenInMemoryPath) |
| << "Database file path conflicts with SQLite magic identifier"; |
| } |
| |
| if (is_open()) { |
| DLOG(DCHECK) << "sql::Database is already open."; |
| return false; |
| } |
| |
| std::optional<base::ScopedBlockingCall> scoped_blocking_call; |
| InitScopedBlockingCall(FROM_HERE, &scoped_blocking_call); |
| |
| EnsureSqliteInitialized(); |
| |
| // If |poisoned_| is set, it means an error handler called |
| // RazeAndPoison(). Until regular Close() is called, the caller |
| // should be treating the database as open, but is_open() currently |
| // only considers the sqlite3 handle's state. |
| DCHECK(!poisoned_) << "sql::Database is already open."; |
| poisoned_ = false; |
| |
| // Custom memory-mapping VFS which reads pages using regular I/O on first hit. |
| sqlite3_vfs* vfs = VFSWrapper(); |
| const char* vfs_name = (vfs ? vfs->zName : nullptr); |
| |
| // The flags are documented at https://www.sqlite.org/c3ref/open.html. |
| // |
| // Chrome uses SQLITE_OPEN_PRIVATECACHE because SQLite is used by many |
| // disparate features with their own databases, and having separate page |
| // caches makes it easier to reason about each feature's performance in |
| // isolation. |
| // |
| // SQLITE_OPEN_EXRESCODE enables the full range of SQLite error codes. See |
| // https://www.sqlite.org/rescode.html for details. |
| int open_flags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | |
| SQLITE_OPEN_EXRESCODE | SQLITE_OPEN_PRIVATECACHE; |
| std::string uri_file_path = db_file_path; |
| if (options_.exclusive_database_file_lock) { |
| #if BUILDFLAG(IS_WIN) |
| if (mode == OpenMode::kNone || mode == OpenMode::kRetryOnPoision) { |
| // Do not allow query injection. |
| if (base::Contains(db_file_path, '?')) { |
| return false; |
| } |
| open_flags |= SQLITE_OPEN_URI; |
| uri_file_path = base::StrCat({"file:", db_file_path, "?exclusive=true"}); |
| } |
| #else |
| NOTREACHED_NORETURN() |
| << "exclusive_database_file_lock is only supported on Windows."; |
| #endif // BUILDFLAG(IS_WIN) |
| } |
| |
| auto sqlite_result_code = ToSqliteResultCode( |
| sqlite3_open_v2(uri_file_path.c_str(), &db_, open_flags, vfs_name)); |
| if (sqlite_result_code != SqliteResultCode::kOk) { |
| // sqlite3_open_v2() will usually create a database connection handle, even |
| // if an error occurs (see https://www.sqlite.org/c3ref/open.html). |
| // Therefore, we'll clear `db_` immediately - particularly before triggering |
| // an error callback which may check whether a database connection exists. |
| if (db_) { |
| // Deallocate resources allocated during the failed open. |
| // See https://www.sqlite.org/c3ref/close.html. |
| sqlite3_close(db_); |
| db_ = nullptr; |
| } |
| |
| OnSqliteError(ToSqliteErrorCode(sqlite_result_code), nullptr, |
| "-- sqlite3_open_v2()"); |
| bool was_poisoned = poisoned_; |
| Close(); |
| |
| if (was_poisoned && mode == OpenMode::kRetryOnPoision) |
| return OpenInternal(db_file_path, OpenMode::kNone); |
| return false; |
| } |
| |
| ConfigureSqliteDatabaseObject(); |
| |
| // If indicated, enable shared mode ("NORMAL") on the database, so it can be |
| // opened by multiple processes. This needs to happen before WAL mode is |
| // enabled. |
| // |
| // TODO(crbug.com/1120969): Remove support for non-exclusive mode. |
| static_assert( |
| SQLITE_DEFAULT_LOCKING_MODE == 1, |
| "Chrome assumes SQLite is configured to default to EXCLUSIVE locking"); |
| if (!options_.exclusive_locking) { |
| if (!Execute("PRAGMA locking_mode=NORMAL")) |
| return false; |
| } |
| |
| // The sqlite3_open*() methods only perform I/O on the database file if a hot |
