blob: 88dbcf54c84c6e950d96db52cf355ef650884ac5 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/dns/host_cache.h"
#include <algorithm>
#include <iterator>
#include <map>
#include <ostream>
#include <string>
#include <type_traits>
#include <unordered_set>
#include <utility>
#include <vector>
#include "base/bind.h"
#include "base/check_op.h"
#include "base/metrics/field_trial.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/safe_conversions.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_piece.h"
#include "base/time/default_tick_clock.h"
#include "base/trace_event/trace_event.h"
#include "base/value_iterators.h"
#include "net/base/address_family.h"
#include "net/base/ip_endpoint.h"
#include "net/base/trace_constants.h"
#include "net/dns/host_resolver.h"
#include "net/dns/https_record_rdata.h"
#include "net/dns/public/dns_protocol.h"
#include "net/dns/public/host_resolver_source.h"
#include "net/log/net_log.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "third_party/abseil-cpp/absl/types/variant.h"
#include "url/scheme_host_port.h"
namespace net {
namespace {
#define CACHE_HISTOGRAM_TIME(name, time) \
UMA_HISTOGRAM_LONG_TIMES("DNS.HostCache." name, time)
#define CACHE_HISTOGRAM_COUNT(name, count) \
UMA_HISTOGRAM_COUNTS_1000("DNS.HostCache." name, count)
#define CACHE_HISTOGRAM_ENUM(name, value, max) \
UMA_HISTOGRAM_ENUMERATION("DNS.HostCache." name, value, max)
// String constants for dictionary keys.
const char kSchemeKey[] = "scheme";
const char kHostnameKey[] = "hostname";
const char kPortKey[] = "port";
const char kDnsQueryTypeKey[] = "dns_query_type";
const char kFlagsKey[] = "flags";
const char kHostResolverSourceKey[] = "host_resolver_source";
const char kSecureKey[] = "secure";
const char kNetworkIsolationKeyKey[] = "network_isolation_key";
const char kExpirationKey[] = "expiration";
const char kTtlKey[] = "ttl";
const char kPinnedKey[] = "pinned";
const char kNetworkChangesKey[] = "network_changes";
const char kNetErrorKey[] = "net_error";
const char kIpEndpointsKey[] = "ip_endpoints";
const char kEndpointAddressKey[] = "endpoint_address";
const char kEndpointPortKey[] = "endpoint_port";
const char kEndpointMetadatasKey[] = "endpoint_metadatas";
const char kEndpointMetadataWeightKey[] = "endpoint_metadata_weight";
const char kEndpointMetadataValueKey[] = "endpoint_metadata_value";
const char kAliasesKey[] = "aliases";
const char kAddressesKey[] = "addresses";
const char kTextRecordsKey[] = "text_records";
const char kHostnameResultsKey[] = "hostname_results";
const char kHostPortsKey[] = "host_ports";
base::Value IpEndpointToValue(const IPEndPoint& endpoint) {
base::Value::Dict dictionary;
dictionary.Set(kEndpointAddressKey, endpoint.ToStringWithoutPort());
dictionary.Set(kEndpointPortKey, endpoint.port());
return base::Value(std::move(dictionary));
}
absl::optional<IPEndPoint> IpEndpointFromValue(const base::Value& value) {
if (!value.is_dict())
return absl::nullopt;
const base::Value::Dict& dict = value.GetDict();
const std::string* ip_str = dict.FindString(kEndpointAddressKey);
absl::optional<int> port = dict.FindInt(kEndpointPortKey);
if (!ip_str || !port ||
!base::IsValueInRangeForNumericType<uint16_t>(port.value())) {
return absl::nullopt;
}
IPAddress ip;
if (!ip.AssignFromIPLiteral(*ip_str))
return absl::nullopt;
return IPEndPoint(ip, base::checked_cast<uint16_t>(port.value()));
}
base::Value EndpointMetadataPairToValue(
const std::pair<HttpsRecordPriority, ConnectionEndpointMetadata>& pair) {
base::Value::Dict dictionary;
dictionary.Set(kEndpointMetadataWeightKey, pair.first);
dictionary.Set(kEndpointMetadataValueKey, pair.second.ToValue());
return base::Value(std::move(dictionary));
}
absl::optional<std::pair<HttpsRecordPriority, ConnectionEndpointMetadata>>
EndpointMetadataPairFromValue(const base::Value& value) {
if (!value.is_dict())
return absl::nullopt;
const base::Value::Dict& dict = value.GetDict();
absl::optional<int> priority = dict.FindInt(kEndpointMetadataWeightKey);
const base::Value* metadata_value = dict.Find(kEndpointMetadataValueKey);
if (!priority || !base::IsValueInRangeForNumericType<HttpsRecordPriority>(
priority.value())) {
return absl::nullopt;
}
if (!metadata_value)
return absl::nullopt;
absl::optional<ConnectionEndpointMetadata> metadata =
ConnectionEndpointMetadata::FromValue(*metadata_value);
if (!metadata)
return absl::nullopt;
return std::make_pair(
base::checked_cast<HttpsRecordPriority>(priority.value()),
std::move(metadata).value());
}
bool AddressListFromListValue(const base::Value::List* value,
absl::optional<AddressList>* out_list) {
if (!value) {
out_list->reset();
return true;
}
out_list->emplace();
for (const auto& it : *value) {
IPAddress address;
const std::string* addr_string = it.GetIfString();
if (!addr_string || !address.AssignFromIPLiteral(*addr_string)) {
return false;
}
out_list->value().push_back(IPEndPoint(address, 0));
}
return true;
}
template <typename T>
void MergeLists(absl::optional<T>* target, const absl::optional<T>& source) {
if (target->has_value() && source) {
target->value().insert(target->value().end(), source.value().begin(),
source.value().end());
} else if (source) {
*target = source;
}
}
template <typename T>
void MergeContainers(absl::optional<T>& target,
const absl::optional<T>& source) {
if (target.has_value() && source.has_value()) {
target->insert(source->begin(), source->end());
} else if (source) {
target = source;
}
}
// Used to reject empty and IP literal (whether or not surrounded by brackets)
// hostnames.
