blob: 7a9432a619781e2ef94b3a8410e01e773cc8fbe6 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/dns/host_resolver_manager.h"
#include <algorithm>
#include <cmath>
#include <iterator>
#include <limits>
#include <memory>
#include <numeric>
#include <set>
#include <string>
#include <tuple>
#include <unordered_set>
#include <utility>
#include <vector>
#include "base/bind.h"
#include "base/callback.h"
#include "base/callback_helpers.h"
#include "base/check_op.h"
#include "base/compiler_specific.h"
#include "base/containers/circular_deque.h"
#include "base/containers/contains.h"
#include "base/containers/cxx20_erase.h"
#include "base/containers/flat_set.h"
#include "base/containers/linked_list.h"
#include "base/debug/debugger.h"
#include "base/feature_list.h"
#include "base/functional/identity.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/safe_ref.h"
#include "base/memory/weak_ptr.h"
#include "base/metrics/field_trial.h"
#include "base/metrics/field_trial_params.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/no_destructor.h"
#include "base/numerics/safe_conversions.h"
#include "base/observer_list.h"
#include "base/ranges/algorithm.h"
#include "base/sequence_checker.h"
#include "base/stl_util.h"
#include "base/strings/strcat.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/task/single_thread_task_runner.h"
#include "base/task/thread_pool.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/time/default_tick_clock.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "base/values.h"
#include "build/build_config.h"
#include "net/base/address_family.h"
#include "net/base/address_list.h"
#include "net/base/completion_once_callback.h"
#include "net/base/features.h"
#include "net/base/host_port_pair.h"
#include "net/base/ip_address.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"
#include "net/base/network_interfaces.h"
#include "net/base/network_isolation_key.h"
#include "net/base/prioritized_dispatcher.h"
#include "net/base/request_priority.h"
#include "net/base/trace_constants.h"
#include "net/base/url_util.h"
#include "net/dns/address_sorter.h"
#include "net/dns/dns_alias_utility.h"
#include "net/dns/dns_client.h"
#include "net/dns/dns_reloader.h"
#include "net/dns/dns_response.h"
#include "net/dns/dns_response_result_extractor.h"
#include "net/dns/dns_transaction.h"
#include "net/dns/dns_util.h"
#include "net/dns/host_cache.h"
#include "net/dns/host_resolver_mdns_listener_impl.h"
#include "net/dns/host_resolver_mdns_task.h"
#include "net/dns/host_resolver_proc.h"
#include "net/dns/host_resolver_results.h"
#include "net/dns/httpssvc_metrics.h"
#include "net/dns/mdns_client.h"
#include "net/dns/public/dns_protocol.h"
#include "net/dns/public/dns_query_type.h"
#include "net/dns/public/resolve_error_info.h"
#include "net/dns/public/secure_dns_mode.h"
#include "net/dns/public/secure_dns_policy.h"
#include "net/dns/public/util.h"
#include "net/dns/record_parsed.h"
#include "net/dns/resolve_context.h"
#include "net/dns/test_dns_config_service.h"
#include "net/log/net_log.h"
#include "net/log/net_log_capture_mode.h"
#include "net/log/net_log_event_type.h"
#include "net/log/net_log_source.h"
#include "net/log/net_log_source_type.h"
#include "net/log/net_log_with_source.h"
#include "net/socket/client_socket_factory.h"
#include "net/socket/datagram_client_socket.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "third_party/abseil-cpp/absl/types/variant.h"
#include "url/scheme_host_port.h"
#include "url/url_constants.h"
#if BUILDFLAG(ENABLE_MDNS)
#include "net/dns/mdns_client_impl.h"
#endif
#if BUILDFLAG(IS_WIN)
#include <Winsock2.h>
#include "net/base/winsock_init.h"
#endif
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
#include <net/if.h>
#include "net/base/sys_addrinfo.h"
#if BUILDFLAG(IS_ANDROID)
#include "base/android/build_info.h"
#include "net/android/network_library.h"
#else // !BUILDFLAG(IS_ANDROID)
#include <ifaddrs.h>
#endif // BUILDFLAG(IS_ANDROID)
#endif // BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
namespace net {
namespace {
// Limit the size of hostnames that will be resolved to combat issues in
// some platform's resolvers.
const size_t kMaxHostLength = 4096;
// Default TTL for successful resolutions with ProcTask.
const unsigned kCacheEntryTTLSeconds = 60;
// Default TTL for unsuccessful resolutions with ProcTask.
const unsigned kNegativeCacheEntryTTLSeconds = 0;
// Minimum TTL for successful resolutions with DnsTask.
const unsigned kMinimumTTLSeconds = kCacheEntryTTLSeconds;
// Time between IPv6 probes, i.e. for how long results of each IPv6 probe are
// cached.
const int kIPv6ProbePeriodMs = 1000;
// Google DNS address used for IPv6 probes.
const uint8_t kIPv6ProbeAddress[] = {0x20, 0x01, 0x48, 0x60, 0x48, 0x60,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x88, 0x88};
enum DnsResolveStatus {
RESOLVE_STATUS_DNS_SUCCESS = 0,
RESOLVE_STATUS_PROC_SUCCESS,
RESOLVE_STATUS_FAIL,
RESOLVE_STATUS_SUSPECT_NETBIOS,
RESOLVE_STATUS_MAX
};
// ICANN uses this localhost address to indicate a name collision.
//
// The policy in Chromium is to fail host resolving if it resolves to
// this special address.
//
// Not however that IP literals are exempt from this policy, so it is still
// possible to navigate to http://127.0.53.53/ directly.
//
// For more details: https://www.icann.org/news/announcement-2-2014-08-01-en
const uint8_t kIcanNameCollisionIp[] = {127, 0, 53, 53};
bool ContainsIcannNameCollisionIp(const std::vector<IPEndPoint>& endpoints) {
for (const auto& endpoint : endpoints) {
const IPAddress& addr = endpoint.address();
if (addr.IsIPv4() && IPAddressStartsWith(addr, kIcanNameCollisionIp)) {
return true;
}
}
return false;
}
// True if |hostname| ends with either ".local" or ".local.".
bool ResemblesMulticastDNSName(base::StringPiece hostname) {
const char kSuffix[] = ".local.";
const size_t kSuffixLen = sizeof(kSuffix) - 1;
const size_t kSuffixLenTrimmed = kSuffixLen - 1;
if (!hostname.empty() && hostname.back() == '.') {
return hostname.size() > kSuffixLen &&
!hostname.compare(hostname.size() - kSuffixLen, kSuffixLen, kSuffix);
}
return hostname.size() > kSuffixLenTrimmed &&
!hostname.compare(hostname.size() - kSuffixLenTrimmed,
kSuffixLenTrimmed, kSuffix, kSuffixLenTrimmed);
}
bool ConfigureAsyncDnsNoFallbackFieldTrial() {
const bool kDefault = false;
// Configure the AsyncDns field trial as follows:
// groups AsyncDnsNoFallbackA and AsyncDnsNoFallbackB: return true,
// groups AsyncDnsA and AsyncDnsB: return false,
// groups SystemDnsA and SystemDnsB: return false,
// otherwise (trial absent): return default.
std::string group_name = base::FieldTrialList::FindFullName("AsyncDns");
if (!group_name.empty()) {
return base::StartsWith(group_name, "AsyncDnsNoFallback",
base::CompareCase::INSENSITIVE_ASCII);
}
return kDefault;
}
const base::FeatureParam<base::TaskPriority>::Option prio_modes[] = {
{base::TaskPriority::USER_VISIBLE, "default"},
{base::TaskPriority::USER_BLOCKING, "user_blocking"}};
const base::Feature kSystemResolverPriorityExperiment = {
"SystemResolverPriorityExperiment", base::FEATURE_DISABLED_BY_DEFAULT};
const base::FeatureParam<base::TaskPriority> priority_mode{
&kSystemResolverPriorityExperiment, "mode",
base::TaskPriority::USER_VISIBLE, &prio_modes};
//-----------------------------------------------------------------------------
// Returns true if it can determine that only loopback addresses are configured.
// i.e. if only 127.0.0.1 and ::1 are routable.
// Also returns false if it cannot determine this.
bool HaveOnlyLoopbackAddresses() {
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::WILL_BLOCK);
#if BUILDFLAG(IS_WIN)
// TODO(wtc): implement with the GetAdaptersAddresses function.
NOTIMPLEMENTED();
return false;
#elif BUILDFLAG(IS_ANDROID)
return android::HaveOnlyLoopbackAddresses();
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
struct ifaddrs* interface_addr = nullptr;
int rv = getifaddrs(&interface_addr);
if (rv != 0) {
DVPLOG(1) << "getifaddrs() failed";
return false;
}
bool result = true;
for (struct ifaddrs* interface = interface_addr; interface != nullptr;
interface = interface->ifa_next) {
if (!(IFF_UP & interface->ifa_flags))
continue;
if (IFF_LOOPBACK & interface->ifa_flags)
continue;
const struct sockaddr* addr = interface->ifa_addr;
if (!addr)
continue;
if (addr->sa_family == AF_INET6) {
// Safe cast since this is AF_INET6.
const struct sockaddr_in6* addr_in6 =
reinterpret_cast<const struct sockaddr_in6*>(addr);
const struct in6_addr* sin6_addr = &addr_in6->sin6_addr;
if (IN6_IS_ADDR_LOOPBACK(sin6_addr) || IN6_IS_ADDR_LINKLOCAL(sin6_addr))
continue;
}
if (addr->sa_family != AF_INET6 && addr->sa_family != AF_INET)
continue;
result = false;
break;
}
freeifaddrs(interface_addr);
return result;
#endif // defined(various platforms)
}
// Creates NetLog parameters when the resolve failed.
base::Value NetLogProcTaskFailedParams(uint32_t attempt_number,
int net_error,
int os_error) {
base::Value::Dict dict;
if (attempt_number)
dict.Set("attempt_number", base::saturated_cast<int>(attempt_number));
dict.Set("net_error", net_error);
if (os_error) {
dict.Set("os_error", os_error);
#if BUILDFLAG(IS_WIN)
// Map the error code to a human-readable string.
LPWSTR error_string = nullptr;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
nullptr, // Use the internal message table.
os_error,
0, // Use default language.
(LPWSTR)&error_string,
0, // Buffer size.
nullptr); // Arguments (unused).
dict.Set("os_error_string", base::WideToUTF8(error_string));
LocalFree(error_string);
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
dict.Set("os_error_string", gai_strerror(os_error));
#endif
}
return base::Value(std::move(dict));
}
// Creates NetLog parameters when the DnsTask failed.
base::Value NetLogDnsTaskFailedParams(
int net_error,
absl::optional<DnsQueryType> failed_transaction_type,
absl::optional<base::TimeDelta> ttl,
const HostCache::Entry* saved_results) {
base::Value::Dict dict;
if (failed_transaction_type) {
dict.Set("dns_query_type",
base::strict_cast<int>(failed_transaction_type.value()));
}
if (ttl)
dict.Set("error_ttl_sec",
base::saturated_cast<int>(ttl.value().InSeconds()));
dict.Set("net_error", net_error);
if (saved_results)
dict.Set("saved_results", saved_results->NetLogParams());
return base::Value(std::move(dict));
}
base::Value NetLogDnsTaskExtractionFailureParams(
DnsResponseResultExtractor::ExtractionError extraction_error,
DnsQueryType dns_query_type,
const HostCache::Entry& results) {
base::Value::Dict dict;
dict.Set("extraction_error", base::strict_cast<int>(extraction_error));
dict.Set("dns_query_type", base::strict_cast<int>(dns_query_type));
dict.Set("results", results.NetLogParams());
return base::Value(std::move(dict));
}
// Creates NetLog parameters for HOST_RESOLVER_MANAGER_JOB_ATTACH/DETACH events.
base::Value NetLogJobAttachParams(const NetLogSource& source,
RequestPriority priority) {
base::Value::Dict dict;
source.AddToEventParameters(dict);
dict.Set("priority", RequestPriorityToString(priority));
return base::Value(std::move(dict));
}
base::Value NetLogIPv6AvailableParams(bool ipv6_available, bool cached) {
base::Value::Dict dict;
dict.Set("ipv6_available", ipv6_available);
dict.Set("cached", cached);
return base::Value(std::move(dict));
}
// The logging routines are defined here because some requests are resolved
// without a Request object.
//-----------------------------------------------------------------------------
// Maximum of 64 concurrent resolver threads (excluding retries).
// Between 2010 and 2020, the limit was set to 6 because of a report of a broken
// home router that would fail in the presence of more simultaneous queries.
// In 2020, we conducted an experiment to see if this kind of router was still
// present on the Internet, and found no evidence of any remaining issues, so
// we increased the limit to 64 at that time.
const size_t kDefaultMaxProcTasks = 64u;
PrioritizedDispatcher::Limits GetDispatcherLimits(
const HostResolver::ManagerOptions& options) {
PrioritizedDispatcher::Limits limits(NUM_PRIORITIES,
options.max_concurrent_resolves);
// If not using default, do not use the field trial.
if (limits.total_jobs != HostResolver::ManagerOptions::kDefaultParallelism)
return limits;
// Default, without trial is no reserved slots.
limits.total_jobs = kDefaultMaxProcTasks;
// Parallelism is determined by the field trial.
std::string group =
base::FieldTrialList::FindFullName("HostResolverDispatch");
if (group.empty())
return limits;
// The format of the group name is a list of non-negative integers separated
// by ':'. Each of the elements in the list corresponds to an element in
// |reserved_slots|, except the last one which is the |total_jobs|.
std::vector<base::StringPiece> group_parts = base::SplitStringPiece(
group, ":", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
if (group_parts.size() != NUM_PRIORITIES + 1) {
NOTREACHED();
return limits;
}
std::vector<size_t> parsed(group_parts.size());
for (size_t i = 0; i < group_parts.size(); ++i) {
if (!base::StringToSizeT(group_parts[i], &parsed[i])) {
NOTREACHED();
return limits;
}
}
const size_t total_jobs = parsed.back();
parsed.pop_back();
const size_t total_reserved_slots =
std::accumulate(parsed.begin(), parsed.end(), 0u);
// There must be some unreserved slots available for the all priorities.
if (total_reserved_slots > total_jobs ||
(total_reserved_slots == total_jobs && parsed[MINIMUM_PRIORITY] == 0)) {
NOTREACHED();
return limits;
}
limits.total_jobs = total_jobs;
limits.reserved_slots = parsed;
return limits;
}
// Keeps track of the highest priority.
class PriorityTracker {
public:
explicit PriorityTracker(RequestPriority initial_priority)
: highest_priority_(initial_priority) {}
RequestPriority highest_priority() const { return highest_priority_; }
size_t total_count() const { return total_count_; }
void Add(RequestPriority req_priority) {
++total_count_;
++counts_[req_priority];
if (highest_priority_ < req_priority)
highest_priority_ = req_priority;
}
void Remove(RequestPriority req_priority) {
DCHECK_GT(total_count_, 0u);
DCHECK_GT(counts_[req_priority], 0u);
--total_count_;
--counts_[req_priority];
size_t i;
for (i = highest_priority_; i > MINIMUM_PRIORITY && !counts_[i]; --i) {
}
highest_priority_ = static_cast<RequestPriority>(i);
// In absence of requests, default to MINIMUM_PRIORITY.
if (total_count_ == 0)
DCHECK_EQ(MINIMUM_PRIORITY, highest_priority_);
}
private:
RequestPriority highest_priority_;
size_t total_count_ = 0;
size_t counts_[NUM_PRIORITIES] = {};
};
base::Value NetLogResults(const HostCache::Entry& results) {
base::Value::Dict dict;
dict.Set("results", results.NetLogParams());
return base::Value(std::move(dict));
}
base::Value ToLogStringValue(const HostResolver::Host& host) {
if (absl::holds_alternative<url::SchemeHostPort>(host))
return base::Value(absl::get<url::SchemeHostPort>(host).Serialize());
return base::Value(absl::get<HostPortPair>(host).ToString());
}
base::Value ToLogStringValue(
const absl::variant<url::SchemeHostPort, std::string>& host) {
if (absl::holds_alternative<url::SchemeHostPort>(host)) {
return base::Value(absl::get<url::SchemeHostPort>(host).Serialize());
}
return base::Value(absl::get<std::string>(host));
}
// Returns empty string if `host` has no known scheme.
base::StringPiece GetScheme(
const absl::variant<url::SchemeHostPort, std::string>& host) {
if (absl::holds_alternative<url::SchemeHostPort>(host))
return absl::get<url::SchemeHostPort>(host).scheme();
return base::StringPiece();
}
base::StringPiece GetHostname(const HostResolver::Host& host) {
if (absl::holds_alternative<url::SchemeHostPort>(host)) {
base::StringPiece hostname = absl::get<url::SchemeHostPort>(host).host();
if (hostname.size() >= 2 && hostname.front() == '[' &&
hostname.back() == ']') {
hostname = hostname.substr(1, hostname.size() - 2);
}
return hostname;
}
return absl::get<HostPortPair>(host).host();
}
base::StringPiece GetHostname(
const absl::variant<url::SchemeHostPort, std::string>& host) {
if (absl::holds_alternative<url::SchemeHostPort>(host)) {
base::StringPiece hostname = absl::get<url::SchemeHostPort>(host).host();
if (hostname.size() >= 2 && hostname.front() == '[' &&
hostname.back() == ']') {
hostname = hostname.substr(1, hostname.size() - 2);
}
return hostname;
}
return absl::get<std::string>(host);
}
uint16_t GetPort(const HostResolver::Host& host) {
if (absl::holds_alternative<url::SchemeHostPort>(host)) {
return absl::get<url::SchemeHostPort>(host).port();
}
return absl::get<HostPortPair>(host).port();
}
// Only use scheme/port in JobKey if `features::kUseDnsHttpsSvcb` is enabled
// (or the query is explicitly for HTTPS). Otherwise DNS will not give different
// results for the same hostname.