| // journal is found. Force SQLite to parse the header and database schema, so |
| // we can signal irrecoverable corruption early. |
| // |
| // sqlite3_table_column_metadata() causes SQLite to parse the database schema. |
| // Since the schema is stored inside a table B-tree, parsing the schema |
| // implies parsing the database header. |
| // |
| // sqlite3_table_column_metadata() can be used with a null database name, but |
| // that will cause it to search for the table in all databases that are |
| // ATTACHed to the connection. While Chrome features (almost) never use |
| // ATTACHed databases, we prefer to be explicit here. |
| // |
| // sqlite3_table_column_metadata() can be used with a null column name, and |
| // will report on the existence of the table with the given name. This is |
| // sufficient for the purpose of getting SQLite to parse the database schema. |
| // See https://www.sqlite.org/c3ref/table_column_metadata.html for details. |
| static constexpr char kSqliteSchemaTable[] = "sqlite_schema"; |
| sqlite_result_code = ToSqliteResultCode(sqlite3_table_column_metadata( |
| db_, kSqliteMainDatabaseName, kSqliteSchemaTable, /*zColumnName=*/nullptr, |
| /*pzDataType=*/nullptr, /*pzCollSeq=*/nullptr, /*pNotNull=*/nullptr, |
| /*pPrimaryKey=*/nullptr, /*pAutoinc=*/nullptr)); |
| if (sqlite_result_code != SqliteResultCode::kOk) { |
| OnSqliteError(ToSqliteErrorCode(sqlite_result_code), nullptr, |
| "-- sqlite3_table_column_metadata()"); |
| |
| // Retry or bail out if the error handler poisoned the handle. |
| // TODO(shess): Move this handling to one place (see also sqlite3_open). |
| // Possibly a wrapper function? |
| if (poisoned_) { |
| Close(); |
| if (mode == OpenMode::kRetryOnPoision) |
| return OpenInternal(db_file_path, OpenMode::kNone); |
| return false; |
| } |
| } |
| |
| const base::TimeDelta kBusyTimeout = base::Seconds(kBusyTimeoutSeconds); |
| |
| // Needs to happen before entering WAL mode. Will only work if this the first |
| // time the database is being opened in WAL mode. |
| const std::string page_size_sql = |
| base::StringPrintf("PRAGMA page_size=%d", options_.page_size); |
| std::ignore = ExecuteWithTimeout(page_size_sql.c_str(), kBusyTimeout); |
| |
| // http://www.sqlite.org/pragma.html#pragma_journal_mode |
| // WAL - Use a write-ahead log instead of a journal file. |
| // DELETE (default) - delete -journal file to commit. |
| // TRUNCATE - truncate -journal file to commit. |
| // PERSIST - zero out header of -journal file to commit. |
| // TRUNCATE should be faster than DELETE because it won't need directory |
| // changes for each transaction. PERSIST may break the spirit of using |
| // secure_delete. |
| // |
| // Needs to be performed after setting exclusive locking mode. Otherwise can |
| // fail if underlying VFS doesn't support shared memory. |
| if (UseWALMode()) { |
| // Set the synchronous flag to NORMAL. This means that writers don't flush |
| // the WAL file after every write. The WAL file is only flushed on a |
| // checkpoint. In this case, transcations might lose durability on a power |
| // loss (but still durable after an application crash). |
| // TODO(shuagga@microsoft.com): Evaluate if this loss of durability is a |
| // concern. |
| std::ignore = Execute("PRAGMA synchronous=NORMAL"); |
| |
| // Opening the db in WAL mode can fail (eg if the underlying VFS doesn't |
| // support shared memory and we are not in exclusive locking mode). |
| // |
| // TODO(shuagga@microsoft.com): We should probably catch a failure here. |
| std::ignore = Execute("PRAGMA journal_mode=WAL"); |