bool IsValidHostname(base::StringPiece hostname) {
if (hostname.empty())
return false;
IPAddress ip_address;
if (ip_address.AssignFromIPLiteral(hostname) ||
ParseURLHostnameToAddress(hostname, &ip_address)) {
return false;
}
return true;
}
const std::string& GetHostname(
const absl::variant<url::SchemeHostPort, std::string>& host) {
const std::string* hostname;
if (absl::holds_alternative<url::SchemeHostPort>(host)) {
hostname = &absl::get<url::SchemeHostPort>(host).host();
} else {
DCHECK(absl::holds_alternative<std::string>(host));
hostname = &absl::get<std::string>(host);
}
DCHECK(IsValidHostname(*hostname));
return *hostname;
}
} // namespace
// Used in histograms; do not modify existing values.
enum HostCache::SetOutcome : int {
SET_INSERT = 0,
SET_UPDATE_VALID = 1,
SET_UPDATE_STALE = 2,
MAX_SET_OUTCOME
};
// Used in histograms; do not modify existing values.
enum HostCache::LookupOutcome : int {
LOOKUP_MISS_ABSENT = 0,
LOOKUP_MISS_STALE = 1,
LOOKUP_HIT_VALID = 2,
LOOKUP_HIT_STALE = 3,
MAX_LOOKUP_OUTCOME
};
// Used in histograms; do not modify existing values.
enum HostCache::EraseReason : int {
ERASE_EVICT = 0,
ERASE_CLEAR = 1,
ERASE_DESTRUCT = 2,
MAX_ERASE_REASON
};
HostCache::Key::Key(absl::variant<url::SchemeHostPort, std::string> host,
DnsQueryType dns_query_type,
HostResolverFlags host_resolver_flags,
HostResolverSource host_resolver_source,
const NetworkIsolationKey& network_isolation_key)
: host(std::move(host)),
dns_query_type(dns_query_type),
host_resolver_flags(host_resolver_flags),
host_resolver_source(host_resolver_source),
network_isolation_key(network_isolation_key) {
DCHECK(IsValidHostname(GetHostname(this->host)));
if (absl::holds_alternative<url::SchemeHostPort>(this->host))
DCHECK(absl::get<url::SchemeHostPort>(this->host).IsValid());
}
HostCache::Key::Key() = default;
HostCache::Key::Key(const Key& key) = default;
HostCache::Key::Key(Key&& key) = default;
HostCache::Key::~Key() = default;
HostCache::Entry::Entry(int error,
Source source,
absl::optional<base::TimeDelta> ttl)
: error_(error), source_(source), ttl_(ttl.value_or(base::Seconds(-1))) {
// If |ttl| has a value, must not be negative.
DCHECK_GE(ttl.value_or(base::TimeDelta()), base::TimeDelta());
DCHECK_NE(OK, error_);
// host_cache.h defines its own `HttpsRecordPriority` due to
// https_record_rdata.h not being allowed in the same places, but the types
// should still be the same thing.
static_assert(std::is_same<net::HttpsRecordPriority,
HostCache::Entry::HttpsRecordPriority>::value,
"`net::HttpsRecordPriority` and "
"`HostCache::Entry::HttpsRecordPriority` must be same type");
}
HostCache::Entry::Entry(const Entry& entry) = default;
HostCache::Entry::Entry(Entry&& entry) = default;
HostCache::Entry::~Entry() = default;
absl::optional<std::vector<HostResolverEndpointResult>>
HostCache::Entry::GetEndpoints() const {
if (!ip_endpoints_.has_value())
return absl::nullopt;
std::vector<HostResolverEndpointResult> endpoints;
if (ip_endpoints_.value().empty())
return endpoints;
absl::optional<std::vector<ConnectionEndpointMetadata>> metadatas =
GetMetadatas();
if (metadatas.has_value()) {
for (ConnectionEndpointMetadata& metadata : metadatas.value()) {
endpoints.emplace_back();
endpoints.back().ip_endpoints = ip_endpoints_.value();
endpoints.back().metadata = std::move(metadata);
}
}
// Add a final non-protocol endpoint at the end.