absl::variant<url::SchemeHostPort, std::string> CreateHostForJobKey(
const HostResolver::Host& input,
DnsQueryType query_type) {
if ((base::FeatureList::IsEnabled(features::kUseDnsHttpsSvcb) ||
query_type == DnsQueryType::HTTPS) &&
absl::holds_alternative<url::SchemeHostPort>(input)) {
return absl::get<url::SchemeHostPort>(input);
}
return std::string(GetHostname(input));
}
DnsResponse CreateFakeEmptyResponse(base::StringPiece hostname,
DnsQueryType query_type) {
std::string qname;
CHECK(DNSDomainFromDot(hostname, &qname));
return DnsResponse::CreateEmptyNoDataResponse(
/*id=*/0u, /*is_authoritative=*/true, qname,
DnsQueryTypeToQtype(query_type));
}
AddressList FilterAddresses(AddressList addresses,
DnsQueryTypeSet query_types) {
DCHECK(!query_types.Has(DnsQueryType::UNSPECIFIED));
DCHECK(!query_types.Empty());
const AddressFamily want_family =
HostResolver::DnsQueryTypeSetToAddressFamily(query_types);
if (want_family == ADDRESS_FAMILY_UNSPECIFIED)
return addresses;
// Keep only the endpoints that match `want_family`.
addresses.endpoints().erase(
base::ranges::remove_if(
addresses,
[want_family](AddressFamily family) { return family != want_family; },
&IPEndPoint::GetFamily),
addresses.end());
return addresses;
}
} // namespace
//-----------------------------------------------------------------------------
bool ResolveLocalHostname(base::StringPiece host, AddressList* address_list) {
address_list->clear();
if (!IsLocalHostname(host))
return false;
address_list->push_back(IPEndPoint(IPAddress::IPv6Localhost(), 0));
address_list->push_back(IPEndPoint(IPAddress::IPv4Localhost(), 0));
return true;
}
// Holds the callback and request parameters for an outstanding request.
//
// The RequestImpl is owned by the end user of host resolution. Deletion prior
// to the request having completed means the request was cancelled by the
// caller.
//
// Both the RequestImpl and its associated Job hold non-owning pointers to each
// other. Care must be taken to clear the corresponding pointer when
// cancellation is initiated by the Job (OnJobCancelled) vs by the end user
// (~RequestImpl).
class HostResolverManager::RequestImpl
: public HostResolver::ResolveHostRequest,
public base::LinkNode<HostResolverManager::RequestImpl> {
public:
RequestImpl(NetLogWithSource source_net_log,
HostResolver::Host request_host,
NetworkIsolationKey network_isolation_key,
absl::optional<ResolveHostParameters> optional_parameters,
base::WeakPtr<ResolveContext> resolve_context,
HostCache* host_cache,
base::WeakPtr<HostResolverManager> resolver,
const base::TickClock* tick_clock)
: source_net_log_(std::move(source_net_log)),
request_host_(std::move(request_host)),
network_isolation_key_(
base::FeatureList::IsEnabled(
net::features::kSplitHostCacheByNetworkIsolationKey)
? std::move(network_isolation_key)
: NetworkIsolationKey()),
parameters_(optional_parameters ? std::move(optional_parameters).value()
: ResolveHostParameters()),
resolve_context_(std::move(resolve_context)),
host_cache_(host_cache),
host_resolver_flags_(
HostResolver::ParametersToHostResolverFlags(parameters_)),
priority_(parameters_.initial_priority),
resolver_(std::move(resolver)),
tick_clock_(tick_clock) {}
RequestImpl(const RequestImpl&) = delete;
RequestImpl& operator=(const RequestImpl&) = delete;
~RequestImpl() override;
int Start(CompletionOnceCallback callback) override {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(callback);
// Start() may only be called once per request.
CHECK(!job_.has_value());
DCHECK(!complete_);
DCHECK(!callback_);
// Parent HostResolver must still be alive to call Start().
DCHECK(resolver_);
if (!resolve_context_) {
complete_ = true;
resolver_.reset();
set_error_info(ERR_CONTEXT_SHUT_DOWN, false);
return ERR_NAME_NOT_RESOLVED;
}
LogStartRequest();
int rv = resolver_->Resolve(this);
DCHECK(!complete_);
if (rv == ERR_IO_PENDING) {
CHECK(job_.has_value());
callback_ = std::move(callback);
} else {
CHECK(!job_.has_value());
complete_ = true;
LogFinishRequest(rv, false /* async_completion */);
}
resolver_.reset();
return rv;
}
const AddressList* GetAddressResults() const override {
DCHECK(complete_);
return base::OptionalOrNullptr(legacy_address_results_);
}
const std::vector<HostResolverEndpointResult>* GetEndpointResults()
const override {
DCHECK(complete_);
return base::OptionalOrNullptr(endpoint_results_);
}
const absl::optional<std::vector<std::string>>& GetTextResults()
const override {
DCHECK(complete_);
static const base::NoDestructor<absl::optional<std::vector<std::string>>>
nullopt_result;
return results_ ? results_.value().text_records() : *nullopt_result;
}
const absl::optional<std::vector<HostPortPair>>& GetHostnameResults()
const override {
DCHECK(complete_);
static const base::NoDestructor<absl::optional<std::vector<HostPortPair>>>
nullopt_result;
return results_ ? results_.value().hostnames() : *nullopt_result;
}
const std::set<std::string>* GetDnsAliasResults() const override {
DCHECK(complete_);
// If `include_canonical_name` param was true, should only ever have at most
// a single alias, representing the expected "canonical name".
#if DCHECK_IS_ON()
if (parameters().include_canonical_name && fixed_up_dns_alias_results_) {
DCHECK_LE(fixed_up_dns_alias_results_->size(), 1u);
if (GetAddressResults()) {
std::set<std::string> address_list_aliases_set(
GetAddressResults()->dns_aliases().begin(),
GetAddressResults()->dns_aliases().end());
DCHECK(address_list_aliases_set == fixed_up_dns_alias_results_.value());
}
}
#endif // DCHECK_IS_ON()
return base::OptionalOrNullptr(fixed_up_dns_alias_results_);
}
const std::vector<bool>* GetExperimentalResultsForTesting() const override {
DCHECK(complete_);
return results_ ? results_.value().https_record_compatibility() : nullptr;
}
net::ResolveErrorInfo GetResolveErrorInfo() const override {
DCHECK(complete_);
return error_info_;
}
const absl::optional<HostCache::EntryStaleness>& GetStaleInfo()
const override {
DCHECK(complete_);
return stale_info_;
}
void ChangeRequestPriority(RequestPriority priority) override;
void set_results(HostCache::Entry results) {
// Should only be called at most once and before request is marked
// completed.
DCHECK(!complete_);
DCHECK(!results_);
DCHECK(!parameters_.is_speculative);
results_ = std::move(results);
FixUpEndpointAndAliasResults();
}
void set_error_info(int error, bool is_secure_network_error) {
error_info_ = ResolveErrorInfo(error, is_secure_network_error);
}
void set_stale_info(HostCache::EntryStaleness stale_info) {
// Should only be called at most once and before request is marked
// completed.
DCHECK(!complete_);
DCHECK(!stale_info_);
DCHECK(!parameters_.is_speculative);
stale_info_ = std::move(stale_info);
}
void AssignJob(base::SafeRef<Job> job) {
CHECK(!job_.has_value());
job_ = std::move(job);
}
bool HasJob() const { return job_.has_value(); }
// Gets the Job's key. Crashes if no Job has been assigned.
const JobKey& GetJobKey() const;
// Unassigns the Job without calling completion callback.
void OnJobCancelled(const JobKey& key);
// Cleans up Job assignment, marks request completed, and calls the completion
// callback. |is_secure_network_error| indicates whether |error| came from a
// secure DNS lookup.
void OnJobCompleted(const JobKey& job_key,
int error,
bool is_secure_network_error);
// NetLog for the source, passed in HostResolver::Resolve.
const NetLogWithSource& source_net_log() { return source_net_log_; }
const HostResolver::Host& request_host() const { return request_host_; }
const NetworkIsolationKey& network_isolation_key() const {
return network_isolation_key_;
}
const ResolveHostParameters& parameters() const { return parameters_; }
ResolveContext* resolve_context() const { return resolve_context_.get(); }
HostCache* host_cache() const { return host_cache_; }
HostResolverFlags host_resolver_flags() const { return host_resolver_flags_; }
RequestPriority priority() const { return priority_; }
void set_priority(RequestPriority priority) { priority_ = priority; }
bool complete() const { return complete_; }
private:
void FixUpEndpointAndAliasResults() {
DCHECK(results_.has_value());
DCHECK(!legacy_address_results_.has_value());
DCHECK(!endpoint_results_.has_value());
DCHECK(!fixed_up_dns_alias_results_.has_value());
if (results_.value().legacy_addresses().has_value()) {
DCHECK(!results_.value().ip_endpoints());
legacy_address_results_ = results_.value().legacy_addresses();
endpoint_results_ = HostResolver::AddressListToEndpointResults(
legacy_address_results_.value());
fixed_up_dns_alias_results_ = std::set<std::string>(
legacy_address_results_.value().dns_aliases().begin(),
legacy_address_results_.value().dns_aliases().end());
// Skip fixups for `include_canonical_name` requests. Just use the
// canonical name exactly as it was received from the system resolver.
if (parameters().include_canonical_name) {
DCHECK_LE(legacy_address_results_.value().dns_aliases().size(), 1u);
} else {
fixed_up_dns_alias_results_ = dns_alias_utility::FixUpDnsAliases(
fixed_up_dns_alias_results_.value());
}
} else {
endpoint_results_ = results_.value().GetEndpoints();
if (endpoint_results_.has_value()) {
DCHECK(results_.value().aliases());
fixed_up_dns_alias_results_ = *results_.value().aliases();
// Expect `aliases()` results to already be fixed up.
DCHECK(dns_alias_utility::FixUpDnsAliases(
fixed_up_dns_alias_results_.value()) ==
fixed_up_dns_alias_results_.value());
legacy_address_results_ = HostResolver::EndpointResultToAddressList(
endpoint_results_.value(), fixed_up_dns_alias_results_.value());
}
}
}
// Logging and metrics for when a request has just been started.
void LogStartRequest() {
DCHECK(request_time_.is_null());
request_time_ = tick_clock_->NowTicks();
source_net_log_.BeginEvent(
NetLogEventType::HOST_RESOLVER_MANAGER_REQUEST, [this] {
base::Value::Dict dict;
dict.Set("host", ToLogStringValue(request_host_));
dict.Set("dns_query_type",
base::strict_cast<int>(parameters_.dns_query_type));
dict.Set("allow_cached_response",
parameters_.cache_usage !=
ResolveHostParameters::CacheUsage::DISALLOWED);
dict.Set("is_speculative", parameters_.is_speculative);
dict.Set("network_isolation_key",
network_isolation_key_.ToDebugString());
dict.Set("secure_dns_policy",
base::strict_cast<int>(parameters_.secure_dns_policy));
return base::Value(std::move(dict));
});
}
// Logging and metrics for when a request has just completed (before its
// callback is run).
void LogFinishRequest(int net_error, bool async_completion) {
source_net_log_.EndEventWithNetErrorCode(
NetLogEventType::HOST_RESOLVER_MANAGER_REQUEST, net_error);
if (!parameters_.is_speculative) {
DCHECK(!request_time_.is_null());
base::TimeDelta duration = tick_clock_->NowTicks() - request_time_;
UMA_HISTOGRAM_MEDIUM_TIMES("Net.DNS.Request.TotalTime", duration);
if (async_completion)
UMA_HISTOGRAM_MEDIUM_TIMES("Net.DNS.Request.TotalTimeAsync", duration);
}
}
// Logs when a request has been cancelled.
void LogCancelRequest() {
source_net_log_.AddEvent(NetLogEventType::CANCELLED);
source_net_log_.EndEvent(NetLogEventType::HOST_RESOLVER_MANAGER_REQUEST);
}
const NetLogWithSource source_net_log_;
const HostResolver::Host request_host_;
const NetworkIsolationKey network_isolation_key_;
ResolveHostParameters parameters_;
base::WeakPtr<ResolveContext> resolve_context_;
const raw_ptr<HostCache> host_cache_;
const HostResolverFlags host_resolver_flags_;
RequestPriority priority_;
// The resolve job that this request is dependent on.
absl::optional<base::SafeRef<Job>> job_;
base::WeakPtr<HostResolverManager> resolver_ = nullptr;
// The user's callback to invoke when the request completes.
CompletionOnceCallback callback_;
bool complete_ = false;
absl::optional<HostCache::Entry> results_;
absl::optional<HostCache::EntryStaleness> stale_info_;
absl::optional<AddressList> legacy_address_results_;
absl::optional<std::vector<HostResolverEndpointResult>> endpoint_results_;
absl::optional<std::set<std::string>> fixed_up_dns_alias_results_;
ResolveErrorInfo error_info_;
const raw_ptr<const base::TickClock> tick_clock_;
base::TimeTicks request_time_;
SEQUENCE_CHECKER(sequence_checker_);
};
class HostResolverManager::ProbeRequestImpl
: public HostResolver::ProbeRequest,
public ResolveContext::DohStatusObserver {
public:
ProbeRequestImpl(base::WeakPtr<ResolveContext> context,
base::WeakPtr<HostResolverManager> resolver)
: context_(std::move(context)), resolver_(std::move(resolver)) {}
ProbeRequestImpl(const ProbeRequestImpl&) = delete;
ProbeRequestImpl& operator=(const ProbeRequestImpl&) = delete;
~ProbeRequestImpl() override {
// Ensure that observers are deregistered to avoid wasting memory.
if (context_)
context_->UnregisterDohStatusObserver(this);
}
int Start() override {
DCHECK(resolver_);
DCHECK(!runner_);
if (!context_)
return ERR_CONTEXT_SHUT_DOWN;
context_->RegisterDohStatusObserver(this);
StartRunner(false /* network_change */);
return ERR_IO_PENDING;
}
// ResolveContext::DohStatusObserver
void OnSessionChanged() override { CancelRunner(); }
void OnDohServerUnavailable(bool network_change) override {
// Start the runner asynchronously, as this may trigger reentrant calls into
// HostResolverManager, which are not allowed during notification handling.
base::SequencedTaskRunnerHandle::Get()->PostTask(
FROM_HERE,
base::BindOnce(&ProbeRequestImpl::StartRunner,
weak_ptr_factory_.GetWeakPtr(), network_change));
}
private:
void StartRunner(bool network_change) {
DCHECK(resolver_);
DCHECK(!resolver_->invalidation_in_progress_);
if (!context_)
return; // Reachable if the context ends before a posted task runs.
if (!runner_)
runner_ = resolver_->CreateDohProbeRunner(context_.get());
if (runner_)
runner_->Start(network_change);
}
void CancelRunner() {
runner_.reset();
// Cancel any asynchronous StartRunner() calls.
weak_ptr_factory_.InvalidateWeakPtrs();
}
base::WeakPtr<ResolveContext> context_;
std::unique_ptr<DnsProbeRunner> runner_;
base::WeakPtr<HostResolverManager> resolver_;
base::WeakPtrFactory<ProbeRequestImpl> weak_ptr_factory_{this};
};
//------------------------------------------------------------------------------
// Calls HostResolverProc in ThreadPool. Performs retries if necessary.
//
// In non-test code, the HostResolverProc is always SystemHostResolverProc,
// which calls a platform API that implements host resolution.
//
// Whenever we try to resolve the host, we post a delayed task to check if host
// resolution (OnLookupComplete) is completed or not. If the original attempt
// hasn't completed, then we start another attempt for host resolution. We take
// the results from the first attempt that finishes and ignore the results from
// all other attempts.
//
// TODO(szym): Move to separate source file for testing and mocking.
//
class HostResolverManager::ProcTask {
public:
typedef base::OnceCallback<void(int net_error, const AddressList& addr_list)>
Callback;
ProcTask(std::string hostname,
AddressFamily address_family,
HostResolverFlags flags,
const ProcTaskParams& params,
Callback callback,
scoped_refptr<base::TaskRunner> proc_task_runner,
const NetLogWithSource& job_net_log,
const base::TickClock* tick_clock,
NetworkChangeNotifier::NetworkHandle network)
: hostname_(std::move(hostname)),
address_family_(address_family),
flags_(flags),
params_(params),
callback_(std::move(callback)),
network_task_runner_(base::ThreadTaskRunnerHandle::Get()),
proc_task_runner_(std::move(proc_task_runner)),
net_log_(job_net_log),
tick_clock_(tick_clock),
network_(network) {
DCHECK(callback_);
if (!params_.resolver_proc.get())
params_.resolver_proc = HostResolverProc::GetDefault();
// If default is unset, use the system proc.
if (!params_.resolver_proc.get())
params_.resolver_proc = base::MakeRefCounted<SystemHostResolverProc>();
}
ProcTask(const ProcTask&) = delete;
ProcTask& operator=(const ProcTask&) = delete;
// Cancels this ProcTask. Any outstanding resolve attempts running on worker
// thread will continue running, but they will post back to the network thread
// before checking their WeakPtrs to find that this task is cancelled.