| } else { |
| std::ignore = Execute("PRAGMA journal_mode=TRUNCATE"); |
| } |
| |
| if (options_.flush_to_media) |
| std::ignore = Execute("PRAGMA fullfsync=1"); |
| |
| if (options_.cache_size != 0) { |
| const std::string cache_size_sql = base::StrCat( |
| {"PRAGMA cache_size=", base::NumberToString(options_.cache_size)}); |
| std::ignore = ExecuteWithTimeout(cache_size_sql.c_str(), kBusyTimeout); |
| } |
| |
| static_assert(SQLITE_SECURE_DELETE == 1, |
| "Chrome assumes secure_delete is on by default."); |
| |
| // When SQLite needs to grow a database file, it uses a configurable |
| // increment. Larger values reduce filesystem fragmentation and mmap() |
| // churn, as the database file is grown less often. Smaller values waste |
| // less disk space. |
| // |
| // We currently set different values for small vs large files. |
| // |
| // TODO(crbug.com/1305778): Replace file size-based heuristic with a |
| // DatabaseOptions member. Use the DatabaseOptions value for temporary |
| // databases as well. |
| sqlite3_file* file = GetSqliteVfsFile(); |
| |
| // GetSqliteVfsFile() returns null for in-memory and temporary databases. This |
| // is fine, because these databases start out empty, so the heuristic below |
| // would never set a chunk size on them anyway. |
| if (file) { |
| sqlite3_int64 db_size = 0; |
| sqlite_result_code = |
| ToSqliteResultCode(file->pMethods->xFileSize(file, &db_size)); |
| if (sqlite_result_code == SqliteResultCode::kOk && db_size > 16 * 1024) { |
| int chunk_size = 4 * 1024; |
| if (db_size > 128 * 1024) |
| chunk_size = 32 * 1024; |
| |
| sqlite3_file_control(db_, /*zDbName=*/nullptr, SQLITE_FCNTL_CHUNK_SIZE, |
| &chunk_size); |
| } |
| } |
| |
| size_t mmap_size = mmap_disabled_ ? 0 : ComputeMmapSizeForOpen(); |
| |
| // We explicitly issue a "PRGAMA mmap_size=0" to disable memory-mapping. We |
| // could skip executing the PRAGMA in that case, and use a static_assert to |
| // ensure that SQLITE_DEFAULT_MMAP_SIZE > 0. We didn't choose this alternative |
| // because would cost us a bit more logic, and the optimization would apply to |
| // edge cases, such as in-memory databases. More details at |
| // https://www.sqlite.org/pragma.html#pragma_mmap_size. |
| std::string pragma_mmap_size_sql = |
| base::StrCat({"PRAGMA mmap_size=", base::NumberToString(mmap_size)}); |
| std::ignore = Execute(pragma_mmap_size_sql.c_str()); |
| |
| // Determine if memory-mapping has actually been enabled. The Execute() above |
| // can succeed without changing the amount mapped. |
| mmap_enabled_ = false; |
| { |
| Statement pragma_mmap_size(GetUniqueStatement("PRAGMA mmap_size")); |
| if (pragma_mmap_size.Step() && pragma_mmap_size.ColumnInt64(0) > 0) |
| mmap_enabled_ = true; |
| } |
| |
| DCHECK(!memory_dump_provider_); |
| memory_dump_provider_ = |
| std::make_unique<DatabaseMemoryDumpProvider>(db_, histogram_tag_); |
| base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider( |
| memory_dump_provider_.get(), "sql::Database", /*task_runner=*/nullptr); |
| |
| return true; |
| } |
| |
| void Database::ConfigureSqliteDatabaseObject() { |
| // The use of SQLite's non-standard string quoting is not allowed in Chrome. |
| // |
| // Allowing double-quoted string literals is now considered a misfeature by |
| // SQLite authors. See https://www.sqlite.org/quirks.html#dblquote |
| auto sqlite_result_code = ToSqliteResultCode( |
| sqlite3_db_config(db_, SQLITE_DBCONFIG_DQS_DDL, 0, nullptr)); |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_db_config(SQLITE_DBCONFIG_DQS_DDL) should not fail"; |
| sqlite_result_code = ToSqliteResultCode( |