endpoints.emplace_back();
endpoints.back().ip_endpoints = ip_endpoints_.value();
return endpoints;
}
absl::optional<std::vector<ConnectionEndpointMetadata>>
HostCache::Entry::GetMetadatas() const {
if (!endpoint_metadatas_.has_value())
return absl::nullopt;
std::vector<ConnectionEndpointMetadata> metadatas;
HttpsRecordPriority last_priority = 0;
for (const auto& metadata : endpoint_metadatas_.value()) {
// Ensure metadatas are iterated in priority order.
DCHECK_GE(metadata.first, last_priority);
last_priority = metadata.first;
metadatas.push_back(metadata.second);
}
return metadatas;
}
absl::optional<base::TimeDelta> HostCache::Entry::GetOptionalTtl() const {
if (has_ttl())
return ttl();
else
return absl::nullopt;
}
// static
HostCache::Entry HostCache::Entry::MergeEntries(Entry front, Entry back) {
// Only expected to merge OK or ERR_NAME_NOT_RESOLVED results.
DCHECK(front.error() == OK || front.error() == ERR_NAME_NOT_RESOLVED);
DCHECK(back.error() == OK || back.error() == ERR_NAME_NOT_RESOLVED);
// Build results in |front| to preserve unmerged fields.
front.error_ =
front.error() == OK || back.error() == OK ? OK : ERR_NAME_NOT_RESOLVED;
MergeLists(&front.ip_endpoints_, back.ip_endpoints_);
MergeContainers(front.endpoint_metadatas_, back.endpoint_metadatas_);
MergeContainers(front.aliases_, back.aliases_);
front.MergeAddressesFrom(back);
MergeLists(&front.text_records_, back.text_records());
MergeLists(&front.hostnames_, back.hostnames());
MergeLists(&front.https_record_compatibility_,
back.https_record_compatibility_);
// The DNS aliases include the canonical name(s), if any, each as the
// first entry in the field, which is an optional vector. If |front| has
// a canonical name, it will be used. Otherwise, if |back| has a
// canonical name, it will be in the first slot in the merged alias field.
front.MergeDnsAliasesFrom(back);
// Only expected to merge entries from same source.
DCHECK_EQ(front.source(), back.source());
if (front.has_ttl() && back.has_ttl()) {
front.ttl_ = std::min(front.ttl(), back.ttl());
} else if (back.has_ttl()) {
front.ttl_ = back.ttl();
}
front.expires_ = std::min(front.expires(), back.expires());
front.network_changes_ =
std::max(front.network_changes(), back.network_changes());
front.total_hits_ = front.total_hits_ + back.total_hits_;
front.stale_hits_ = front.stale_hits_ + back.stale_hits_;
return front;
}
HostCache::Entry HostCache::Entry::CopyWithDefaultPort(uint16_t port) const {
Entry copy(*this);
if (copy.ip_endpoints_) {
for (IPEndPoint& endpoint : copy.ip_endpoints_.value()) {
if (endpoint.port() == 0)
endpoint = IPEndPoint(endpoint.address(), port);
}
}
if (copy.legacy_addresses_) {
for (IPEndPoint& endpoint : copy.legacy_addresses_.value().endpoints()) {
if (endpoint.port() == 0)
endpoint = IPEndPoint(endpoint.address(), port);
}
}
if (copy.hostnames_) {
for (HostPortPair& hostname : copy.hostnames_.value()) {
if (hostname.port() == 0)
hostname = HostPortPair(hostname.host(), port);
}
}
return copy;
}
HostCache::Entry& HostCache::Entry::operator=(const Entry& entry) = default;
HostCache::Entry& HostCache::Entry::operator=(Entry&& entry) = default;
HostCache::Entry::Entry(const HostCache::Entry& entry,
base::TimeTicks now,
base::TimeDelta ttl,
int network_changes)
: error_(entry.error()),
ip_endpoints_(entry.ip_endpoints_),
endpoint_metadatas_(entry.endpoint_metadatas_),
aliases_(base::OptionalFromPtr(entry.aliases())),
legacy_addresses_(entry.legacy_addresses()),
text_records_(entry.text_records()),
hostnames_(entry.hostnames()),
https_record_compatibility_(entry.https_record_compatibility_),
source_(entry.source()),
pinning_(entry.pinning()),
ttl_(entry.ttl()),
expires_(now + ttl),
network_changes_(network_changes) {}
HostCache::Entry::Entry(
int error,
absl::optional<std::vector<IPEndPoint>> ip_endpoints,
absl::optional<
std::multimap<HttpsRecordPriority, ConnectionEndpointMetadata>>
endpoint_metadatas,