~ProcTask() {
DCHECK(network_task_runner_->BelongsToCurrentThread());
// If this is cancellation, log the EndEvent (otherwise this was logged in
// OnLookupComplete()).
if (!was_completed())
net_log_.EndEvent(NetLogEventType::HOST_RESOLVER_MANAGER_PROC_TASK);
}
void Start() {
DCHECK(network_task_runner_->BelongsToCurrentThread());
DCHECK(!was_completed());
net_log_.BeginEvent(NetLogEventType::HOST_RESOLVER_MANAGER_PROC_TASK);
StartLookupAttempt();
}
bool was_completed() const {
DCHECK(network_task_runner_->BelongsToCurrentThread());
return callback_.is_null();
}
private:
using AttemptCompletionCallback = base::OnceCallback<
void(const AddressList& results, int error, const int os_error)>;
void StartLookupAttempt() {
DCHECK(network_task_runner_->BelongsToCurrentThread());
DCHECK(!was_completed());
base::TimeTicks start_time = tick_clock_->NowTicks();
++attempt_number_;
// Dispatch the lookup attempt to a worker thread.
AttemptCompletionCallback completion_callback = base::BindOnce(
&ProcTask::OnLookupAttemptComplete, weak_ptr_factory_.GetWeakPtr(),
start_time, attempt_number_, tick_clock_);
proc_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&ProcTask::DoLookup, hostname_, address_family_, flags_,
params_.resolver_proc, network_task_runner_,
std::move(completion_callback), network_));
net_log_.AddEventWithIntParams(
NetLogEventType::HOST_RESOLVER_MANAGER_ATTEMPT_STARTED,
"attempt_number", attempt_number_);
// If the results aren't received within a given time, RetryIfNotComplete
// will start a new attempt if none of the outstanding attempts have
// completed yet.
// Use a WeakPtr to avoid keeping the ProcTask alive after completion or
// cancellation.
if (attempt_number_ <= params_.max_retry_attempts) {
network_task_runner_->PostDelayedTask(
FROM_HERE,
base::BindOnce(&ProcTask::StartLookupAttempt,
weak_ptr_factory_.GetWeakPtr()),
params_.unresponsive_delay *
std::pow(params_.retry_factor, attempt_number_ - 1));
}
}
// WARNING: This code runs in ThreadPool with CONTINUE_ON_SHUTDOWN. The
// shutdown code cannot wait for it to finish, so this code must be very
// careful about using other objects (like MessageLoops, Singletons, etc).
// During shutdown these objects may no longer exist.
static void DoLookup(
std::string hostname,
AddressFamily address_family,
HostResolverFlags flags,
scoped_refptr<HostResolverProc> resolver_proc,
scoped_refptr<base::SingleThreadTaskRunner> network_task_runner,
AttemptCompletionCallback completion_callback,
NetworkChangeNotifier::NetworkHandle network) {
AddressList results;
int os_error = 0;
int error = resolver_proc->Resolve(hostname, address_family, flags,
&results, &os_error, network);
network_task_runner->PostTask(
FROM_HERE, base::BindOnce(std::move(completion_callback), results,
error, os_error));
}
// Callback for when DoLookup() completes (runs on task runner thread). Now
// that we're back in the network thread, checks that |proc_task| is still
// valid, and if so, passes back to the object.
static void OnLookupAttemptComplete(base::WeakPtr<ProcTask> proc_task,
const base::TimeTicks& start_time,
const uint32_t attempt_number,
const base::TickClock* tick_clock,
const AddressList& results,
int error,
const int os_error) {
TRACE_EVENT0(NetTracingCategory(), "ProcTask::OnLookupComplete");
// If results are empty, we should return an error.
bool empty_list_on_ok = (error == OK && results.empty());
if (empty_list_on_ok)
error = ERR_NAME_NOT_RESOLVED;
// Ideally the following code would be part of host_resolver_proc.cc,
// however it isn't safe to call NetworkChangeNotifier from worker threads.
// So do it here on the IO thread instead.
if (error != OK && NetworkChangeNotifier::IsOffline())
error = ERR_INTERNET_DISCONNECTED;
if (!proc_task)
return;
proc_task->OnLookupComplete(results, start_time, attempt_number, error,
os_error);
}
void OnLookupComplete(const AddressList& results,
const base::TimeTicks& start_time,
const uint32_t attempt_number,
int error,
const int os_error) {
DCHECK(network_task_runner_->BelongsToCurrentThread());
DCHECK(!was_completed());
// Invalidate WeakPtrs to cancel handling of all outstanding lookup attempts
// and retries.
weak_ptr_factory_.InvalidateWeakPtrs();
if (error != OK) {
net_log_.EndEvent(NetLogEventType::HOST_RESOLVER_MANAGER_PROC_TASK, [&] {
return NetLogProcTaskFailedParams(0, error, os_error);
});
net_log_.AddEvent(
NetLogEventType::HOST_RESOLVER_MANAGER_ATTEMPT_FINISHED, [&] {
return NetLogProcTaskFailedParams(attempt_number, error, os_error);
});
} else {
net_log_.EndEvent(NetLogEventType::HOST_RESOLVER_MANAGER_PROC_TASK,
[&] { return results.NetLogParams(); });
net_log_.AddEventWithIntParams(
NetLogEventType::HOST_RESOLVER_MANAGER_ATTEMPT_FINISHED,
"attempt_number", attempt_number);
}
std::move(callback_).Run(error, results);
}
const std::string hostname_;
const AddressFamily address_family_;
const HostResolverFlags flags_;
// Holds an owning reference to the HostResolverProc that we are going to use.
// This may not be the current resolver procedure by the time we call
// ResolveAddrInfo, but that's OK... we'll use it anyways, and the owning
// reference ensures that it remains valid until we are done.
ProcTaskParams params_;
// The listener to the results of this ProcTask.
Callback callback_;
// Used to post events onto the network thread.
scoped_refptr<base::SingleThreadTaskRunner> network_task_runner_;
// Used to post blocking HostResolverProc tasks.
scoped_refptr<base::TaskRunner> proc_task_runner_;
// Keeps track of the number of attempts we have made so far to resolve the
// host. Whenever we start an attempt to resolve the host, we increase this
// number.
uint32_t attempt_number_ = 0;
NetLogWithSource net_log_;
raw_ptr<const base::TickClock> tick_clock_;
// Network to perform DNS lookups for.
NetworkChangeNotifier::NetworkHandle network_;
// Used to loop back from the blocking lookup attempt tasks as well as from
// delayed retry tasks. Invalidate WeakPtrs on completion and cancellation to
// cancel handling of such posted tasks.
base::WeakPtrFactory<ProcTask> weak_ptr_factory_{this};
};
//-----------------------------------------------------------------------------
// Resolves the hostname using DnsTransaction, which is a full implementation of
// a DNS stub resolver. One DnsTransaction is created for each resolution
// needed, which for AF_UNSPEC resolutions includes both A and AAAA. The
// transactions are scheduled separately and started separately.
//
// TODO(szym): This could be moved to separate source file as well.
class HostResolverManager::DnsTask : public base::SupportsWeakPtr<DnsTask> {
public:
class Delegate {
public:
virtual void OnDnsTaskComplete(base::TimeTicks start_time,
bool allow_fallback,
HostCache::Entry results,
bool secure) = 0;
// Called when one or more transactions complete or get cancelled, but only
// if more transactions are needed. If no more transactions are needed,
// expect `OnDnsTaskComplete()` to be called instead.
virtual void OnIntermediateTransactionsComplete() = 0;
virtual RequestPriority priority() const = 0;
virtual void AddTransactionTimeQueued(base::TimeDelta time_queued) = 0;
protected:
Delegate() = default;
virtual ~Delegate() = default;
};
DnsTask(DnsClient* client,
absl::variant<url::SchemeHostPort, std::string> host,
DnsQueryTypeSet query_types,
ResolveContext* resolve_context,
bool secure,
SecureDnsMode secure_dns_mode,
Delegate* delegate,
const NetLogWithSource& job_net_log,
const base::TickClock* tick_clock,
bool fallback_available)
: client_(client),
host_(std::move(host)),
resolve_context_(resolve_context->AsSafeRef()),
secure_(secure),
secure_dns_mode_(secure_dns_mode),
delegate_(delegate),
net_log_(job_net_log),
tick_clock_(tick_clock),
task_start_time_(tick_clock_->NowTicks()),
fallback_available_(fallback_available) {
DCHECK(client_);
DCHECK(delegate_);
if (!secure_) {
DCHECK(client_->CanUseInsecureDnsTransactions());
}
PushTransactionsNeeded(MaybeDisableAdditionalQueries(query_types));
}
DnsTask(const DnsTask&) = delete;
DnsTask& operator=(const DnsTask&) = delete;
int num_additional_transactions_needed() const {
return base::checked_cast<int>(transactions_needed_.size());
}
int num_transactions_in_progress() const {
return base::checked_cast<int>(transactions_in_progress_.size());
}
bool secure() const { return secure_; }
void StartNextTransaction() {
DCHECK_GE(num_additional_transactions_needed(), 1);
if (!any_transaction_started_) {
net_log_.BeginEvent(NetLogEventType::HOST_RESOLVER_MANAGER_DNS_TASK,
[&] { return NetLogDnsTaskCreationParams(); });
}
any_transaction_started_ = true;
TransactionInfo transaction_info = std::move(transactions_needed_.front());
transactions_needed_.pop_front();
DCHECK(IsAddressType(transaction_info.type) || secure_ ||
client_->CanQueryAdditionalTypesViaInsecureDns());
// Record how long this transaction has been waiting to be created.
base::TimeDelta time_queued = tick_clock_->NowTicks() - task_start_time_;
UMA_HISTOGRAM_LONG_TIMES_100("Net.DNS.JobQueueTime.PerTransaction",
time_queued);
delegate_->AddTransactionTimeQueued(time_queued);
CreateAndStartTransaction(std::move(transaction_info));
}
private:
enum class TransactionErrorBehavior {
// Errors lead to task fallback (immediately unless another pending/started
// transaction has the `kFatalOrEmpty` behavior).
kFallback,
// Transaction errors are treated as if a NOERROR response were received,
// allowing task success if other transactions complete successfully.
kSynthesizeEmpty,
// Transaction errors are potentially fatal (determined by
// `OnTransactionComplete` and often its helper
// `IsFatalTransactionFailure()`) for the entire Job and may disallow
// fallback. Otherwise, same as `kSynthesizeEmpty`.
// TODO(crbug.com/1264933): Implement the fatality behavior.
kFatalOrEmpty,
};
struct TransactionInfo {
explicit TransactionInfo(DnsQueryType type,
TransactionErrorBehavior error_behavior =
TransactionErrorBehavior::kFallback)
: type(type), error_behavior(error_behavior) {}
TransactionInfo(TransactionInfo&&) = default;
TransactionInfo& operator=(TransactionInfo&&) = default;
bool operator<(const TransactionInfo& other) const {
return std::tie(type, error_behavior, transaction) <
std::tie(other.type, other.error_behavior, other.transaction);
}
DnsQueryType type;
TransactionErrorBehavior error_behavior;
std::unique_ptr<DnsTransaction> transaction;
};
base::Value NetLogDnsTaskCreationParams() {
base::Value::Dict dict;
dict.Set("secure", secure());
base::Value::List transactions_needed_value;
for (const TransactionInfo& info : transactions_needed_) {
base::Value::Dict transaction_dict;
transaction_dict.Set("dns_query_type", base::strict_cast<int>(info.type));
transactions_needed_value.Append(std::move(transaction_dict));
}
dict.Set("transactions_needed", std::move(transactions_needed_value));
return base::Value(std::move(dict));
}
base::Value NetLogDnsTaskTimeoutParams() {
base::Value::Dict dict;
if (!transactions_in_progress_.empty()) {
base::Value::List list;
for (const TransactionInfo& info : transactions_in_progress_) {
base::Value::Dict transaction_dict;
transaction_dict.Set("dns_query_type",
base::strict_cast<int>(info.type));
list.Append(std::move(transaction_dict));
}
dict.Set("started_transactions", std::move(list));
}
if (!transactions_needed_.empty()) {
base::Value::List list;
for (const TransactionInfo& info : transactions_needed_) {
base::Value::Dict transaction_dict;
transaction_dict.Set("dns_query_type",
base::strict_cast<int>(info.type));
list.Append(std::move(transaction_dict));
}
dict.Set("queued_transactions", std::move(list));
}
return base::Value(std::move(dict));
}
DnsQueryTypeSet MaybeDisableAdditionalQueries(DnsQueryTypeSet types) {
DCHECK(!types.Empty());
DCHECK(!types.Has(DnsQueryType::UNSPECIFIED));
// No-op if the caller explicitly requested this one query type.
if (types.Size() == 1)
return types;
if (types.Has(DnsQueryType::HTTPS)) {
if (!secure_ && (!features::kUseDnsHttpsSvcbEnableInsecure.Get() ||
!client_->CanQueryAdditionalTypesViaInsecureDns())) {
types.Remove(DnsQueryType::HTTPS);
} else {
DCHECK(!httpssvc_metrics_);
httpssvc_metrics_.emplace(secure_, /*expect_intact=*/false);
}
}
if (types.Has(DnsQueryType::INTEGRITY) ||
types.Has(DnsQueryType::HTTPS_EXPERIMENTAL)) {
if (!secure_ && (!features::kDnsHttpssvcEnableQueryOverInsecure.Get() ||
!client_->CanQueryAdditionalTypesViaInsecureDns())) {
types.RemoveAll(
{DnsQueryType::INTEGRITY, DnsQueryType::HTTPS_EXPERIMENTAL});
} else {
DCHECK(!httpssvc_metrics_)
<< "Caller requested multiple experimental types";
httpssvc_metrics_.emplace(
secure_,
/*expect_intact=*/httpssvc_domain_cache_.IsExperimental(
GetHostname(host_)));
}
}
DCHECK(!types.Empty());
return types;
}
void PushTransactionsNeeded(DnsQueryTypeSet query_types) {
DCHECK(transactions_needed_.empty());
if (query_types.Has(DnsQueryType::HTTPS) &&
features::kUseDnsHttpsSvcbEnforceSecureResponse.Get() && secure_) {
query_types.Remove(DnsQueryType::HTTPS);
transactions_needed_.emplace_back(
DnsQueryType::HTTPS, TransactionErrorBehavior::kFatalOrEmpty);
}
// Give some queries a head start by pushing them to the queue first.
constexpr DnsQueryType kHighPriorityQueries[] = {DnsQueryType::A,
DnsQueryType::AAAA};
for (DnsQueryType high_priority_query : kHighPriorityQueries) {
if (query_types.Has(high_priority_query)) {
query_types.Remove(high_priority_query);
transactions_needed_.emplace_back(high_priority_query);
}
}
for (DnsQueryType remaining_query : query_types) {
if (remaining_query == DnsQueryType::HTTPS ||
remaining_query == DnsQueryType::HTTPS_EXPERIMENTAL ||
remaining_query == DnsQueryType::INTEGRITY) {
// Ignore errors for these types. In most cases treating them normally
// would only result in fallback to resolution without querying the
// type. Instead, synthesize empty results.
transactions_needed_.emplace_back(
remaining_query, TransactionErrorBehavior::kSynthesizeEmpty);
} else {
transactions_needed_.emplace_back(remaining_query);
}
}
}
void CreateAndStartTransaction(TransactionInfo transaction_info) {
DCHECK(!transaction_info.transaction);
DCHECK_NE(DnsQueryType::UNSPECIFIED, transaction_info.type);
std::string transaction_hostname(GetHostname(host_));
// For HTTPS, prepend "_<port>._https." for any non-default port.
uint16_t request_port = 0;
if (transaction_info.type == DnsQueryType::HTTPS &&
absl::holds_alternative<url::SchemeHostPort>(host_)) {
const auto& scheme_host_port = absl::get<url::SchemeHostPort>(host_);
transaction_hostname =
dns_util::GetNameForHttpsQuery(scheme_host_port, &request_port);
}
transaction_info.transaction =
client_->GetTransactionFactory()->CreateTransaction(
std::move(transaction_hostname),
DnsQueryTypeToQtype(transaction_info.type), net_log_, secure_,
secure_dns_mode_, &*resolve_context_,
fallback_available_ /* fast_timeout */);
transaction_info.transaction->SetRequestPriority(delegate_->priority());
auto transaction_info_it =
transactions_in_progress_.insert(std::move(transaction_info)).first;
// Safe to pass `transaction_info_it` because it is only modified/removed
// after async completion of this call or by destruction (which cancels the
// transaction and prevents callback because it owns the `DnsTransaction`
// object).
transaction_info_it->transaction->Start(base::BindOnce(
&DnsTask::OnDnsTransactionComplete, base::Unretained(this),
tick_clock_->NowTicks(), transaction_info_it, request_port));
}
void OnTimeout() {
net_log_.AddEvent(NetLogEventType::HOST_RESOLVER_MANAGER_DNS_TASK_TIMEOUT,
[&] { return NetLogDnsTaskTimeoutParams(); });
for (const TransactionInfo& transaction : transactions_in_progress_) {
base::TimeDelta elapsed_time = tick_clock_->NowTicks() - task_start_time_;
switch (transaction.type) {
case DnsQueryType::INTEGRITY:
DCHECK(httpssvc_metrics_);
httpssvc_metrics_->SaveForIntegrity(HttpssvcDnsRcode::kTimedOut,
/*condensed_records=*/{},
elapsed_time);
break;
case DnsQueryType::HTTPS:
DCHECK(!secure_ ||
!features::kUseDnsHttpsSvcbEnforceSecureResponse.Get());
[[fallthrough]];
case DnsQueryType::HTTPS_EXPERIMENTAL:
if (httpssvc_metrics_) {
// Don't record provider ID for timeouts. It is not precisely known
// at this level which provider is actually to blame for the
// timeout, and breaking metrics out by provider is no longer
// important for current experimentation goals.
httpssvc_metrics_->SaveForHttps(HttpssvcDnsRcode::kTimedOut,
/*condensed_records=*/{},
elapsed_time);
}
break;
default:
// The timeout timer is only started when all other transactions have
// completed.