| sqlite3_db_config(db_, SQLITE_DBCONFIG_DQS_DML, 0, nullptr)); |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_db_config(SQLITE_DBCONFIG_DQS_DML) should not fail"; |
| |
| sqlite_result_code = ToSqliteResultCode( |
| sqlite3_db_config(db_, SQLITE_DBCONFIG_ENABLE_FKEY, 0, nullptr)); |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_db_config(SQLITE_DBCONFIG_ENABLE_FKEY) should not fail"; |
| |
| // The use of triggers is discouraged for Chrome code. Thanks to this |
| // configuration change, triggers are not executed. CREATE TRIGGER and DROP |
| // TRIGGER still succeed. |
| sqlite_result_code = ToSqliteResultCode( |
| sqlite3_db_config(db_, SQLITE_DBCONFIG_ENABLE_TRIGGER, 0, nullptr)); |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_db_config() should not fail"; |
| |
| sqlite_result_code = ToSqliteResultCode( |
| sqlite3_db_config(db_, SQLITE_DBCONFIG_ENABLE_VIEW, |
| options_.enable_views_discouraged ? 1 : 0, nullptr)); |
| DCHECK_EQ(sqlite_result_code, SqliteResultCode::kOk) |
| << "sqlite3_db_config() should not fail"; |
| } |
| |
| void Database::DoRollback() { |
| TRACE_EVENT0("sql", "Database::DoRollback"); |
| |
| Statement rollback(GetCachedStatement(SQL_FROM_HERE, "ROLLBACK")); |
| |
| rollback.Run(); |
| |
| // The cache may have been accumulating dirty pages for commit. Note that in |
| // some cases sql::Transaction can fire rollback after a database is closed. |
| if (is_open()) |
| ReleaseCacheMemoryIfNeeded(false); |
| |
| needs_rollback_ = false; |
| } |
| |
| void Database::StatementRefCreated(StatementRef* ref) { |
| DCHECK(!open_statements_.count(ref)) |
| << __func__ << " already called with this statement"; |
| open_statements_.insert(ref); |
| } |
| |
| void Database::StatementRefDeleted(StatementRef* ref) { |
| DCHECK(open_statements_.count(ref)) |
| << __func__ << " called with non-existing statement"; |
| open_statements_.erase(ref); |
| } |
| |
| void Database::set_histogram_tag(const std::string& tag) { |
| DCHECK(!is_open()); |
| |
| histogram_tag_ = tag; |
| } |
| |
| void Database::OnSqliteError(SqliteErrorCode sqlite_error_code, |
| sql::Statement* statement, |
| const char* sql_statement) { |
| TRACE_EVENT0("sql", "Database::OnSqliteError"); |
| |
| DCHECK_NE(statement != nullptr, sql_statement != nullptr) |
| << __func__ << " should either get a Statement or a raw SQL string"; |
| |
| // Log errors for developers. |
| // |
| // This block is wrapped around a DCHECK_IS_ON() check so we don't waste CPU |
| // cycles computing the strings that make up the log message in production. |
| #if DCHECK_IS_ON() |
| std::string logged_statement; |
| if (statement) { |
| logged_statement = statement->GetSQLStatement(); |
| } else { |
| logged_statement = sql_statement; |
| } |
| |
| std::string database_id = histogram_tag_; |
| if (database_id.empty()) |
| database_id = DbPath().BaseName().AsUTF8Unsafe(); |
| |
| // This logging block cannot be a DCHECK, because valid usage of sql::Database |
| // can still encounter SQLite errors in production. For example, valid SQL |
| // statements can fail when a database is corrupted. |
| // |
| // This logging block should not use LOG(ERROR) because many features built on |
| // top of sql::Database can recover from most errors. |
| DVLOG(1) << "SQLite error! This may indicate a programming error!\n" |
| << "Database: " << database_id |
| << " sqlite_error_code: " << sqlite_error_code |
| << " errno: " << GetLastErrno() |
| << "\nSQLite error description: " << GetErrorMessage() |
| << "\nSQL statement: " << logged_statement; |
| #endif // DCHECK_IS_ON() |
| |