absl::optional<std::set<std::string>> aliases,
const absl::optional<AddressList>& legacy_addresses,
absl::optional<std::vector<std::string>>&& text_records,
absl::optional<std::vector<HostPortPair>>&& hostnames,
absl::optional<std::vector<bool>>&& https_record_compatibility,
Source source,
base::TimeTicks expires,
int network_changes)
: error_(error),
ip_endpoints_(std::move(ip_endpoints)),
endpoint_metadatas_(std::move(endpoint_metadatas)),
aliases_(std::move(aliases)),
legacy_addresses_(legacy_addresses),
text_records_(std::move(text_records)),
hostnames_(std::move(hostnames)),
https_record_compatibility_(std::move(https_record_compatibility)),
source_(source),
expires_(expires),
network_changes_(network_changes) {}
void HostCache::Entry::PrepareForCacheInsertion() {
https_record_compatibility_.reset();
}
bool HostCache::Entry::IsStale(base::TimeTicks now, int network_changes) const {
EntryStaleness stale;
stale.expired_by = now - expires_;
stale.network_changes = network_changes - network_changes_;
stale.stale_hits = stale_hits_;
return stale.is_stale();
}
void HostCache::Entry::CountHit(bool hit_is_stale) {
++total_hits_;
if (hit_is_stale)
++stale_hits_;
}
void HostCache::Entry::GetStaleness(base::TimeTicks now,
int network_changes,
EntryStaleness* out) const {
DCHECK(out);
out->expired_by = now - expires_;
out->network_changes = network_changes - network_changes_;
out->stale_hits = stale_hits_;
}
base::Value HostCache::Entry::NetLogParams() const {
return base::Value(GetAsValue(false /* include_staleness */));
}
void HostCache::Entry::MergeAddressesFrom(const HostCache::Entry& source) {
MergeLists(&legacy_addresses_, source.legacy_addresses());
if (!legacy_addresses_ || legacy_addresses_->size() <= 1)
return; // Nothing to do.
legacy_addresses_->Deduplicate();
std::stable_sort(legacy_addresses_->begin(), legacy_addresses_->end(),
[](const IPEndPoint& lhs, const IPEndPoint& rhs) {
// Return true iff |lhs < rhs|.
return lhs.GetFamily() == ADDRESS_FAMILY_IPV6 &&
rhs.GetFamily() == ADDRESS_FAMILY_IPV4;
});
}
void HostCache::Entry::MergeDnsAliasesFrom(const HostCache::Entry& source) {
// No aliases to merge if source has no AddressList.
if (!source.legacy_addresses())
return;
// We expect this to be true because the address merging should have already
// created the AddressList if the source had one but the target didn't.
DCHECK(legacy_addresses());
// Nothing to merge.
if (source.legacy_addresses()->dns_aliases().empty())
return;
// No aliases pre-existing in target, so simply set target's aliases to
// source's. This takes care of the case where target does not have a usable
// canonical name, but source does.
if (legacy_addresses()->dns_aliases().empty()) {
legacy_addresses_->SetDnsAliases(source.legacy_addresses()->dns_aliases());
return;
}
DCHECK(legacy_addresses()->dns_aliases() != std::vector<std::string>({""}));
DCHECK(source.legacy_addresses()->dns_aliases() !=
std::vector<std::string>({""}));
// We need to check for possible blanks and duplicates in the source's
// aliases.
std::unordered_set<std::string> aliases_seen;
std::vector<std::string> deduplicated_source_aliases;
aliases_seen.insert(legacy_addresses()->dns_aliases().begin(),
legacy_addresses()->dns_aliases().end());
for (const auto& alias : source.legacy_addresses()->dns_aliases()) {
if (alias != "" && aliases_seen.find(alias) == aliases_seen.end()) {
aliases_seen.insert(alias);
deduplicated_source_aliases.push_back(alias);
}
}
// The first entry of target's aliases must remain in place,
// as it's the canonical name, so we append source's aliases to the back.
legacy_addresses_->AppendDnsAliases(std::move(deduplicated_source_aliases));
}
base::Value::Dict HostCache::Entry::GetAsValue(bool include_staleness) const {
base::Value::Dict entry_dict;
if (include_staleness) {
// The kExpirationKey value is using TimeTicks instead of Time used if
// |include_staleness| is false, so it cannot be used to deserialize.