NOTREACHED();
}
}
transactions_needed_.clear();
transactions_in_progress_.clear();
OnTransactionsFinished();
}
// Called on completion of a `DnsTransaction`, but not necessarily completion
// of all work for the individual transaction in this task (see
// `OnTransactionsFinished()`).
void OnDnsTransactionComplete(
const base::TimeTicks& start_time,
std::set<TransactionInfo>::iterator transaction_info_it,
uint16_t request_port,
int net_error,
const DnsResponse* response) {
DCHECK(transaction_info_it != transactions_in_progress_.end());
DCHECK(transactions_in_progress_.find(*transaction_info_it) !=
transactions_in_progress_.end());
// Pull the TransactionInfo out of `transactions_in_progress_` now, so it
// and its underlying DnsTransaction will be deleted on completion of
// OnTransactionComplete. Note: Once control leaves OnTransactionComplete,
// there's no further need for the transaction object. On the other hand,
// since it owns `*response`, it should stay around while
// OnTransactionComplete executes.
TransactionInfo transaction_info = std::move(
transactions_in_progress_.extract(transaction_info_it).value());
base::TimeDelta elapsed_time = tick_clock_->NowTicks() - task_start_time_;
enum HttpssvcDnsRcode rcode_for_httpssvc = HttpssvcDnsRcode::kNoError;
if (httpssvc_metrics_) {
if (net_error == ERR_DNS_TIMED_OUT) {
rcode_for_httpssvc = HttpssvcDnsRcode::kTimedOut;
} else if (net_error == ERR_NAME_NOT_RESOLVED) {
rcode_for_httpssvc = HttpssvcDnsRcode::kNoError;
} else if (response == nullptr) {
rcode_for_httpssvc = HttpssvcDnsRcode::kMissingDnsResponse;
} else {
rcode_for_httpssvc =
TranslateDnsRcodeForHttpssvcExperiment(response->rcode());
}
}
// Handle network errors. Note that for NXDOMAIN, DnsTransaction returns
// ERR_NAME_NOT_RESOLVED, so that is not a network error if received with a
// valid response.
bool fatal_error =
IsFatalTransactionFailure(net_error, transaction_info, response);
absl::optional<DnsResponse> fake_response;
if (net_error != OK && !(net_error == ERR_NAME_NOT_RESOLVED && response &&
response->IsValid())) {
if (transaction_info.error_behavior ==
TransactionErrorBehavior::kFallback ||
fatal_error) {
// Fail task (or maybe Job) completely on network failure.
OnFailure(net_error, /*allow_fallback=*/!fatal_error,
/*ttl=*/absl::nullopt, transaction_info.type);
return;
} else {
DCHECK((transaction_info.error_behavior ==
TransactionErrorBehavior::kFatalOrEmpty &&
!fatal_error) ||
transaction_info.error_behavior ==
TransactionErrorBehavior::kSynthesizeEmpty);
// For non-fatal failures, synthesize an empty response.
fake_response =
CreateFakeEmptyResponse(GetHostname(host_), transaction_info.type);
response = &fake_response.value();
}
}
HostCache::Entry results(ERR_FAILED, HostCache::Entry::SOURCE_UNKNOWN);
DnsResponseResultExtractor extractor(response);
DnsResponseResultExtractor::ExtractionError extraction_error =
extractor.ExtractDnsResults(transaction_info.type,
/*original_domain_name=*/GetHostname(host_),
request_port, &results);
DCHECK_NE(extraction_error,
DnsResponseResultExtractor::ExtractionError::kUnexpected);
if (results.error() != OK && results.error() != ERR_NAME_NOT_RESOLVED) {
net_log_.AddEvent(
NetLogEventType::HOST_RESOLVER_MANAGER_DNS_TASK_EXTRACTION_FAILURE,
[&] {
return NetLogDnsTaskExtractionFailureParams(
extraction_error, transaction_info.type, results);
});
if (transaction_info.error_behavior ==
TransactionErrorBehavior::kFatalOrEmpty ||
transaction_info.error_behavior ==
TransactionErrorBehavior::kSynthesizeEmpty) {
// No extraction errors are currently considered fatal, otherwise, there
// would need to be a call to some sort of
// IsFatalTransactionExtractionError() function.
DCHECK(!fatal_error);
results = DnsResponseResultExtractor::CreateEmptyResult(
transaction_info.type);
} else {
OnFailure(results.error(), /*allow_fallback=*/true,
results.GetOptionalTtl(), transaction_info.type);
return;
}
}
if (httpssvc_metrics_) {
if (transaction_info.type == DnsQueryType::INTEGRITY) {
const std::vector<bool>* experimental_results =
results.https_record_compatibility();
CHECK(experimental_results);
// INTEGRITY queries can time out the normal way (here), or when the
// experimental query timer runs out (OnExperimentalQueryTimeout).
httpssvc_metrics_->SaveForIntegrity(
rcode_for_httpssvc, *experimental_results, elapsed_time);
} else if (transaction_info.type == DnsQueryType::HTTPS ||
transaction_info.type == DnsQueryType::HTTPS_EXPERIMENTAL) {
const std::vector<bool>* record_compatibility =
results.https_record_compatibility();
CHECK(record_compatibility);
httpssvc_metrics_->SaveForHttps(rcode_for_httpssvc,
*record_compatibility, elapsed_time);
} else {
httpssvc_metrics_->SaveForAddressQuery(elapsed_time,
rcode_for_httpssvc);
}
}
// Trigger HTTP->HTTPS upgrade if an HTTPS record is received for an "http"
// or "ws" request.
if (transaction_info.type == DnsQueryType::HTTPS &&
ShouldTriggerHttpToHttpsUpgrade(results)) {
// Disallow fallback. Otherwise DNS could be reattempted without HTTPS
// queries, and that would hide this error instead of triggering upgrade.
OnFailure(ERR_DNS_NAME_HTTPS_ONLY, /*allow_fallback=*/false,
results.GetOptionalTtl(), transaction_info.type);
return;
}
HideMetadataResultsIfNotDesired(results);
// Merge results with saved results from previous transactions.
if (saved_results_) {
// If saved result is a deferred failure, try again to complete with that
// failure.
if (saved_results_is_failure_) {
OnFailure(saved_results_.value().error(), /*allow_fallback=*/true,
saved_results_.value().GetOptionalTtl());
return;
}
switch (transaction_info.type) {
case DnsQueryType::A:
// Canonical names from A results have lower priority than those
// from AAAA results, so merge to the back.
results = HostCache::Entry::MergeEntries(
std::move(saved_results_).value(), std::move(results));
break;
case DnsQueryType::AAAA:
// Canonical names from AAAA results take priority over those
// from A results, so merge to the front.
results = HostCache::Entry::MergeEntries(
std::move(results), std::move(saved_results_).value());
break;
case DnsQueryType::INTEGRITY:
case DnsQueryType::HTTPS:
case DnsQueryType::HTTPS_EXPERIMENTAL:
// No particular importance to order.
results = HostCache::Entry::MergeEntries(
std::move(results), std::move(saved_results_).value());
break;
default:
// Only expect address query types with multiple transactions.
NOTREACHED();
}
}
saved_results_ = std::move(results);
OnTransactionsFinished();
}
bool IsFatalTransactionFailure(int transaction_error,
const TransactionInfo& transaction_info,
const DnsResponse* response) {
if (transaction_info.type != DnsQueryType::HTTPS) {
DCHECK(transaction_info.error_behavior !=
TransactionErrorBehavior::kFatalOrEmpty);
return false;
}
// These values are logged to UMA. Entries should not be renumbered and
// numeric values should never be reused. Please keep in sync with
// "DNS.SvcbHttpsTransactionError" in
// src/tools/metrics/histograms/enums.xml.
enum class HttpsTransactionError {
kNoError = 0,
kInsecureError = 1,
kNonFatalError = 2,
kFatalErrorDisabled = 3,
kFatalErrorEnabled = 4,
kMaxValue = kFatalErrorEnabled
} error;
if (transaction_error == OK ||
(transaction_error == ERR_NAME_NOT_RESOLVED && response &&
response->IsValid())) {
error = HttpsTransactionError::kNoError;
} else if (!secure_) {
// HTTPS failures are never fatal via insecure DNS.
DCHECK(transaction_info.error_behavior !=
TransactionErrorBehavior::kFatalOrEmpty);
error = HttpsTransactionError::kInsecureError;
} else if (transaction_error == ERR_DNS_SERVER_FAILED && response &&
response->rcode() != dns_protocol::kRcodeSERVFAIL) {
// For server failures, only SERVFAIL is fatal.
error = HttpsTransactionError::kNonFatalError;
} else if (features::kUseDnsHttpsSvcbEnforceSecureResponse.Get()) {
DCHECK(transaction_info.error_behavior ==
TransactionErrorBehavior::kFatalOrEmpty);
error = HttpsTransactionError::kFatalErrorEnabled;
} else {
DCHECK(transaction_info.error_behavior !=
TransactionErrorBehavior::kFatalOrEmpty);
error = HttpsTransactionError::kFatalErrorDisabled;
}
UMA_HISTOGRAM_ENUMERATION("Net.DNS.DnsTask.SvcbHttpsTransactionError",
error);
return error == HttpsTransactionError::kFatalErrorEnabled;
}
// Called on processing for one or more individual transaction being
// completed/cancelled. Processes overall results if all transactions are
// finished.
void OnTransactionsFinished() {
if (!transactions_in_progress_.empty() || !transactions_needed_.empty()) {
delegate_->OnIntermediateTransactionsComplete();
MaybeStartTimeoutTimer();
return;
}
DCHECK(saved_results_.has_value());
HostCache::Entry results = std::move(*saved_results_);
timeout_timer_.Stop();
absl::optional<std::vector<IPEndPoint>> ip_endpoints;
if (results.legacy_addresses().has_value()) {
ip_endpoints = results.legacy_addresses().value().endpoints();
} else {
ip_endpoints = base::OptionalFromPtr(results.ip_endpoints());
}
if (ip_endpoints.has_value()) {
// If there are multiple addresses, and at least one is IPv6, need to
// sort them.
bool at_least_one_ipv6_address = base::ranges::any_of(
ip_endpoints.value(),
[](auto& e) { return e.GetFamily() == ADDRESS_FAMILY_IPV6; });
if (at_least_one_ipv6_address) {
// Sort addresses if needed. Sort could complete synchronously.
client_->GetAddressSorter()->Sort(
ip_endpoints.value(),
base::BindOnce(&DnsTask::OnSortComplete, AsWeakPtr(),
tick_clock_->NowTicks(), std::move(results),
secure_));
return;
}
}
OnSuccess(std::move(results));
}
void OnSortComplete(base::TimeTicks sort_start_time,
HostCache::Entry results,
bool secure,
bool success,
std::vector<IPEndPoint> sorted) {
if (results.legacy_addresses().has_value()) {
AddressList sorted_list;
sorted_list.endpoints() = std::move(sorted);
sorted_list.SetDnsAliases(results.legacy_addresses()->dns_aliases());
results.set_legacy_addresses(std::move(sorted_list));
} else {
DCHECK(results.ip_endpoints());
results.set_ip_endpoints(std::move(sorted));
}
if (!success) {
OnFailure(ERR_DNS_SORT_ERROR, /*allow_fallback=*/true,
results.GetOptionalTtl());
return;
}
// AddressSorter prunes unusable destinations.
if (results.legacy_addresses().value_or(AddressList()).empty() &&
(!results.ip_endpoints() || results.ip_endpoints()->empty()) &&
results.text_records().value_or(std::vector<std::string>()).empty() &&
results.hostnames().value_or(std::vector<HostPortPair>()).empty()) {
LOG(WARNING) << "Address list empty after RFC3484 sort";
OnFailure(ERR_NAME_NOT_RESOLVED, /*allow_fallback=*/true,
results.GetOptionalTtl());
return;
}
OnSuccess(std::move(results));
}
bool AnyPotentiallyFatalTransactionsRemain() {
auto is_fatal_or_empty_error = [](TransactionErrorBehavior behavior) {
return behavior == TransactionErrorBehavior::kFatalOrEmpty;
};
return base::ranges::any_of(transactions_needed_, is_fatal_or_empty_error,
&TransactionInfo::error_behavior) ||
base::ranges::any_of(transactions_in_progress_,
is_fatal_or_empty_error,
&TransactionInfo::error_behavior);
}
void CancelNonFatalTransactions() {
auto has_non_fatal_or_empty_error = [](const TransactionInfo& info) {
return info.error_behavior != TransactionErrorBehavior::kFatalOrEmpty;
};
base::EraseIf(transactions_needed_, has_non_fatal_or_empty_error);
base::EraseIf(transactions_in_progress_, has_non_fatal_or_empty_error);
}
void OnFailure(
int net_error,
bool allow_fallback,
absl::optional<base::TimeDelta> ttl = absl::nullopt,
absl::optional<DnsQueryType> failed_transaction_type = absl::nullopt) {
if (httpssvc_metrics_ && failed_transaction_type.has_value() &&
IsAddressType(failed_transaction_type.value())) {
httpssvc_metrics_->SaveAddressQueryFailure();
}
DCHECK_NE(OK, net_error);
HostCache::Entry results(net_error, HostCache::Entry::SOURCE_UNKNOWN, ttl);
// On non-fatal errors, if any potentially fatal transactions remain, need
// to defer ending the task in case any of those remaining transactions end
// with a fatal failure.
if (allow_fallback && AnyPotentiallyFatalTransactionsRemain()) {
saved_results_ = std::move(results);
saved_results_is_failure_ = true;
CancelNonFatalTransactions();
OnTransactionsFinished();
return;
}
net_log_.EndEvent(NetLogEventType::HOST_RESOLVER_MANAGER_DNS_TASK, [&] {
return NetLogDnsTaskFailedParams(net_error, failed_transaction_type, ttl,
base::OptionalOrNullptr(saved_results_));
});
// Expect this to result in destroying `this` and thus cancelling any
// remaining transactions.
delegate_->OnDnsTaskComplete(task_start_time_, allow_fallback,
std::move(results), secure_);
}
void OnSuccess(HostCache::Entry results) {
net_log_.EndEvent(NetLogEventType::HOST_RESOLVER_MANAGER_DNS_TASK,
[&] { return NetLogResults(results); });
delegate_->OnDnsTaskComplete(task_start_time_, /*allow_fallback=*/true,
std::move(results), secure_);
}
// Returns whether any transactions left to finish are of a transaction type
// in `types`. Used for logging and starting the timeout timer (see
// MaybeStartTimeoutTimer()).
bool AnyOfTypeTransactionsRemain(
std::initializer_list<DnsQueryType> types) const {
// Should only be called if some transactions are still running or waiting
// to run.
DCHECK(!transactions_needed_.empty() || !transactions_in_progress_.empty());
// Check running transactions.
if (base::ranges::find_first_of(transactions_in_progress_, types,
/*pred=*/{},
/*proj1=*/&TransactionInfo::type) !=
transactions_in_progress_.end()) {
return true;
}
// Check queued transactions, in case it ever becomes possible to get here
// without the transactions being started first.
return base::ranges::find_first_of(transactions_needed_, types, /*pred=*/{},
/*proj1=*/&TransactionInfo::type) !=
transactions_needed_.end();
}
void MaybeStartTimeoutTimer() {
// Should only be called if some transactions are still running or waiting
// to run.