| // Inform the error expecter that we've encountered the error. |
| std::ignore = IsExpectedSqliteError(static_cast<int>(sqlite_error_code)); |
| |
| if (!error_callback_.is_null()) { |
| // Create an additional reference to the state in `error_callback_`, so the |
| // state doesn't go away if the callback changes `error_callback_` by |
| // calling set_error_callback() or reset_error_callback(). This avoids a |
| // subtle source of use-after-frees. See https://crbug.com/254584. |
| ErrorCallback error_callback_copy = error_callback_; |
| error_callback_copy.Run(static_cast<int>(sqlite_error_code), statement); |
| return; |
| } |
| } |
| |
| std::string Database::GetDiagnosticInfo(int sqlite_error_code, |
| Statement* statement, |
| DatabaseDiagnostics* diagnostics) { |
| DCHECK_NE(sqlite_error_code, SQLITE_OK) |
| << __func__ << " received non-error result code"; |
| DCHECK_NE(sqlite_error_code, SQLITE_DONE) |
| << __func__ << " received non-error result code"; |
| DCHECK_NE(sqlite_error_code, SQLITE_ROW) |
| << __func__ << " received non-error result code"; |
| |
| // Prevent reentrant calls to the error callback. |
| ErrorCallback original_callback = std::move(error_callback_); |
| error_callback_.Reset(); |
| |
| if (diagnostics) { |
| diagnostics->reported_sqlite_error_code = sqlite_error_code; |
| } |
| |
| // Trim extended error codes. |
| const int primary_error_code = sqlite_error_code & 0xff; |
| |
| // CollectCorruptionInfo() is implemented in terms of sql::Database, |
| // TODO(shess): Rewrite IntegrityCheckHelper() in terms of raw SQLite. |
| std::string result = |
| (primary_error_code == SQLITE_CORRUPT) |
| ? CollectCorruptionInfo() |
| : CollectErrorInfo(sqlite_error_code, statement, diagnostics); |
| |
| // The following queries must be executed after CollectErrorInfo() above, so |
| // if they result in their own errors, they don't interfere with |
| // CollectErrorInfo(). |
| const bool has_valid_header = Execute("PRAGMA auto_vacuum"); |
| const bool has_valid_schema = Execute("SELECT COUNT(*) FROM sqlite_schema"); |
| |
| // Restore the original error callback. |
| error_callback_ = std::move(original_callback); |
| |
| base::StringAppendF(&result, "Has valid header: %s\n", |
| (has_valid_header ? "Yes" : "No")); |
| base::StringAppendF(&result, "Has valid schema: %s\n", |
| (has_valid_schema ? "Yes" : "No")); |
| if (diagnostics) { |
| diagnostics->has_valid_header = has_valid_header; |
| diagnostics->has_valid_schema = has_valid_schema; |
| } |
| |
| return result; |
| } |
| |
| bool Database::FullIntegrityCheck(std::vector<std::string>* messages) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| messages->clear(); |
| |
| // The PRAGMA below has the side effect of setting SQLITE_RecoveryMode, which |
| // allows SQLite to process through certain cases of corruption. |
| if (!Execute("PRAGMA writable_schema=ON")) { |
| // The "PRAGMA integrity_check" statement executed below may return less |
| // useful information. However, incomplete information is still better than |
| // nothing, so we press on. |
| messages->push_back("PRAGMA writable_schema=ON failed"); |
| } |
| |
| // We need to bypass sql::Statement and use raw SQLite C API calls here. |
| // |
| // "PRAGMA integrity_check" reports SQLITE_CORRUPT when the database is |
| // corrupt. Reporting SQLITE_CORRUPT is undesirable in this case, because it |
| // causes our sql::Statement infrastructure to call the database error |
| // handler, which triggers feature-level error handling. However, |
| // FullIntegrityCheck() callers presumably already know that the database is |