// This is ok as it is used only for netlog.
entry_dict.Set(kExpirationKey, NetLog::TickCountToString(expires()));
entry_dict.Set(kTtlKey, base::saturated_cast<int>(ttl().InMilliseconds()));
entry_dict.Set(kNetworkChangesKey, network_changes());
// The "pinned" status is meaningful only if "network_changes" is also
// preserved.
if (pinning())
entry_dict.Set(kPinnedKey, *pinning());
} else {
// Convert expiration time in TimeTicks to Time for serialization, using a
// string because base::Value doesn't handle 64-bit integers.
base::Time expiration_time =
base::Time::Now() - (base::TimeTicks::Now() - expires());
entry_dict.Set(kExpirationKey,
base::NumberToString(expiration_time.ToInternalValue()));
}
if (error() != OK) {
entry_dict.Set(kNetErrorKey, error());
} else {
if (ip_endpoints_) {
base::Value::List ip_endpoints_list;
for (const IPEndPoint& ip_endpoint : ip_endpoints_.value()) {
ip_endpoints_list.Append(IpEndpointToValue(ip_endpoint));
}
entry_dict.Set(kIpEndpointsKey, std::move(ip_endpoints_list));
}
if (endpoint_metadatas_) {
base::Value::List endpoint_metadatas_list;
for (const auto& endpoint_metadata_pair : endpoint_metadatas_.value()) {
endpoint_metadatas_list.Append(
EndpointMetadataPairToValue(endpoint_metadata_pair));
}
entry_dict.Set(kEndpointMetadatasKey, std::move(endpoint_metadatas_list));
}
if (aliases()) {
base::Value::List alias_list;
for (const std::string& alias : *aliases()) {
alias_list.Append(alias);
}
entry_dict.Set(kAliasesKey, std::move(alias_list));
}
if (legacy_addresses()) {
// Append all of the resolved addresses.
base::Value::List addresses_value;
for (const IPEndPoint& address : legacy_addresses().value()) {
addresses_value.Append(address.ToStringWithoutPort());
}
entry_dict.Set(kAddressesKey, std::move(addresses_value));
}
if (text_records()) {
// Append all resolved text records.
base::Value::List text_list_value;
for (const std::string& text_record : text_records().value()) {
text_list_value.Append(text_record);
}
entry_dict.Set(kTextRecordsKey, std::move(text_list_value));
}
if (hostnames()) {
// Append all the resolved hostnames.
base::Value::List hostnames_value;
base::Value::List host_ports_value;
for (const HostPortPair& hostname : hostnames().value()) {
hostnames_value.Append(hostname.host());
host_ports_value.Append(hostname.port());
}
entry_dict.Set(kHostnameResultsKey, std::move(hostnames_value));
entry_dict.Set(kHostPortsKey, std::move(host_ports_value));
}
}
return entry_dict;
}
// static
const HostCache::EntryStaleness HostCache::kNotStale = {base::Seconds(-1), 0,
0};
HostCache::HostCache(size_t max_entries)
: max_entries_(max_entries),
tick_clock_(base::DefaultTickClock::GetInstance()) {}
HostCache::~HostCache() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
}
const std::pair<const HostCache::Key, HostCache::Entry>*
HostCache::Lookup(const Key& key, base::TimeTicks now, bool ignore_secure) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (caching_is_disabled())
return nullptr;
auto* result = LookupInternalIgnoringFields(key, now, ignore_secure);
if (!result)
return nullptr;
auto* entry = &result->second;
if (entry->IsStale(now, network_changes_))
return nullptr;
entry->CountHit(/* hit_is_stale= */ false);
return result;
}
const std::pair<const HostCache::Key, HostCache::Entry>* HostCache::LookupStale(
const Key& key,
base::TimeTicks now,
HostCache::EntryStaleness* stale_out,
bool ignore_secure) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (caching_is_disabled())
return nullptr;
auto* result = LookupInternalIgnoringFields(key, now, ignore_secure);
if (!result)
return nullptr;
auto* entry = &result->second;
bool is_stale = entry->IsStale(now, network_changes_);
entry->CountHit(/* hit_is_stale= */ is_stale);
if (stale_out)
entry->GetStaleness(now, network_changes_, stale_out);
return result;
}
// static
std::pair<const HostCache::Key, HostCache::Entry>*
HostCache::GetLessStaleMoreSecureResult(
base::TimeTicks now,
std::pair<const HostCache::Key, HostCache::Entry>* result1,
std::pair<const HostCache::Key, HostCache::Entry>* result2) {
// Prefer a non-null result if possible.
if (!result1 && !result2)
return nullptr;
if (result1 && !result2)
return result1;
if (!result1 && result2)
return result2;
// Both result1 are result2 are non-null.
EntryStaleness staleness1, staleness2;
result1->second.GetStaleness(now, 0, &staleness1);
result2->second.GetStaleness(now, 0, &staleness2);
if (staleness1.network_changes == staleness2.network_changes) {
// Exactly one of the results should be secure.