DCHECK(!transactions_in_progress_.empty() || !transactions_needed_.empty());
// Timer already running.
if (timeout_timer_.IsRunning())
return;
// Always wait for address transactions.
if (AnyOfTypeTransactionsRemain({DnsQueryType::A, DnsQueryType::AAAA}))
return;
base::TimeDelta timeout_max;
int extra_time_percent = 0;
base::TimeDelta timeout_min;
if (AnyOfTypeTransactionsRemain({DnsQueryType::HTTPS})) {
DCHECK(base::FeatureList::IsEnabled(features::kUseDnsHttpsSvcb));
if (secure_) {
timeout_max = features::kUseDnsHttpsSvcbSecureExtraTimeMax.Get();
extra_time_percent =
features::kUseDnsHttpsSvcbSecureExtraTimePercent.Get();
timeout_min = features::kUseDnsHttpsSvcbSecureExtraTimeMin.Get();
} else {
timeout_max = features::kUseDnsHttpsSvcbInsecureExtraTimeMax.Get();
extra_time_percent =
features::kUseDnsHttpsSvcbInsecureExtraTimePercent.Get();
timeout_min = features::kUseDnsHttpsSvcbInsecureExtraTimeMin.Get();
}
if (timeout_max.is_zero() && extra_time_percent == 0 &&
timeout_min.is_zero()) {
timeout_max = features::kUseDnsHttpsSvcbExtraTimeAbsolute.Get();
extra_time_percent = features::kUseDnsHttpsSvcbExtraTimePercent.Get();
}
// Skip timeout for secure requests if the timeout would be a fatal
// failure.
if (secure_ && features::kUseDnsHttpsSvcbEnforceSecureResponse.Get()) {
timeout_max = base::TimeDelta();
extra_time_percent = 0;
timeout_min = base::TimeDelta();
}
} else if (AnyOfTypeTransactionsRemain(
{DnsQueryType::INTEGRITY,
DnsQueryType::HTTPS_EXPERIMENTAL})) {
DCHECK(base::FeatureList::IsEnabled(features::kDnsHttpssvc));
timeout_max = features::dns_httpssvc_experiment::GetExtraTimeAbsolute();
extra_time_percent = features::kDnsHttpssvcExtraTimePercent.Get();
} else {
// Unhandled supplemental type.
NOTREACHED();
}
base::TimeDelta timeout;
if (extra_time_percent > 0) {
base::TimeDelta total_time_for_other_transactions =
tick_clock_->NowTicks() - task_start_time_;
timeout = total_time_for_other_transactions * extra_time_percent / 100;
// Use at least 1ms to ensure timeout doesn't occur immediately in tests.
timeout = std::max(timeout, base::Milliseconds(1));
if (!timeout_max.is_zero())
timeout = std::min(timeout, timeout_max);
if (!timeout_min.is_zero())
timeout = std::max(timeout, timeout_min);
} else {
// If no relative timeout, use a non-zero min/max as timeout. If both are
// non-zero, that's not very sensible, but arbitrarily take the higher
// timeout.
timeout = std::max(timeout_min, timeout_max);
}
if (!timeout.is_zero())
timeout_timer_.Start(
FROM_HERE, timeout,
base::BindOnce(&DnsTask::OnTimeout, base::Unretained(this)));
}
bool ShouldTriggerHttpToHttpsUpgrade(const HostCache::Entry& results) {
// These values are logged to UMA. Entries should not be renumbered and
// numeric values should never be reused. Please keep in sync with
// "DNS.HttpUpgradeResult" in src/tools/metrics/histograms/enums.xml.
enum class UpgradeResult {
kUpgradeTriggered = 0,
kNoHttpsRecord = 1,
kHttpsScheme = 2,
kOtherScheme = 3,
kUpgradeDisabled = 4,
kMaxValue = kUpgradeDisabled
} upgrade_result;
if (!results.https_record_compatibility() ||
base::ranges::none_of(*results.https_record_compatibility(),
base::identity())) {
upgrade_result = UpgradeResult::kNoHttpsRecord;
} else if (GetScheme(host_) == url::kHttpsScheme ||
GetScheme(host_) == url::kWssScheme) {
upgrade_result = UpgradeResult::kHttpsScheme;
} else if (GetScheme(host_) != url::kHttpScheme &&
GetScheme(host_) != url::kWsScheme) {
// This is an unusual case because HTTPS would normally not be requested
// if the scheme is not http(s):// or ws(s)://.
upgrade_result = UpgradeResult::kOtherScheme;
} else if (!features::kUseDnsHttpsSvcbHttpUpgrade.Get()) {
upgrade_result = UpgradeResult::kUpgradeDisabled;
} else {
upgrade_result = UpgradeResult::kUpgradeTriggered;
}
UMA_HISTOGRAM_ENUMERATION("Net.DNS.DnsTask.HttpUpgrade", upgrade_result);
return upgrade_result == UpgradeResult::kUpgradeTriggered;
}
// Only keep metadata results (from HTTPS records) for appropriate schemes.
// This is needed to ensure metadata isn't included in results if the current
// Feature setup allows querying HTTPS for http:// or ws:// but doesn't enable
// scheme upgrade to error out on finding an HTTPS record.
//
// TODO(crbug.com/1206455): Remove once all requests that query HTTPS will
// either allow metadata results or error out.
void HideMetadataResultsIfNotDesired(HostCache::Entry& results) {
if (GetScheme(host_) == url::kHttpsScheme ||
GetScheme(host_) == url::kWssScheme) {
return;
}
results.ClearMetadatas();
}
raw_ptr<DnsClient> client_;
absl::variant<url::SchemeHostPort, std::string> host_;
base::SafeRef<ResolveContext> resolve_context_;
// Whether lookups in this DnsTask should occur using DoH or plaintext.
const bool secure_;
const SecureDnsMode secure_dns_mode_;
// The listener to the results of this DnsTask.
raw_ptr<Delegate> delegate_;
const NetLogWithSource net_log_;
bool any_transaction_started_ = false;
base::circular_deque<TransactionInfo> transactions_needed_;
// Active transactions have iterators pointing to their entry in this set, so
// individual entries should not be modified or removed until completion or
// cancellation of the transaction.
std::set<TransactionInfo> transactions_in_progress_;
absl::optional<HostCache::Entry> saved_results_;
bool saved_results_is_failure_ = false;
raw_ptr<const base::TickClock> tick_clock_;
base::TimeTicks task_start_time_;
HttpssvcExperimentDomainCache httpssvc_domain_cache_;
absl::optional<HttpssvcMetrics> httpssvc_metrics_;
// Timer for task timeout. Generally started after completion of address
// transactions to allow aborting experimental or supplemental transactions.
base::OneShotTimer timeout_timer_;
// If true, there are still significant fallback options available if this
// task completes unsuccessfully. Used as a signal that underlying
// transactions should timeout more quickly.
bool fallback_available_;
};
//-----------------------------------------------------------------------------
struct HostResolverManager::JobKey {
explicit JobKey(ResolveContext* resolve_context)
: resolve_context(resolve_context->AsSafeRef()) {}
bool operator<(const JobKey& other) const {
return std::forward_as_tuple(query_types.ToEnumBitmask(), flags, source,
secure_dns_mode, &*resolve_context, host,
network_isolation_key) <
std::forward_as_tuple(other.query_types.ToEnumBitmask(), other.flags,
other.source, other.secure_dns_mode,
&*other.resolve_context, other.host,
other.network_isolation_key);
}
bool operator==(const JobKey& other) const {
return !(*this < other || other < *this);
}
absl::variant<url::SchemeHostPort, std::string> host;
NetworkIsolationKey network_isolation_key;
DnsQueryTypeSet query_types;
HostResolverFlags flags;
HostResolverSource source;
SecureDnsMode secure_dns_mode;
base::SafeRef<ResolveContext> resolve_context;
HostCache::Key ToCacheKey(bool secure) const {
if (query_types.Size() != 1) {
// This function will produce identical cache keys for `JobKey` structs
// that differ only in their (non-singleton) `query_types` fields. When we
// enable new query types, this behavior could lead to subtle bugs. That
// is why the following DCHECK restricts the allowable query types.
DCHECK(Difference(query_types,
DnsQueryTypeSet(DnsQueryType::A, DnsQueryType::AAAA,
DnsQueryType::HTTPS,
DnsQueryType::HTTPS_EXPERIMENTAL,
DnsQueryType::INTEGRITY))
.Empty());
}
const DnsQueryType query_type_for_key = query_types.Size() == 1
? *query_types.begin()
: DnsQueryType::UNSPECIFIED;
HostCache::Key key(host, query_type_for_key, flags, source,
network_isolation_key);
key.secure = secure;
return key;
}
NetworkChangeNotifier::NetworkHandle GetTargetNetwork() const {
return resolve_context->GetTargetNetwork();
}
};
// Aggregates all Requests for the same Key. Dispatched via
// PrioritizedDispatcher.
class HostResolverManager::Job : public PrioritizedDispatcher::Job,
public HostResolverManager::DnsTask::Delegate {
public:
// Creates new job for |key| where |request_net_log| is bound to the
// request that spawned it.
Job(const base::WeakPtr<HostResolverManager>& resolver,
JobKey key,
ResolveHostParameters::CacheUsage cache_usage,
HostCache* host_cache,
std::deque<TaskType> tasks,
RequestPriority priority,
scoped_refptr<base::TaskRunner> proc_task_runner,
const NetLogWithSource& source_net_log,
const base::TickClock* tick_clock)
: resolver_(resolver),
key_(std::move(key)),
cache_usage_(cache_usage),
host_cache_(host_cache),
tasks_(tasks),
priority_tracker_(priority),
proc_task_runner_(std::move(proc_task_runner)),
tick_clock_(tick_clock),
net_log_(
NetLogWithSource::Make(source_net_log.net_log(),
NetLogSourceType::HOST_RESOLVER_IMPL_JOB)) {
source_net_log.AddEvent(NetLogEventType::HOST_RESOLVER_MANAGER_CREATE_JOB);
net_log_.BeginEvent(NetLogEventType::HOST_RESOLVER_MANAGER_JOB, [&] {
return NetLogJobCreationParams(source_net_log.source());
});
}
~Job() override {
bool was_queued = is_queued();
bool was_running = is_running();
// Clean up now for nice NetLog.
Finish();
if (was_running) {
// This Job was destroyed while still in flight.
net_log_.EndEventWithNetErrorCode(
NetLogEventType::HOST_RESOLVER_MANAGER_JOB, ERR_ABORTED);
} else if (was_queued) {
// Job was cancelled before it could run.
// TODO(szym): is there any benefit in having this distinction?
net_log_.AddEvent(NetLogEventType::CANCELLED);
net_log_.EndEvent(NetLogEventType::HOST_RESOLVER_MANAGER_JOB);
}
// else CompleteRequests logged EndEvent.
while (!requests_.empty()) {
// Log any remaining Requests as cancelled.
RequestImpl* req = requests_.head()->value();
req->RemoveFromList();
CHECK(key_ == req->GetJobKey());
req->OnJobCancelled(key_);
}
}
// Add this job to the dispatcher. If "at_head" is true, adds at the front
// of the queue.
void Schedule(bool at_head) {
DCHECK(!is_queued());
PrioritizedDispatcher::Handle handle;
DCHECK(dispatched_);
if (!at_head) {
handle = resolver_->dispatcher_->Add(this, priority());
} else {
handle = resolver_->dispatcher_->AddAtHead(this, priority());
}
// The dispatcher could have started |this| in the above call to Add, which
// could have called Schedule again. In that case |handle| will be null,
// but |handle_| may have been set by the other nested call to Schedule.
if (!handle.is_null()) {
DCHECK(handle_.is_null());
handle_ = handle;
}
}
void AddRequest(RequestImpl* request) {
// Job currently assumes a 1:1 correspondence between ResolveContext and
// HostCache. Since the ResolveContext is part of the JobKey, any request
// added to any existing Job should share the same HostCache.
DCHECK_EQ(host_cache_, request->host_cache());
// TODO(crbug.com/1206799): Check equality of whole host once Jobs are
// separated by scheme/port.
DCHECK_EQ(GetHostname(key_.host), GetHostname(request->request_host()));
request->AssignJob(weak_ptr_factory_.GetSafeRef());
priority_tracker_.Add(request->priority());
request->source_net_log().AddEventReferencingSource(
NetLogEventType::HOST_RESOLVER_MANAGER_JOB_ATTACH, net_log_.source());
net_log_.AddEvent(NetLogEventType::HOST_RESOLVER_MANAGER_JOB_REQUEST_ATTACH,
[&] {
return NetLogJobAttachParams(
request->source_net_log().source(), priority());
});
if (!request->parameters().is_speculative)
had_non_speculative_request_ = true;
requests_.Append(request);
UpdatePriority();
}
void ChangeRequestPriority(RequestImpl* req, RequestPriority priority) {
// TODO(crbug.com/1206799): Check equality of whole host once Jobs are
// separated by scheme/port.
DCHECK_EQ(GetHostname(key_.host), GetHostname(req->request_host()));
priority_tracker_.Remove(req->priority());
req->set_priority(priority);
priority_tracker_.Add(req->priority());
UpdatePriority();
}
// Detach cancelled request. If it was the last active Request, also finishes
// this Job.
void CancelRequest(RequestImpl* request) {
// TODO(crbug.com/1206799): Check equality of whole host once Jobs are
// separated by scheme/port.
DCHECK_EQ(GetHostname(key_.host), GetHostname(request->request_host()));
DCHECK(!requests_.empty());
priority_tracker_.Remove(request->priority());
net_log_.AddEvent(NetLogEventType::HOST_RESOLVER_MANAGER_JOB_REQUEST_DETACH,
[&] {
return NetLogJobAttachParams(
request->source_net_log().source(), priority());
});
if (num_active_requests() > 0) {
UpdatePriority();
request->RemoveFromList();
} else {
// If we were called from a Request's callback within CompleteRequests,
// that Request could not have been cancelled, so num_active_requests()
// could not be 0. Therefore, we are not in CompleteRequests().
CompleteRequestsWithError(ERR_DNS_REQUEST_CANCELLED);
}
}
// Called from AbortJobsWithoutTargetNetwork(). Completes all requests and
// destroys the job. This currently assumes the abort is due to a network
// change.
// TODO This should not delete |this|.
void Abort() {
CompleteRequestsWithError(ERR_NETWORK_CHANGED);
}
// Gets a closure that will abort an insecure DnsTask (see
// AbortInsecureDnsTask()) iff |this| is still valid. Useful if aborting a
// list of Jobs as some may be cancelled while aborting others.
base::OnceClosure GetAbortInsecureDnsTaskClosure(int error,
bool fallback_only) {
return base::BindOnce(&Job::AbortInsecureDnsTask,
weak_ptr_factory_.GetWeakPtr(), error, fallback_only);
}
// Aborts or removes any current/future insecure DnsTasks if a ProcTask is
// available for fallback. If no fallback is available and |fallback_only| is
// false, a job that is currently running an insecure DnsTask will be
// completed with |error|.
void AbortInsecureDnsTask(int error, bool fallback_only) {
bool has_proc_fallback =
std::find(tasks_.begin(), tasks_.end(), TaskType::PROC) != tasks_.end();
if (has_proc_fallback) {
for (auto it = tasks_.begin(); it != tasks_.end();) {
if (*it == TaskType::DNS)
it = tasks_.erase(it);
else
++it;
}
}
if (dns_task_ && !dns_task_->secure()) {
if (has_proc_fallback) {
KillDnsTask();
dns_task_error_ = OK;
RunNextTask();
} else if (!fallback_only) {
CompleteRequestsWithError(error);
}
}
}
// Called by HostResolverManager when this job is evicted due to queue
// overflow. Completes all requests and destroys the job. The job could have
// waiting requests that will receive completion callbacks, so cleanup
// asynchronously to avoid reentrancy.
void OnEvicted() {
DCHECK(!is_running());
DCHECK(is_queued());
handle_.Reset();
net_log_.AddEvent(NetLogEventType::HOST_RESOLVER_MANAGER_JOB_EVICTED);
// This signals to CompleteRequests that parts of this job never ran.
// Job must be saved in |resolver_| to be completed asynchronously.
// Otherwise the job will be destroyed with requests silently cancelled
// before completion runs.
DCHECK(self_iterator_);
base::SequencedTaskRunnerHandle::Get()->PostTask(
FROM_HERE, base::BindOnce(&Job::CompleteRequestsWithError,
weak_ptr_factory_.GetWeakPtr(),
ERR_HOST_RESOLVER_QUEUE_TOO_LARGE));
}
// Attempts to serve the job from HOSTS. Returns true if succeeded and
// this Job was destroyed.
bool ServeFromHosts() {
DCHECK_GT(num_active_requests(), 0u);
absl::optional<HostCache::Entry> results = resolver_->ServeFromHosts(
GetHostname(key_.host), key_.query_types,
key_.flags & HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6, tasks_);
if (results) {
// This will destroy the Job.