| // corrupted, and are trying to collect diagnostic information for reporting. |
| sqlite3_stmt* statement = nullptr; |
| |
| // https://www.sqlite.org/c3ref/prepare.html states that SQLite will perform |
| // slightly better if sqlite_prepare_v3() receives a zero-terminated statement |
| // string, and a statement size that includes the zero byte. Fortunately, |
| // C++'s string literal and sizeof() operator do exactly that. |
| constexpr char kIntegrityCheckSql[] = "PRAGMA integrity_check"; |
| const auto prepare_result_code = ToSqliteResultCode( |
| sqlite3_prepare_v3(db_, kIntegrityCheckSql, sizeof(kIntegrityCheckSql), |
| SqlitePrepareFlags(), &statement, /*pzTail=*/nullptr)); |
| if (prepare_result_code != SqliteResultCode::kOk) |
| return false; |
| |
| // "PRAGMA integrity_check" currently returns multiple lines as a single row. |
| // |
| // However, since https://www.sqlite.org/pragma.html#pragma_integrity_check |
| // states that multiple records may be returned, the code below can handle |
| // multiple records, each of which has multiple lines. |
| std::vector<std::string> result_lines; |
| |
| while (ToSqliteResultCode(sqlite3_step(statement)) == |
| SqliteResultCode::kRow) { |
| const uint8_t* row = chrome_sqlite3_column_text(statement, /*iCol=*/0); |
| DCHECK(row) << "PRAGMA integrity_check should never return NULL rows"; |
| |
| const int row_size = sqlite3_column_bytes(statement, /*iCol=*/0); |
| base::StringPiece row_string(reinterpret_cast<const char*>(row), row_size); |
| |
| const std::vector<base::StringPiece> row_lines = base::SplitStringPiece( |
| row_string, "\n", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL); |
| for (base::StringPiece row_line : row_lines) |
| result_lines.emplace_back(row_line); |
| } |
| |
| const auto finalize_result_code = |
| ToSqliteResultCode(sqlite3_finalize(statement)); |
| // sqlite3_finalize() may return SQLITE_CORRUPT when the integrity check |
| // discovers any problems. We still consider this case a success, as long as |
| // the statement produced at least one diagnostic message. |
| const bool success = (result_lines.size() > 0) || |
| (finalize_result_code == SqliteResultCode::kOk); |
| *messages = std::move(result_lines); |
| |
| // Best-effort attempt to undo the "PRAGMA writable_schema=ON" executed above. |
| std::ignore = Execute("PRAGMA writable_schema=OFF"); |
| |
| return success; |
| } |
| |
| bool Database::ReportMemoryUsage(base::trace_event::ProcessMemoryDump* pmd, |
| const std::string& dump_name) { |
| return memory_dump_provider_ && |
| memory_dump_provider_->ReportMemoryUsage(pmd, dump_name); |
| } |
| |
| bool Database::UseWALMode() const { |
| #if BUILDFLAG(IS_FUCHSIA) |
| // WAL mode is only enabled on Fuchsia for databases with exclusive |
| // locking, because this case does not require shared memory support. |
| // At the time this was implemented (May 2020), Fuchsia's shared |
| // memory support was insufficient for SQLite's needs. |
| return options_.wal_mode && options_.exclusive_locking; |
| #else |
| return options_.wal_mode; |
| #endif // BUILDFLAG(IS_FUCHSIA) |
| } |
| |
| bool Database::CheckpointDatabase() { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); |
| std::optional<base::ScopedBlockingCall> scoped_blocking_call; |
| InitScopedBlockingCall(FROM_HERE, &scoped_blocking_call); |
| |
| auto sqlite_result_code = ToSqliteResultCode(sqlite3_wal_checkpoint_v2( |
| db_, kSqliteMainDatabaseName, SQLITE_CHECKPOINT_PASSIVE, |
| /*pnLog=*/nullptr, /*pnCkpt=*/nullptr)); |
| |
| return sqlite_result_code == SqliteResultCode::kOk; |
| } |
| |
| } // namespace sql |