DCHECK(result1->first.secure != result2->first.secure);
// If the results have the same number of network changes, prefer a
// non-expired result.
if (staleness1.expired_by.is_negative() &&
staleness2.expired_by >= base::TimeDelta()) {
return result1;
}
if (staleness1.expired_by >= base::TimeDelta() &&
staleness2.expired_by.is_negative()) {
return result2;
}
// Both results are equally stale, so prefer a secure result.
return (result1->first.secure) ? result1 : result2;
}
// Prefer the result with the fewest network changes.
return (staleness1.network_changes < staleness2.network_changes) ? result1
: result2;
}
std::pair<const HostCache::Key, HostCache::Entry>*
HostCache::LookupInternalIgnoringFields(const Key& initial_key,
base::TimeTicks now,
bool ignore_secure) {
std::pair<const HostCache::Key, HostCache::Entry>* preferred_result =
LookupInternal(initial_key);
if (ignore_secure) {
Key effective_key = initial_key;
effective_key.secure = !initial_key.secure;
preferred_result = GetLessStaleMoreSecureResult(
now, preferred_result, LookupInternal(effective_key));
}
return preferred_result;
}
std::pair<const HostCache::Key, HostCache::Entry>* HostCache::LookupInternal(
const Key& key) {
auto it = entries_.find(key);
return (it != entries_.end()) ? &*it : nullptr;
}
void HostCache::Set(const Key& key,
const Entry& entry,
base::TimeTicks now,
base::TimeDelta ttl) {
TRACE_EVENT0(NetTracingCategory(), "HostCache::Set");
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (caching_is_disabled())
return;
bool has_active_pin = false;
bool result_changed = false;
auto it = entries_.find(key);
if (it != entries_.end()) {
has_active_pin = HasActivePin(it->second);
// TODO(juliatuttle): Remember some old metadata (hit count or frequency or
// something like that) if it's useful for better eviction algorithms?
result_changed = entry.error() == OK && !it->second.ContentsEqual(entry);
entries_.erase(it);
} else {
result_changed = true;
// This loop almost always runs at most once, for total runtime
// O(max_entries_). It only runs more than once if the cache was over-full
// due to pinned entries, and this is the first call to Set() after
// Invalidate(). The amortized cost remains O(size()) per call to Set().
while (size() >= max_entries_ && EvictOneEntry(now)) {
}
}
Entry entry_for_cache(entry, now, ttl, network_changes_);
entry_for_cache.set_pinning(entry.pinning().value_or(has_active_pin));
entry_for_cache.PrepareForCacheInsertion();
AddEntry(key, std::move(entry_for_cache));
if (delegate_ && result_changed)
delegate_->ScheduleWrite();
}
const HostCache::Key* HostCache::GetMatchingKeyForTesting(
base::StringPiece hostname,
HostCache::Entry::Source* source_out,
HostCache::EntryStaleness* stale_out) const {
for (const EntryMap::value_type& entry : entries_) {
if (GetHostname(entry.first.host) == hostname) {
if (source_out != nullptr)
*source_out = entry.second.source();
if (stale_out != nullptr) {
entry.second.GetStaleness(tick_clock_->NowTicks(), network_changes_,
stale_out);
}
return &entry.first;
}
}
return nullptr;
}
void HostCache::AddEntry(const Key& key, Entry&& entry) {
DCHECK_EQ(0u, entries_.count(key));
DCHECK(entry.pinning().has_value());
entries_.emplace(key, std::move(entry));
}
void HostCache::Invalidate() {
++network_changes_;
}
void HostCache::set_persistence_delegate(PersistenceDelegate* delegate) {
// A PersistenceDelegate shouldn't be added if there already was one, and
// shouldn't be removed (by setting to nullptr) if it wasn't previously there.
DCHECK_NE(delegate == nullptr, delegate_ == nullptr);
delegate_ = delegate;
}
void HostCache::clear() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
// Don't bother scheduling a write if there's nothing to clear.
if (size() == 0)
return;
entries_.clear();
if (delegate_)
delegate_->ScheduleWrite();
}
void HostCache::ClearForHosts(
const base::RepeatingCallback<bool(const std::string&)>& host_filter) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (host_filter.is_null()) {
clear();
return;
}
bool changed = false;
for (auto it = entries_.begin(); it != entries_.end();) {
auto next_it = std::next(it);
if (host_filter.Run(GetHostname(it->first.host))) {
entries_.erase(it);
changed = true;
}
it = next_it;
}
if (delegate_ && changed)
delegate_->ScheduleWrite();
}
void HostCache::GetList(base::Value::List& entry_list,
bool include_staleness,
SerializationType serialization_type) const {
entry_list.clear();
for (const auto& pair : entries_) {
const Key& key = pair.first;
const Entry& entry = pair.second;
base::Value network_isolation_key_value;
if (serialization_type == SerializationType::kRestorable) {
// Don't save entries associated with ephemeral NetworkIsolationKeys.
if (!key.network_isolation_key.ToValue(&network_isolation_key_value))
continue;
} else {
// ToValue() fails for transient NIKs, since they should never be
// serialized to disk in a restorable format, so use ToDebugString() when
// serializing for debugging instead of for restoring from disk.