CompleteRequests(results.value(), base::TimeDelta(),
true /* allow_cache */, true /* secure */);
return true;
}
return false;
}
void OnAddedToJobMap(JobMap::iterator iterator) {
DCHECK(!self_iterator_);
DCHECK(iterator != resolver_->jobs_.end());
self_iterator_ = iterator;
}
void OnRemovedFromJobMap() {
DCHECK(self_iterator_);
self_iterator_ = absl::nullopt;
}
void RunNextTask() {
// If there are no tasks left to try, cache any stored results and complete
// the request with the last stored result. All stored results should be
// errors.
if (tasks_.empty()) {
// If there are no stored results, complete with an error.
if (completion_results_.size() == 0) {
CompleteRequestsWithError(ERR_NAME_NOT_RESOLVED);
return;
}
// Cache all but the last result here. The last result will be cached
// as part of CompleteRequests.
for (size_t i = 0; i < completion_results_.size() - 1; ++i) {
const auto& result = completion_results_[i];
DCHECK_NE(OK, result.entry.error());
MaybeCacheResult(result.entry, result.ttl, result.secure);
}
const auto& last_result = completion_results_.back();
DCHECK_NE(OK, last_result.entry.error());
CompleteRequests(last_result.entry, last_result.ttl,
true /* allow_cache */, last_result.secure);
return;
}
TaskType next_task = tasks_.front();
// Schedule insecure DnsTasks and ProcTasks with the dispatcher.
if (!dispatched_ &&
(next_task == TaskType::DNS || next_task == TaskType::PROC ||
next_task == TaskType::MDNS)) {
dispatched_ = true;
job_running_ = false;
Schedule(false);
DCHECK(is_running() || is_queued());
// Check for queue overflow.
PrioritizedDispatcher& dispatcher = *resolver_->dispatcher_;
if (dispatcher.num_queued_jobs() > resolver_->max_queued_jobs_) {
Job* evicted = static_cast<Job*>(dispatcher.EvictOldestLowest());
DCHECK(evicted);
evicted->OnEvicted();
}
return;
}
if (start_time_ == base::TimeTicks()) {
net_log_.AddEvent(NetLogEventType::HOST_RESOLVER_MANAGER_JOB_STARTED);
start_time_ = tick_clock_->NowTicks();
}
tasks_.pop_front();
job_running_ = true;
switch (next_task) {
case TaskType::PROC:
StartProcTask();
break;
case TaskType::DNS:
StartDnsTask(false /* secure */);
break;
case TaskType::SECURE_DNS:
StartDnsTask(true /* secure */);
break;
case TaskType::MDNS:
StartMdnsTask();
break;
case TaskType::INSECURE_CACHE_LOOKUP:
InsecureCacheLookup();
break;
case TaskType::SECURE_CACHE_LOOKUP:
case TaskType::CACHE_LOOKUP:
case TaskType::CONFIG_PRESET:
// These task types should have been handled synchronously in
// ResolveLocally() prior to Job creation.
NOTREACHED();
break;
}
}
const JobKey& key() const { return key_; }
bool is_queued() const { return !handle_.is_null(); }
bool is_running() const { return job_running_; }
bool HasTargetNetwork() const {
return key_.GetTargetNetwork() !=
NetworkChangeNotifier::kInvalidNetworkHandle;
}
private:
base::Value NetLogJobCreationParams(const NetLogSource& source) {
base::Value::Dict dict;
source.AddToEventParameters(dict);
dict.Set("host", ToLogStringValue(key_.host));
base::Value::List query_types_list;
for (DnsQueryType query_type : key_.query_types)
query_types_list.Append(kDnsQueryTypes.at(query_type));
dict.Set("dns_query_types", std::move(query_types_list));
dict.Set("secure_dns_mode", base::strict_cast<int>(key_.secure_dns_mode));
dict.Set("network_isolation_key",
key_.network_isolation_key.ToDebugString());
return base::Value(std::move(dict));
}
void Finish() {
if (is_running()) {
// Clean up but don't run any callbacks.
proc_task_ = nullptr;
KillDnsTask();
mdns_task_ = nullptr;
job_running_ = false;
if (dispatched_) {
// Job should only ever occupy one slot after any tasks that may have
// required additional slots, e.g. DnsTask, have been killed, and
// additional slots are expected to be vacated as part of killing the
// task.
DCHECK_EQ(1, num_occupied_job_slots_);
if (resolver_)
resolver_->dispatcher_->OnJobFinished();
num_occupied_job_slots_ = 0;
}
} else if (is_queued()) {
DCHECK(dispatched_);
if (resolver_)
resolver_->dispatcher_->Cancel(handle_);
handle_.Reset();
}
}
void KillDnsTask() {
if (dns_task_) {
if (dispatched_) {
while (num_occupied_job_slots_ > 1 || is_queued()) {
ReduceByOneJobSlot();
}
}
dns_task_.reset();
}
}
// Reduce the number of job slots occupied and queued in the dispatcher by
// one. If the next Job slot is queued in the dispatcher, cancels the queued
// job. Otherwise, the next Job has been started by the PrioritizedDispatcher,
// so signals it is complete.
void ReduceByOneJobSlot() {
DCHECK_GE(num_occupied_job_slots_, 1);
DCHECK(dispatched_);
if (is_queued()) {
if (resolver_)
resolver_->dispatcher_->Cancel(handle_);
handle_.Reset();
} else if (num_occupied_job_slots_ > 1) {
if (resolver_)
resolver_->dispatcher_->OnJobFinished();
--num_occupied_job_slots_;
} else {
NOTREACHED();
}
}
void UpdatePriority() {
if (is_queued())
handle_ = resolver_->dispatcher_->ChangePriority(handle_, priority());
}
// PrioritizedDispatcher::Job:
void Start() override {
handle_.Reset();
++num_occupied_job_slots_;
if (num_occupied_job_slots_ >= 2) {
if (!dns_task_) {
resolver_->dispatcher_->OnJobFinished();
return;
}
StartNextDnsTransaction();
DCHECK_EQ(num_occupied_job_slots_,
dns_task_->num_transactions_in_progress());
if (dns_task_->num_additional_transactions_needed() >= 1) {
Schedule(true);
}
return;
}
DCHECK(!is_running());
DCHECK(!tasks_.empty());
RunNextTask();
// Caution: Job::Start must not complete synchronously.
}
// TODO(szym): Since DnsTransaction does not consume threads, we can increase
// the limits on |dispatcher_|. But in order to keep the number of
// ThreadPool threads low, we will need to use an "inner"
// PrioritizedDispatcher with tighter limits.
void StartProcTask() {
DCHECK(dispatched_);
DCHECK_EQ(1, num_occupied_job_slots_);
DCHECK(HasAddressType(key_.query_types));
proc_task_ = std::make_unique<ProcTask>(
std::string(GetHostname(key_.host)),
HostResolver::DnsQueryTypeSetToAddressFamily(key_.query_types),
key_.flags, resolver_->proc_params_,
base::BindOnce(&Job::OnProcTaskComplete, base::Unretained(this),
tick_clock_->NowTicks()),
proc_task_runner_, net_log_, tick_clock_, key_.GetTargetNetwork());
// Start() could be called from within Resolve(), hence it must NOT directly
// call OnProcTaskComplete, for example, on synchronous failure.
proc_task_->Start();
}
// Called by ProcTask when it completes.
void OnProcTaskComplete(base::TimeTicks start_time,
int net_error,
const AddressList& addr_list) {
DCHECK(proc_task_);
if (dns_task_error_ != OK && net_error == OK) {
// This ProcTask was a fallback resolution after a failed insecure
// DnsTask.
resolver_->OnFallbackResolve(dns_task_error_);
}
if (ContainsIcannNameCollisionIp(addr_list.endpoints()))
net_error = ERR_ICANN_NAME_COLLISION;
base::TimeDelta ttl = base::Seconds(kNegativeCacheEntryTTLSeconds);
if (net_error == OK)
ttl = base::Seconds(kCacheEntryTTLSeconds);
// Source unknown because the system resolver could have gotten it from a
// hosts file, its own cache, a DNS lookup or somewhere else.
// Don't store the |ttl| in cache since it's not obtained from the server.
CompleteRequests(
HostCache::Entry(net_error,
net_error == OK
? AddressList::CopyWithPort(addr_list, 0)
: AddressList(),
HostCache::Entry::SOURCE_UNKNOWN),
ttl, true /* allow_cache */, false /* secure */);
}
void InsecureCacheLookup() {
// Insecure cache lookups for requests allowing stale results should have
// occurred prior to Job creation.
DCHECK(cache_usage_ != ResolveHostParameters::CacheUsage::STALE_ALLOWED);
absl::optional<HostCache::EntryStaleness> stale_info;
absl::optional<HostCache::Entry> resolved = resolver_->MaybeServeFromCache(
host_cache_, key_.ToCacheKey(/*secure=*/false), cache_usage_,
false /* ignore_secure */, net_log_, &stale_info);
if (resolved) {
DCHECK(stale_info);
DCHECK(!stale_info.value().is_stale());
CompleteRequestsWithoutCache(resolved.value(), std::move(stale_info));
} else {
RunNextTask();
}
}
void StartDnsTask(bool secure) {
DCHECK_EQ(secure, !dispatched_);
DCHECK_EQ(dispatched_ ? 1 : 0, num_occupied_job_slots_);
DCHECK(!resolver_->ShouldForceSystemResolverDueToTestOverride());
// Need to create the task even if we're going to post a failure instead of
// running it, as a "started" job needs a task to be properly cleaned up.
dns_task_ = std::make_unique<DnsTask>(
resolver_->dns_client_.get(), key_.host, key_.query_types,
&*key_.resolve_context, secure, key_.secure_dns_mode, this, net_log_,
tick_clock_, !tasks_.empty() /* fallback_available */);
dns_task_->StartNextTransaction();
// Schedule a second transaction, if needed. DoH queries can bypass the
// dispatcher and start all of their transactions immediately.
if (secure) {
while (dns_task_->num_additional_transactions_needed() >= 1)
dns_task_->StartNextTransaction();
DCHECK_EQ(dns_task_->num_additional_transactions_needed(), 0);
} else if (dns_task_->num_additional_transactions_needed() >= 1) {
Schedule(true);
}
}
void StartNextDnsTransaction() {
DCHECK(dns_task_);
DCHECK_EQ(dns_task_->secure(), !dispatched_);
DCHECK(!dispatched_ || num_occupied_job_slots_ ==
dns_task_->num_transactions_in_progress() + 1);
DCHECK_GE(dns_task_->num_additional_transactions_needed(), 1);
dns_task_->StartNextTransaction();
}
// Called if DnsTask fails. It is posted from StartDnsTask, so Job may be
// deleted before this callback. In this case dns_task is deleted as well,
// so we use it as indicator whether Job is still valid.
void OnDnsTaskFailure(const base::WeakPtr<DnsTask>& dns_task,
base::TimeDelta duration,
bool allow_fallback,
const HostCache::Entry& failure_results,
bool secure) {
DCHECK_NE(OK, failure_results.error());
if (key_.secure_dns_mode == SecureDnsMode::kSecure) {
DCHECK(secure);
UMA_HISTOGRAM_LONG_TIMES_100(
"Net.DNS.SecureDnsTask.DnsModeSecure.FailureTime", duration);
} else if (key_.secure_dns_mode == SecureDnsMode::kAutomatic && secure) {
UMA_HISTOGRAM_LONG_TIMES_100(
"Net.DNS.SecureDnsTask.DnsModeAutomatic.FailureTime", duration);
} else {
UMA_HISTOGRAM_LONG_TIMES_100("Net.DNS.InsecureDnsTask.FailureTime",
duration);
}
if (!dns_task)
return;
UMA_HISTOGRAM_LONG_TIMES_100("Net.DNS.JobQueueTime.Failure",
total_transaction_time_queued_);
// If one of the fallback tasks doesn't complete the request, store a result
// to use during request completion.
base::TimeDelta ttl =
failure_results.has_ttl() ? failure_results.ttl() : base::Seconds(0);
completion_results_.push_back({failure_results, ttl, secure});
dns_task_error_ = failure_results.error();
KillDnsTask();
if (!allow_fallback)
tasks_.clear();
RunNextTask();
}
// HostResolverManager::DnsTask::Delegate implementation:
void OnDnsTaskComplete(base::TimeTicks start_time,
bool allow_fallback,
HostCache::Entry results,
bool secure) override {
DCHECK(dns_task_);
// Tasks containing address queries are only considered successful overall
// if they find address results. However, DnsTask may claim success if any
// transaction, e.g. a supplemental HTTPS transaction, finds results.
DCHECK(!key_.query_types.Has(DnsQueryType::UNSPECIFIED));
if (HasAddressType(key_.query_types) && results.error() == OK &&
(!results.legacy_addresses() ||
results.legacy_addresses().value().empty()) &&
(!results.ip_endpoints() || results.ip_endpoints()->empty())) {
results.set_error(ERR_NAME_NOT_RESOLVED);
}
base::TimeDelta duration = tick_clock_->NowTicks() - start_time;
if (results.error() != OK) {
OnDnsTaskFailure(dns_task_->AsWeakPtr(), duration, allow_fallback,
results, secure);
return;
}
UMA_HISTOGRAM_LONG_TIMES_100("Net.DNS.DnsTask.SuccessTime", duration);
UMA_HISTOGRAM_LONG_TIMES_100("Net.DNS.JobQueueTime.Success",
total_transaction_time_queued_);
// Reset the insecure DNS failure counter if an insecure DnsTask completed
// successfully.
if (!secure)
resolver_->dns_client_->ClearInsecureFallbackFailures();
base::TimeDelta bounded_ttl =
std::max(results.ttl(), base::Seconds(kMinimumTTLSeconds));
if ((results.legacy_addresses() &&
ContainsIcannNameCollisionIp(
results.legacy_addresses().value().endpoints())) ||
(results.ip_endpoints() &&
ContainsIcannNameCollisionIp(*results.ip_endpoints()))) {
CompleteRequestsWithError(ERR_ICANN_NAME_COLLISION);
return;
}
CompleteRequests(results, bounded_ttl, true /* allow_cache */, secure);
}
void OnIntermediateTransactionsComplete() override {
if (dispatched_) {
DCHECK_GE(num_occupied_job_slots_,
dns_task_->num_transactions_in_progress());
int unused_slots =
num_occupied_job_slots_ - dns_task_->num_transactions_in_progress();
// Reuse vacated slots for any remaining transactions.
while (unused_slots > 0 &&
dns_task_->num_additional_transactions_needed() > 0) {
dns_task_->StartNextTransaction();
--unused_slots;
}
// If all remaining transactions found a slot, no more needed from the
// dispatcher.
if (is_queued() && dns_task_->num_additional_transactions_needed() == 0) {
resolver_->dispatcher_->Cancel(handle_);
handle_.Reset();
}
// Relinquish any remaining extra slots.
while (unused_slots > 0) {
ReduceByOneJobSlot();
--unused_slots;
}
} else if (dns_task_->num_additional_transactions_needed() >= 1) {
dns_task_->StartNextTransaction();
}
}
void AddTransactionTimeQueued(base::TimeDelta time_queued) override {
total_transaction_time_queued_ += time_queued;
}
void StartMdnsTask() {
// No flags are supported for MDNS except
// HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6 (which is not actually an
// input flag).
DCHECK_EQ(0, key_.flags & ~HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6);
MDnsClient* client = nullptr;
int rv = resolver_->GetOrCreateMdnsClient(&client);
mdns_task_ = std::make_unique<HostResolverMdnsTask>(
client, std::string{GetHostname(key_.host)}, key_.query_types);
if (rv == OK) {
mdns_task_->Start(
base::BindOnce(&Job::OnMdnsTaskComplete, base::Unretained(this)));
} else {
// Could not create an mDNS client. Since we cannot complete synchronously
// from here, post a failure without starting the task.
base::SequencedTaskRunnerHandle::Get()->PostTask(
FROM_HERE, base::BindOnce(&Job::OnMdnsImmediateFailure,
weak_ptr_factory_.GetWeakPtr(), rv));
}
}
void OnMdnsTaskComplete() {
DCHECK(mdns_task_);
// TODO(crbug.com/846423): Consider adding MDNS-specific logging.
HostCache::Entry results = mdns_task_->GetResults();
if (results.legacy_addresses() &&
ContainsIcannNameCollisionIp(
results.legacy_addresses().value().endpoints())) {
CompleteRequestsWithError(ERR_ICANN_NAME_COLLISION);
} else {
// MDNS uses a separate cache, so skip saving result to cache.
// TODO(crbug.com/926300): Consider merging caches.
CompleteRequestsWithoutCache(results, absl::nullopt /* stale_info */);
}
}
void OnMdnsImmediateFailure(int rv) {
DCHECK(mdns_task_);
DCHECK_NE(OK, rv);
CompleteRequestsWithError(rv);
}
void RecordJobHistograms(int error) {
// Used in UMA_HISTOGRAM_ENUMERATION. Do not renumber entries or reuse
// deprecated values.
enum Category {
RESOLVE_SUCCESS = 0,
RESOLVE_FAIL = 1,
RESOLVE_SPECULATIVE_SUCCESS = 2,
RESOLVE_SPECULATIVE_FAIL = 3,
RESOLVE_ABORT = 4,
RESOLVE_SPECULATIVE_ABORT = 5,
RESOLVE_MAX, // Bounding value.