network_isolation_key_value =
base::Value(key.network_isolation_key.ToDebugString());
}
base::Value::Dict entry_dict = entry.GetAsValue(include_staleness);
const auto* host = absl::get_if<url::SchemeHostPort>(&key.host);
if (host) {
entry_dict.Set(kSchemeKey, host->scheme());
entry_dict.Set(kHostnameKey, host->host());
entry_dict.Set(kPortKey, host->port());
} else {
entry_dict.Set(kHostnameKey, absl::get<std::string>(key.host));
}
entry_dict.Set(kDnsQueryTypeKey,
base::strict_cast<int>(key.dns_query_type));
entry_dict.Set(kFlagsKey, key.host_resolver_flags);
entry_dict.Set(kHostResolverSourceKey,
base::strict_cast<int>(key.host_resolver_source));
entry_dict.Set(kNetworkIsolationKeyKey,
std::move(network_isolation_key_value));
entry_dict.Set(kSecureKey, key.secure);
entry_list.Append(std::move(entry_dict));
}
}
bool HostCache::RestoreFromListValue(const base::Value::List& old_cache) {
// Reset the restore size to 0.
restore_size_ = 0;
for (const auto& entry : old_cache) {
// If the cache is already full, don't bother prioritizing what to evict,
// just stop restoring.
if (size() == max_entries_)
break;
if (!entry.is_dict())
return false;
const base::Value::Dict& entry_dict = entry.GetDict();
const std::string* hostname_ptr = entry_dict.FindString(kHostnameKey);
if (!hostname_ptr || !IsValidHostname(*hostname_ptr)) {
return false;
}
// Use presence of scheme to determine host type.
const std::string* scheme_ptr = entry_dict.FindString(kSchemeKey);
absl::variant<url::SchemeHostPort, std::string> host;
if (scheme_ptr) {
absl::optional<int> port = entry_dict.FindInt(kPortKey);
if (!port || !base::IsValueInRangeForNumericType<uint16_t>(port.value()))
return false;
url::SchemeHostPort scheme_host_port(*scheme_ptr, *hostname_ptr,
port.value());
if (!scheme_host_port.IsValid())
return false;
host = std::move(scheme_host_port);
} else {
host = *hostname_ptr;
}
const std::string* expiration_ptr = entry_dict.FindString(kExpirationKey);
absl::optional<int> maybe_flags = entry_dict.FindInt(kFlagsKey);
if (expiration_ptr == nullptr || !maybe_flags.has_value())
return false;
std::string expiration(*expiration_ptr);
HostResolverFlags flags = maybe_flags.value();
absl::optional<int> maybe_dns_query_type =
entry_dict.FindInt(kDnsQueryTypeKey);
if (!maybe_dns_query_type.has_value())
return false;
DnsQueryType dns_query_type =
static_cast<DnsQueryType>(maybe_dns_query_type.value());
// HostResolverSource is optional.
int host_resolver_source =
entry_dict.FindInt(kHostResolverSourceKey)
.value_or(base::strict_cast<int>(HostResolverSource::ANY));
const base::Value* network_isolation_key_value =
entry_dict.Find(kNetworkIsolationKeyKey);
NetworkIsolationKey network_isolation_key;
if (!network_isolation_key_value ||
network_isolation_key_value->type() == base::Value::Type::STRING ||
!NetworkIsolationKey::FromValue(*network_isolation_key_value,
&network_isolation_key)) {
return false;
}
bool secure = entry_dict.FindBool(kSecureKey).value_or(false);
int error = OK;
const base::Value::List* ip_endpoints_list = nullptr;
const base::Value::List* endpoint_metadatas_list = nullptr;
const base::Value::List* aliases_list = nullptr;
const base::Value::List* legacy_addresses_list = nullptr;
const base::Value::List* text_records_list = nullptr;
const base::Value::List* hostname_records_list = nullptr;
const base::Value::List* host_ports_list = nullptr;
absl::optional<int> maybe_error = entry_dict.FindInt(kNetErrorKey);
absl::optional<bool> maybe_pinned = entry_dict.FindBool(kPinnedKey);
if (maybe_error.has_value()) {
error = maybe_error.value();
} else {
ip_endpoints_list = entry_dict.FindList(kIpEndpointsKey);
endpoint_metadatas_list = entry_dict.FindList(kEndpointMetadatasKey);
aliases_list = entry_dict.FindList(kAliasesKey);
legacy_addresses_list = entry_dict.FindList(kAddressesKey);
text_records_list = entry_dict.FindList(kTextRecordsKey);
hostname_records_list = entry_dict.FindList(kHostnameResultsKey);
host_ports_list = entry_dict.FindList(kHostPortsKey);
if ((hostname_records_list == nullptr && host_ports_list != nullptr) ||
(hostname_records_list != nullptr && host_ports_list == nullptr)) {
return false;
}
}
int64_t time_internal;
if (!base::StringToInt64(expiration, &time_internal))
return false;
base::TimeTicks expiration_time =
tick_clock_->NowTicks() -
(base::Time::Now() - base::Time::FromInternalValue(time_internal));
absl::optional<std::vector<IPEndPoint>> ip_endpoints;
if (ip_endpoints_list) {