};
Category category = RESOLVE_MAX; // Illegal value for later DCHECK only.
base::TimeDelta duration = tick_clock_->NowTicks() - start_time_;
if (error == OK) {
if (had_non_speculative_request_) {
category = RESOLVE_SUCCESS;
UMA_HISTOGRAM_LONG_TIMES_100("Net.DNS.ResolveSuccessTime", duration);
} else {
category = RESOLVE_SPECULATIVE_SUCCESS;
}
} else if (error == ERR_NETWORK_CHANGED ||
error == ERR_HOST_RESOLVER_QUEUE_TOO_LARGE) {
category = had_non_speculative_request_ ? RESOLVE_ABORT
: RESOLVE_SPECULATIVE_ABORT;
} else {
if (had_non_speculative_request_) {
category = RESOLVE_FAIL;
UMA_HISTOGRAM_LONG_TIMES_100("Net.DNS.ResolveFailureTime", duration);
} else {
category = RESOLVE_SPECULATIVE_FAIL;
}
}
DCHECK_LT(static_cast<int>(category),
static_cast<int>(RESOLVE_MAX)); // Be sure it was set.
UMA_HISTOGRAM_ENUMERATION("Net.DNS.ResolveCategory", category, RESOLVE_MAX);
if (category == RESOLVE_FAIL ||
(start_time_ != base::TimeTicks() && category == RESOLVE_ABORT)) {
if (duration < base::Milliseconds(10))
base::UmaHistogramSparse("Net.DNS.ResolveError.Fast", std::abs(error));
else
base::UmaHistogramSparse("Net.DNS.ResolveError.Slow", std::abs(error));
}
if (had_non_speculative_request_) {
UmaHistogramMediumTimes(
base::StringPrintf(
"Net.DNS.SecureDnsMode.%s.ResolveTime",
SecureDnsModeToString(key_.secure_dns_mode).c_str()),
duration);
}
}
void MaybeCacheResult(const HostCache::Entry& results,
base::TimeDelta ttl,
bool secure) {
// If the request did not complete, don't cache it.
if (!results.did_complete())
return;
resolver_->CacheResult(host_cache_, key_.ToCacheKey(secure), results, ttl);
}
// Performs Job's last rites. Completes all Requests. Deletes this.
//
// If not |allow_cache|, result will not be stored in the host cache, even if
// result would otherwise allow doing so. Update the key to reflect |secure|,
// which indicates whether or not the result was obtained securely.
void CompleteRequests(const HostCache::Entry& results,
base::TimeDelta ttl,
bool allow_cache,
bool secure) {
CHECK(resolver_.get());
// This job must be removed from resolver's |jobs_| now to make room for a
// new job with the same key in case one of the OnComplete callbacks decides
// to spawn one. Consequently, if the job was owned by |jobs_|, the job
// deletes itself when CompleteRequests is done.
std::unique_ptr<Job> self_deleter;
if (self_iterator_)
self_deleter = resolver_->RemoveJob(self_iterator_.value());
Finish();
if (results.error() == ERR_DNS_REQUEST_CANCELLED) {
net_log_.AddEvent(NetLogEventType::CANCELLED);
net_log_.EndEventWithNetErrorCode(
NetLogEventType::HOST_RESOLVER_MANAGER_JOB, OK);
return;
}
net_log_.EndEventWithNetErrorCode(
NetLogEventType::HOST_RESOLVER_MANAGER_JOB, results.error());
// Handle all caching before completing requests as completing requests may
// start new requests that rely on cached results.
if (allow_cache)
MaybeCacheResult(results, ttl, secure);
RecordJobHistograms(results.error());
// Complete all of the requests that were attached to the job and
// detach them.
while (!requests_.empty()) {
RequestImpl* req = requests_.head()->value();
req->RemoveFromList();
CHECK(key_ == req->GetJobKey());
if (results.error() == OK && !req->parameters().is_speculative) {
req->set_results(
results.CopyWithDefaultPort(GetPort(req->request_host())));
}
req->OnJobCompleted(
key_, results.error(),
secure && results.error() != OK /* is_secure_network_error */);
// Check if the resolver was destroyed as a result of running the
// callback. If it was, we could continue, but we choose to bail.
if (!resolver_.get())
return;
}
// TODO(crbug.com/1200908): Call StartBootstrapFollowup() if any of the
// requests have the Bootstrap policy. Note: A naive implementation could
// cause an infinite loop if the bootstrap result has TTL=0.
}
void CompleteRequestsWithoutCache(
const HostCache::Entry& results,
absl::optional<HostCache::EntryStaleness> stale_info) {
// Record the stale_info for all non-speculative requests, if it exists.
if (stale_info) {
for (auto* node = requests_.head(); node != requests_.end();
node = node->next()) {
if (!node->value()->parameters().is_speculative)
node->value()->set_stale_info(stale_info.value());
}
}
CompleteRequests(results, base::TimeDelta(), false /* allow_cache */,
false /* secure */);
}
// Convenience wrapper for CompleteRequests in case of failure.
void CompleteRequestsWithError(int net_error) {
DCHECK_NE(OK, net_error);
CompleteRequests(
HostCache::Entry(net_error, HostCache::Entry::SOURCE_UNKNOWN),
base::TimeDelta(), true /* allow_cache */, false /* secure */);
}
RequestPriority priority() const override {
return priority_tracker_.highest_priority();
}
// Number of non-canceled requests in |requests_|.
size_t num_active_requests() const { return priority_tracker_.total_count(); }
base::WeakPtr<HostResolverManager> resolver_;
const JobKey key_;
const ResolveHostParameters::CacheUsage cache_usage_;
// TODO(crbug.com/969847): Consider allowing requests within a single Job to
// have different HostCaches.
const raw_ptr<HostCache> host_cache_;
struct CompletionResult {
const HostCache::Entry entry;
base::TimeDelta ttl;
bool secure;
};
// Results to use in last-ditch attempt to complete request.
std::vector<CompletionResult> completion_results_;
// The sequence of tasks to run in this Job. Tasks may be aborted and removed
// from the sequence, but otherwise the tasks will run in order until a
// successful result is found.
std::deque<TaskType> tasks_;
// Whether the job is running.
bool job_running_ = false;
// Tracks the highest priority across |requests_|.
PriorityTracker priority_tracker_;
// Task runner used for HostResolverProc.
scoped_refptr<base::TaskRunner> proc_task_runner_;
bool had_non_speculative_request_ = false;
// Number of slots occupied by this Job in |dispatcher_|. Should be 0 when
// the job is not registered with any dispatcher.
int num_occupied_job_slots_ = 0;
// True once this Job has been sent to `resolver_->dispatcher_`.
bool dispatched_ = false;
// Result of DnsTask.
int dns_task_error_ = OK;
raw_ptr<const base::TickClock> tick_clock_;
base::TimeTicks start_time_;
NetLogWithSource net_log_;
// Resolves the host using a HostResolverProc.
std::unique_ptr<ProcTask> proc_task_;
// Resolves the host using a DnsTransaction.
std::unique_ptr<DnsTask> dns_task_;
// Resolves the host using MDnsClient.
std::unique_ptr<HostResolverMdnsTask> mdns_task_;
// All Requests waiting for the result of this Job. Some can be canceled.
base::LinkedList<RequestImpl> requests_;
// A handle used for |dispatcher_|.
PrioritizedDispatcher::Handle handle_;
// Iterator to |this| in the JobMap. |nullopt| if not owned by the JobMap.
absl::optional<JobMap::iterator> self_iterator_;
base::TimeDelta total_transaction_time_queued_;
base::WeakPtrFactory<Job> weak_ptr_factory_{this};
};
//-----------------------------------------------------------------------------
HostResolverManager::HostResolverManager(
const HostResolver::ManagerOptions& options,
SystemDnsConfigChangeNotifier* system_dns_config_notifier,
NetLog* net_log)
: HostResolverManager(PassKey(),
options,
system_dns_config_notifier,
NetworkChangeNotifier::kInvalidNetworkHandle,
net_log) {}
HostResolverManager::HostResolverManager(
base::PassKey<HostResolverManager>,
const HostResolver::ManagerOptions& options,
SystemDnsConfigChangeNotifier* system_dns_config_notifier,
NetworkChangeNotifier::NetworkHandle target_network,
NetLog* net_log)
: proc_params_(nullptr, options.max_system_retry_attempts),
net_log_(net_log),
system_dns_config_notifier_(system_dns_config_notifier),
target_network_(target_network),
check_ipv6_on_wifi_(options.check_ipv6_on_wifi),
tick_clock_(base::DefaultTickClock::GetInstance()) {
PrioritizedDispatcher::Limits job_limits = GetDispatcherLimits(options);
dispatcher_ = std::make_unique<PrioritizedDispatcher>(job_limits);
max_queued_jobs_ = job_limits.total_jobs * 100u;
DCHECK_GE(dispatcher_->num_priorities(), static_cast<size_t>(NUM_PRIORITIES));
proc_task_runner_ = base::ThreadPool::CreateTaskRunner(
{base::MayBlock(), priority_mode.Get(),
base::TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN});
#if BUILDFLAG(IS_WIN)
EnsureWinsockInit();
#endif
#if (BUILDFLAG(IS_POSIX) && !BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID)) || \
BUILDFLAG(IS_FUCHSIA)
RunLoopbackProbeJob();
#endif
// Network-bound HostResolverManagers don't need to act on network changes.
if (!IsBoundToNetwork()) {
NetworkChangeNotifier::AddIPAddressObserver(this);
NetworkChangeNotifier::AddConnectionTypeObserver(this);
}
if (system_dns_config_notifier_)
system_dns_config_notifier_->AddObserver(this);
#if BUILDFLAG(IS_POSIX) && !BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_OPENBSD) && \
!BUILDFLAG(IS_ANDROID)
EnsureDnsReloaderInit();
#endif
auto connection_type =
IsBoundToNetwork()
? NetworkChangeNotifier::GetNetworkConnectionType(target_network)
: NetworkChangeNotifier::GetConnectionType();
UpdateConnectionType(connection_type);
#if defined(ENABLE_BUILT_IN_DNS)
dns_client_ = DnsClient::CreateClient(net_log_);
dns_client_->SetInsecureEnabled(
options.insecure_dns_client_enabled,
options.additional_types_via_insecure_dns_enabled);
dns_client_->SetConfigOverrides(options.dns_config_overrides);
#else
DCHECK(options.dns_config_overrides == DnsConfigOverrides());
#endif
allow_fallback_to_proctask_ = !ConfigureAsyncDnsNoFallbackFieldTrial();
}
HostResolverManager::~HostResolverManager() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
// Prevent the dispatcher from starting new jobs.
dispatcher_->SetLimitsToZero();
// It's now safe for Jobs to call KillDnsTask on destruction, because
// OnJobComplete will not start any new jobs.
jobs_.clear();
if (target_network_ == NetworkChangeNotifier::kInvalidNetworkHandle) {
NetworkChangeNotifier::RemoveIPAddressObserver(this);
NetworkChangeNotifier::RemoveConnectionTypeObserver(this);
}
if (system_dns_config_notifier_)
system_dns_config_notifier_->RemoveObserver(this);
}
// static
std::unique_ptr<HostResolverManager>
HostResolverManager::CreateNetworkBoundHostResolverManager(
const HostResolver::ManagerOptions& options,
NetworkChangeNotifier::NetworkHandle target_network,
NetLog* net_log) {
#if BUILDFLAG(IS_ANDROID)
DCHECK(NetworkChangeNotifier::AreNetworkHandlesSupported());
return std::make_unique<HostResolverManager>(
PassKey(), options, nullptr /* system_dns_config_notifier */,
target_network, net_log);
#else // !BUILDFLAG(IS_ANDROID)
NOTIMPLEMENTED();
return nullptr;
#endif // BUILDFLAG(IS_ANDROID)
}
std::unique_ptr<HostResolver::ResolveHostRequest>
HostResolverManager::CreateRequest(
HostResolver::Host host,
NetworkIsolationKey network_isolation_key,
NetLogWithSource net_log,
absl::optional<ResolveHostParameters> optional_parameters,
ResolveContext* resolve_context,
HostCache* host_cache) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(!invalidation_in_progress_);
DCHECK_EQ(resolve_context->GetTargetNetwork(), target_network_);
// ResolveContexts must register (via RegisterResolveContext()) before use to
// ensure cached data is invalidated on network and configuration changes.
DCHECK(registered_contexts_.HasObserver(resolve_context));
return std::make_unique<RequestImpl>(
std::move(net_log), std::move(host), std::move(network_isolation_key),
std::move(optional_parameters), resolve_context->GetWeakPtr(), host_cache,
weak_ptr_factory_.GetWeakPtr(), tick_clock_);
}
std::unique_ptr<HostResolver::ProbeRequest>
HostResolverManager::CreateDohProbeRequest(ResolveContext* context) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
return std::make_unique<ProbeRequestImpl>(context->GetWeakPtr(),
weak_ptr_factory_.GetWeakPtr());
}
std::unique_ptr<HostResolver::MdnsListener>
HostResolverManager::CreateMdnsListener(const HostPortPair& host,
DnsQueryType query_type) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK_NE(DnsQueryType::UNSPECIFIED, query_type);
auto listener =
std::make_unique<HostResolverMdnsListenerImpl>(host, query_type);
MDnsClient* client;
int rv = GetOrCreateMdnsClient(&client);
if (rv == OK) {
std::unique_ptr<net::MDnsListener> inner_listener = client->CreateListener(
DnsQueryTypeToQtype(query_type), host.host(), listener.get());
listener->set_inner_listener(std::move(inner_listener));
} else {
listener->set_initialization_error(rv);
}
return listener;
}
void HostResolverManager::SetInsecureDnsClientEnabled(
bool enabled,
bool additional_dns_types_enabled) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (!dns_client_)
return;
bool enabled_before = dns_client_->CanUseInsecureDnsTransactions();
bool additional_types_before =
enabled_before && dns_client_->CanQueryAdditionalTypesViaInsecureDns();
dns_client_->SetInsecureEnabled(enabled, additional_dns_types_enabled);
// Abort current tasks if `CanUseInsecureDnsTransactions()` changes or if
// insecure transactions are enabled and
// `CanQueryAdditionalTypesViaInsecureDns()` changes. Changes to allowing
// additional types don't matter if insecure transactions are completely
// disabled.
if (dns_client_->CanUseInsecureDnsTransactions() != enabled_before ||
(dns_client_->CanUseInsecureDnsTransactions() &&
dns_client_->CanQueryAdditionalTypesViaInsecureDns() !=
additional_types_before)) {
AbortInsecureDnsTasks(ERR_NETWORK_CHANGED, false /* fallback_only */);
}
}
base::Value HostResolverManager::GetDnsConfigAsValue() const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
return dns_client_ ? dns_client_->GetDnsConfigAsValueForNetLog()
: base::Value(base::Value::Dict());
}
void HostResolverManager::SetDnsConfigOverrides(DnsConfigOverrides overrides) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (!dns_client_ && overrides == DnsConfigOverrides())
return;
// Not allowed to set overrides if compiled without DnsClient.
DCHECK(dns_client_);
bool transactions_allowed_before =
dns_client_->CanUseSecureDnsTransactions() ||
dns_client_->CanUseInsecureDnsTransactions();
bool changed = dns_client_->SetConfigOverrides(std::move(overrides));
if (changed) {
NetworkChangeNotifier::TriggerNonSystemDnsChange();
// Only invalidate cache if new overrides have resulted in a config change.
InvalidateCaches();
// Need to update jobs iff transactions were previously allowed because
// in-progress jobs may be running using a now-invalid configuration.
if (transactions_allowed_before) {
UpdateJobsForChangedConfig();
}
}
}
void HostResolverManager::RegisterResolveContext(ResolveContext* context) {
registered_contexts_.AddObserver(context);
context->InvalidateCachesAndPerSessionData(
dns_client_ ? dns_client_->GetCurrentSession() : nullptr,
false /* network_change */);
}
void HostResolverManager::DeregisterResolveContext(
const ResolveContext* context) {
registered_contexts_.RemoveObserver(context);
// Destroy Jobs when their context is closed.
RemoveAllJobs(context);
}
void HostResolverManager::SetTickClockForTesting(
const base::TickClock* tick_clock) {
tick_clock_ = tick_clock;
}
void HostResolverManager::SetMaxQueuedJobsForTesting(size_t value) {
DCHECK_EQ(0u, dispatcher_->num_queued_jobs());
DCHECK_GE(value, 0u);
max_queued_jobs_ = value;
}
void HostResolverManager::SetHaveOnlyLoopbackAddresses(bool result) {
if (result) {
additional_resolver_flags_ |= HOST_RESOLVER_LOOPBACK_ONLY;
} else {
additional_resolver_flags_ &= ~HOST_RESOLVER_LOOPBACK_ONLY;
}
}
void HostResolverManager::SetMdnsSocketFactoryForTesting(
std::unique_ptr<MDnsSocketFactory> socket_factory) {
DCHECK(!mdns_client_);
mdns_socket_factory_ = std::move(socket_factory);
}
void HostResolverManager::SetMdnsClientForTesting(
std::unique_ptr<MDnsClient> client) {
mdns_client_ = std::move(client);
}
void HostResolverManager::SetDnsClientForTesting(
std::unique_ptr<DnsClient> dns_client) {
DCHECK(dns_client);
if (dns_client_) {
if (!dns_client->GetSystemConfigForTesting())
dns_client->SetSystemConfig(dns_client_->GetSystemConfigForTesting());
dns_client->SetConfigOverrides(dns_client_->GetConfigOverridesForTesting());
}
dns_client_ = std::move(dns_client);
// Inform `registered_contexts_` of the new `DnsClient`.