ip_endpoints.emplace();
for (const base::Value& ip_endpoint_value : *ip_endpoints_list) {
absl::optional<IPEndPoint> ip_endpoint =
IpEndpointFromValue(ip_endpoint_value);
if (!ip_endpoint)
return false;
ip_endpoints->push_back(std::move(ip_endpoint).value());
}
}
absl::optional<
std::multimap<HttpsRecordPriority, ConnectionEndpointMetadata>>
endpoint_metadatas;
if (endpoint_metadatas_list) {
endpoint_metadatas.emplace();
for (const base::Value& endpoint_metadata_value :
*endpoint_metadatas_list) {
absl::optional<
std::pair<HttpsRecordPriority, ConnectionEndpointMetadata>>
pair = EndpointMetadataPairFromValue(endpoint_metadata_value);
if (!pair)
return false;
endpoint_metadatas->insert(std::move(pair).value());
}
}
absl::optional<std::set<std::string>> aliases;
if (aliases_list) {
aliases.emplace();
for (const base::Value& alias_value : *aliases_list) {
if (!alias_value.is_string())
return false;
aliases->insert(alias_value.GetString());
}
}
absl::optional<AddressList> legacy_address_value;
if (!AddressListFromListValue(legacy_addresses_list,
&legacy_address_value)) {
return false;
}
absl::optional<std::vector<std::string>> text_records;
if (text_records_list) {
text_records.emplace();
for (const base::Value& value : *text_records_list) {
if (!value.is_string())
return false;
text_records.value().push_back(value.GetString());
}
}
absl::optional<std::vector<HostPortPair>> hostname_records;
if (hostname_records_list) {
DCHECK(host_ports_list);
if (hostname_records_list->size() != host_ports_list->size()) {
return false;
}
hostname_records.emplace();
for (size_t i = 0; i < hostname_records_list->size(); ++i) {
if (!(*hostname_records_list)[i].is_string() ||
!(*host_ports_list)[i].is_int() ||
!base::IsValueInRangeForNumericType<uint16_t>(
(*host_ports_list)[i].GetInt())) {
return false;
}
hostname_records.value().emplace_back(
(*hostname_records_list)[i].GetString(),
base::checked_cast<uint16_t>((*host_ports_list)[i].GetInt()));
}
}
// We do not intend to serialize experimental results with the host cache.
absl::optional<std::vector<bool>> experimental_results;
// Assume an empty address list if we have an address type and no results.
if (IsAddressType(dns_query_type) && !ip_endpoints &&
!legacy_address_value && !text_records && !hostname_records) {
legacy_address_value.emplace();
}
Key key(std::move(host), dns_query_type, flags,
static_cast<HostResolverSource>(host_resolver_source),
network_isolation_key);
key.secure = secure;
// If the key is already in the cache, assume it's more recent and don't
// replace the entry.
auto found = entries_.find(key);
if (found == entries_.end()) {
Entry entry(error, std::move(ip_endpoints), std::move(endpoint_metadatas),
std::move(aliases), legacy_address_value,
std::move(text_records), std::move(hostname_records),
std::move(experimental_results), Entry::SOURCE_UNKNOWN,
expiration_time, network_changes_ - 1);
entry.set_pinning(maybe_pinned.value_or(false));
AddEntry(key, std::move(entry));
restore_size_++;
}
}
return true;
}
size_t HostCache::size() const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
return entries_.size();
}
size_t HostCache::max_entries() const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
return max_entries_;
}
// static
std::unique_ptr<HostCache> HostCache::CreateDefaultCache() {
#if defined(ENABLE_BUILT_IN_DNS)
const size_t kDefaultMaxEntries = 1000;
#else
const size_t kDefaultMaxEntries = 100;
#endif
return std::make_unique<HostCache>(kDefaultMaxEntries);
}
bool HostCache::EvictOneEntry(base::TimeTicks now) {
DCHECK_LT(0u, entries_.size());
absl::optional<net::HostCache::EntryMap::iterator> oldest_it;
for (auto it = entries_.begin(); it != entries_.end(); ++it) {
const Entry& entry = it->second;
if (HasActivePin(entry)) {
continue;
}
if (!oldest_it) {
oldest_it = it;
continue;
}
const Entry& oldest = (*oldest_it)->second;
if ((entry.expires() < oldest.expires()) &&
(entry.IsStale(now, network_changes_) ||
!oldest.IsStale(now, network_changes_))) {
oldest_it = it;
}
}
if (oldest_it) {
entries_.erase(*oldest_it);
return true;
}
return false;
}
bool HostCache::HasActivePin(const Entry& entry) {
return entry.pinning().value_or(false) &&
entry.network_changes() == network_changes();
}
} // namespace net
// Debug logging support
std::ostream& operator<<(std::ostream& out,
const net::HostCache::EntryStaleness& s) {
return out << "EntryStaleness{" << s.expired_by << ", " << s.network_changes
<< ", " << s.stale_hits << "}";
}