InvalidateCaches();
}
void HostResolverManager::SetLastIPv6ProbeResultForTesting(
bool last_ipv6_probe_result) {
SetLastIPv6ProbeResult(last_ipv6_probe_result);
}
void HostResolverManager::SetTaskRunnerForTesting(
scoped_refptr<base::TaskRunner> task_runner) {
proc_task_runner_ = std::move(task_runner);
}
// static
bool HostResolverManager::IsLocalTask(TaskType task) {
switch (task) {
case TaskType::SECURE_CACHE_LOOKUP:
case TaskType::INSECURE_CACHE_LOOKUP:
case TaskType::CACHE_LOOKUP:
case TaskType::CONFIG_PRESET:
return true;
default:
return false;
}
}
int HostResolverManager::Resolve(RequestImpl* request) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
// Request should not yet have a scheduled Job.
DCHECK(!request->HasJob());
// Request may only be resolved once.
DCHECK(!request->complete());
// MDNS requests do not support skipping cache or stale lookups.
// TODO(crbug.com/926300): Either add support for skipping the MDNS cache, or
// merge to use the normal host cache for MDNS requests.
DCHECK(request->parameters().source != HostResolverSource::MULTICAST_DNS ||
request->parameters().cache_usage ==
ResolveHostParameters::CacheUsage::ALLOWED);
DCHECK(!invalidation_in_progress_);
const auto& parameters = request->parameters();
JobKey job_key(request->resolve_context());
job_key.host =
CreateHostForJobKey(request->request_host(), parameters.dns_query_type);
job_key.network_isolation_key = request->network_isolation_key();
job_key.source = parameters.source;
IPAddress ip_address;
bool is_ip = ip_address.AssignFromIPLiteral(GetHostname(job_key.host));
GetEffectiveParametersForRequest(
job_key.host, parameters.dns_query_type, request->host_resolver_flags(),
parameters.secure_dns_policy, is_ip, request->source_net_log(),
&job_key.query_types, &job_key.flags, &job_key.secure_dns_mode);
std::deque<TaskType> tasks;
absl::optional<HostCache::EntryStaleness> stale_info;
HostCache::Entry results = ResolveLocally(
job_key, ip_address, parameters.cache_usage, parameters.secure_dns_policy,
request->source_net_log(), request->host_cache(), &tasks, &stale_info);
if (results.error() != ERR_DNS_CACHE_MISS ||
request->parameters().source == HostResolverSource::LOCAL_ONLY ||
tasks.empty()) {
if (results.error() == OK && !request->parameters().is_speculative) {
request->set_results(
results.CopyWithDefaultPort(GetPort(request->request_host())));
}
if (stale_info && !request->parameters().is_speculative)
request->set_stale_info(std::move(stale_info).value());
request->set_error_info(results.error(),
false /* is_secure_network_error */);
return HostResolver::SquashErrorCode(results.error());
}
CreateAndStartJob(std::move(job_key), std::move(tasks), request);
return ERR_IO_PENDING;
}
HostCache::Entry HostResolverManager::ResolveLocally(
const JobKey& job_key,
const IPAddress& ip_address,
ResolveHostParameters::CacheUsage cache_usage,
SecureDnsPolicy secure_dns_policy,
const NetLogWithSource& source_net_log,
HostCache* cache,
std::deque<TaskType>* out_tasks,
absl::optional<HostCache::EntryStaleness>* out_stale_info) {
DCHECK(out_stale_info);
*out_stale_info = absl::nullopt;
CreateTaskSequence(job_key, cache_usage, secure_dns_policy, out_tasks);
if (!ip_address.IsValid()) {
// Check that the caller supplied a valid hostname to resolve. For
// MULTICAST_DNS, we are less restrictive.
// TODO(ericorth): Control validation based on an explicit flag rather
// than implicitly based on |source|.
const bool is_valid_hostname =
job_key.source == HostResolverSource::MULTICAST_DNS
? IsValidUnrestrictedDNSDomain(GetHostname(job_key.host))
: IsValidDNSDomain(GetHostname(job_key.host));
if (!is_valid_hostname) {
return HostCache::Entry(ERR_NAME_NOT_RESOLVED,
HostCache::Entry::SOURCE_UNKNOWN);
}
}
bool resolve_canonname = job_key.flags & HOST_RESOLVER_CANONNAME;
bool default_family_due_to_no_ipv6 =
job_key.flags & HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6;
// The result of |getaddrinfo| for empty hosts is inconsistent across systems.
// On Windows it gives the default interface's address, whereas on Linux it
// gives an error. We will make it fail on all platforms for consistency.
if (GetHostname(job_key.host).empty() ||
GetHostname(job_key.host).size() > kMaxHostLength) {
return HostCache::Entry(ERR_NAME_NOT_RESOLVED,
HostCache::Entry::SOURCE_UNKNOWN);
}
if (ip_address.IsValid())
return ResolveAsIP(job_key.query_types, resolve_canonname, ip_address);
// Special-case localhost names, as per the recommendations in
// https://tools.ietf.org/html/draft-west-let-localhost-be-localhost.
absl::optional<HostCache::Entry> resolved =
ServeLocalhost(GetHostname(job_key.host), job_key.query_types,
default_family_due_to_no_ipv6);
if (resolved)
return resolved.value();
// Do initial cache lookups.
while (!out_tasks->empty() && IsLocalTask(out_tasks->front())) {
TaskType task = out_tasks->front();
out_tasks->pop_front();
if (task == TaskType::SECURE_CACHE_LOOKUP ||
task == TaskType::INSECURE_CACHE_LOOKUP ||
task == TaskType::CACHE_LOOKUP) {
bool secure = task == TaskType::SECURE_CACHE_LOOKUP;
HostCache::Key key = job_key.ToCacheKey(secure);
bool ignore_secure = task == TaskType::CACHE_LOOKUP;
resolved = MaybeServeFromCache(cache, key, cache_usage, ignore_secure,
source_net_log, out_stale_info);
if (resolved) {
// |MaybeServeFromCache()| will update |*out_stale_info| as needed.
DCHECK(out_stale_info->has_value());
source_net_log.AddEvent(
NetLogEventType::HOST_RESOLVER_MANAGER_CACHE_HIT,
[&] { return NetLogResults(resolved.value()); });
// TODO(crbug.com/1200908): Call StartBootstrapFollowup() if the Secure
// DNS Policy is kBootstrap and the result is not secure. Note: A naive
// implementation could cause an infinite loop if |resolved| always
// expires or is evicted before the followup runs.
return resolved.value();
}
DCHECK(!out_stale_info->has_value());
} else if (task == TaskType::CONFIG_PRESET) {
resolved = MaybeReadFromConfig(job_key);
if (resolved) {
source_net_log.AddEvent(
NetLogEventType::HOST_RESOLVER_MANAGER_CONFIG_PRESET_MATCH,
[&] { return NetLogResults(resolved.value()); });
StartBootstrapFollowup(job_key, cache, source_net_log);
return resolved.value();
}
} else {
NOTREACHED();
}
}
// TODO(szym): Do not do this if nsswitch.conf instructs not to.
// http://crbug.com/117655
resolved = ServeFromHosts(GetHostname(job_key.host), job_key.query_types,
default_family_due_to_no_ipv6, *out_tasks);
if (resolved) {
source_net_log.AddEvent(NetLogEventType::HOST_RESOLVER_MANAGER_HOSTS_HIT,
[&] { return NetLogResults(resolved.value()); });
return resolved.value();
}
return HostCache::Entry(ERR_DNS_CACHE_MISS, HostCache::Entry::SOURCE_UNKNOWN);
}
void HostResolverManager::CreateAndStartJob(JobKey key,
std::deque<TaskType> tasks,
RequestImpl* request) {
DCHECK(!tasks.empty());
auto jobit = jobs_.find(key);
Job* job;
if (jobit == jobs_.end()) {
job = AddJobWithoutRequest(key, request->parameters().cache_usage,
request->host_cache(), std::move(tasks),
request->priority(), request->source_net_log());
job->AddRequest(request);
job->RunNextTask();
} else {
job = jobit->second.get();
job->AddRequest(request);
}
}
HostResolverManager::Job* HostResolverManager::AddJobWithoutRequest(
JobKey key,
ResolveHostParameters::CacheUsage cache_usage,
HostCache* host_cache,
std::deque<TaskType> tasks,
RequestPriority priority,
const NetLogWithSource& source_net_log) {
auto new_job =
std::make_unique<Job>(weak_ptr_factory_.GetWeakPtr(), key, cache_usage,
host_cache, std::move(tasks), priority,
proc_task_runner_, source_net_log, tick_clock_);
auto insert_result = jobs_.emplace(std::move(key), std::move(new_job));
auto& iterator = insert_result.first;
bool is_new = insert_result.second;
DCHECK(is_new);
auto& job = iterator->second;
job->OnAddedToJobMap(iterator);
return job.get();
}
HostCache::Entry HostResolverManager::ResolveAsIP(DnsQueryTypeSet query_types,
bool resolve_canonname,
const IPAddress& ip_address) {
DCHECK(ip_address.IsValid());
DCHECK(!query_types.Has(DnsQueryType::UNSPECIFIED));
// IP literals cannot resolve unless the query type is an address query that
// allows addresses with the same address family as the literal. E.g., don't
// return IPv6 addresses for IPv4 queries or anything for a non-address query.
AddressFamily family = GetAddressFamily(ip_address);
if (!query_types.Has(AddressFamilyToDnsQueryType(family))) {
return HostCache::Entry(ERR_NAME_NOT_RESOLVED,
HostCache::Entry::SOURCE_UNKNOWN);
}
AddressList addresses = AddressList::CreateFromIPAddress(ip_address, 0);
if (resolve_canonname)
addresses.SetDefaultCanonicalName();
return HostCache::Entry(OK, std::move(addresses),
HostCache::Entry::SOURCE_UNKNOWN);
}
absl::optional<HostCache::Entry> HostResolverManager::MaybeServeFromCache(
HostCache* cache,
const HostCache::Key& key,
ResolveHostParameters::CacheUsage cache_usage,
bool ignore_secure,
const NetLogWithSource& source_net_log,
absl::optional<HostCache::EntryStaleness>* out_stale_info) {
DCHECK(out_stale_info);
*out_stale_info = absl::nullopt;
if (!cache)
return absl::nullopt;
if (cache_usage == ResolveHostParameters::CacheUsage::DISALLOWED)
return absl::nullopt;
// Local-only requests search the cache for non-local-only results.
HostCache::Key effective_key = key;
if (effective_key.host_resolver_source == HostResolverSource::LOCAL_ONLY)
effective_key.host_resolver_source = HostResolverSource::ANY;
const std::pair<const HostCache::Key, HostCache::Entry>* cache_result;
HostCache::EntryStaleness staleness;
if (cache_usage == ResolveHostParameters::CacheUsage::STALE_ALLOWED) {
cache_result = cache->LookupStale(effective_key, tick_clock_->NowTicks(),
&staleness, ignore_secure);
} else {
DCHECK(cache_usage == ResolveHostParameters::CacheUsage::ALLOWED);
cache_result =
cache->Lookup(effective_key, tick_clock_->NowTicks(), ignore_secure);
staleness = HostCache::kNotStale;
}
if (cache_result) {
*out_stale_info = std::move(staleness);
source_net_log.AddEvent(
NetLogEventType::HOST_RESOLVER_MANAGER_CACHE_HIT,
[&] { return NetLogResults(cache_result->second); });
return cache_result->second;
}
return absl::nullopt;
}
absl::optional<HostCache::Entry> HostResolverManager::MaybeReadFromConfig(
const JobKey& key) {
DCHECK(HasAddressType(key.query_types));
if (!absl::holds_alternative<url::SchemeHostPort>(key.host))
return absl::nullopt;
absl::optional<AddressList> preset_addrs =
dns_client_->GetPresetAddrs(absl::get<url::SchemeHostPort>(key.host));
if (!preset_addrs)
return absl::nullopt;
AddressList filtered_addresses =
FilterAddresses(std::move(*preset_addrs), key.query_types);
if (filtered_addresses.empty())
return absl::nullopt;
return HostCache::Entry(OK, std::move(filtered_addresses),
HostCache::Entry::SOURCE_CONFIG);
}
void HostResolverManager::StartBootstrapFollowup(
JobKey key,
HostCache* host_cache,
const NetLogWithSource& source_net_log) {
DCHECK_EQ(SecureDnsMode::kOff, key.secure_dns_mode);
DCHECK(host_cache);
key.secure_dns_mode = SecureDnsMode::kSecure;
if (jobs_.count(key) != 0)
return;
Job* job = AddJobWithoutRequest(
key, ResolveHostParameters::CacheUsage::ALLOWED, host_cache,
{TaskType::SECURE_DNS}, RequestPriority::LOW, source_net_log);
job->RunNextTask();
}
absl::optional<HostCache::Entry> HostResolverManager::ServeFromHosts(
base::StringPiece hostname,
DnsQueryTypeSet query_types,
bool default_family_due_to_no_ipv6,
const std::deque<TaskType>& tasks) {
DCHECK(!query_types.Has(DnsQueryType::UNSPECIFIED));
// Don't attempt a HOSTS lookup if there is no DnsConfig or the HOSTS lookup
// is going to be done next as part of a system lookup.
if (!dns_client_ || !HasAddressType(query_types) ||
(!tasks.empty() && tasks.front() == TaskType::PROC))
return absl::nullopt;
const DnsHosts* hosts = dns_client_->GetHosts();
if (!hosts || hosts->empty())
return absl::nullopt;
// HOSTS lookups are case-insensitive.
std::string effective_hostname = base::ToLowerASCII(hostname);
// If |address_family| is ADDRESS_FAMILY_UNSPECIFIED other implementations
// (glibc and c-ares) return the first matching line. We have more
// flexibility, but lose implicit ordering.
// We prefer IPv6 because "happy eyeballs" will fall back to IPv4 if
// necessary.
AddressList addresses;
if (query_types.Has(DnsQueryType::AAAA)) {
auto it = hosts->find(DnsHostsKey(effective_hostname, ADDRESS_FAMILY_IPV6));
if (it != hosts->end())
addresses.push_back(IPEndPoint(it->second, 0));
}
if (query_types.Has(DnsQueryType::A)) {
auto it = hosts->find(DnsHostsKey(effective_hostname, ADDRESS_FAMILY_IPV4));
if (it != hosts->end())
addresses.push_back(IPEndPoint(it->second, 0));
}
// If got only loopback addresses and the family was restricted, resolve
// again, without restrictions. See SystemHostResolverCall for rationale.
if (default_family_due_to_no_ipv6 &&
base::ranges::all_of(addresses, &IPAddress::IsIPv4,
&IPEndPoint::address) &&
base::ranges::all_of(addresses, &IPAddress::IsLoopback,
&IPEndPoint::address)) {
query_types.Put(DnsQueryType::AAAA);
return ServeFromHosts(hostname, query_types, false, tasks);
}
if (!addresses.empty()) {
return HostCache::Entry(OK, std::move(addresses),
HostCache::Entry::SOURCE_HOSTS);
}
return absl::nullopt;
}
absl::optional<HostCache::Entry> HostResolverManager::ServeLocalhost(
base::StringPiece hostname,
DnsQueryTypeSet query_types,
bool default_family_due_to_no_ipv6) {
DCHECK(!query_types.Has(DnsQueryType::UNSPECIFIED));
AddressList resolved_addresses;
if (!HasAddressType(query_types) ||
!ResolveLocalHostname(hostname, &resolved_addresses)) {
return absl::nullopt;
}
if (default_family_due_to_no_ipv6 && query_types.Has(DnsQueryType::A) &&
!query_types.Has(DnsQueryType::AAAA)) {
// The caller disabled the AAAA query due to lack of detected IPv6 support.
// (See SystemHostResolverCall for rationale).
query_types.Put(DnsQueryType::AAAA);
}
AddressList filtered_addresses =
FilterAddresses(std::move(resolved_addresses), query_types);
return HostCache::Entry(OK, std::move(filtered_addresses),
HostCache::Entry::SOURCE_UNKNOWN);
}
void HostResolverManager::CacheResult(HostCache* cache,
const HostCache::Key& key,
const HostCache::Entry& entry,
base::TimeDelta ttl) {
// Don't cache an error unless it has a positive TTL.
if (cache && (entry.error() == OK || ttl.is_positive()))
cache->Set(key, entry, tick_clock_->NowTicks(), ttl);
}
std::unique_ptr<HostResolverManager::Job> HostResolverManager::RemoveJob(
JobMap::iterator job_it) {
DCHECK(job_it != jobs_.end());
DCHECK(job_it->second);
DCHECK_EQ(1u, jobs_.count(job_it->first));
std::unique_ptr<Job> job;
job_it->second.swap(job);
jobs_.erase(job_it);
job->OnRemovedFromJobMap();
return job;
}
SecureDnsMode HostResolverManager::GetEffectiveSecureDnsMode(
SecureDnsPolicy secure_dns_policy) {
// Use switch() instead of if() to ensure that all policies are handled.
switch (secure_dns_policy) {
case SecureDnsPolicy::kDisable:
case SecureDnsPolicy::kBootstrap:
return SecureDnsMode::kOff;
case SecureDnsPolicy::kAllow:
break;
}
const DnsConfig* config =
dns_client_ ? dns_client_->GetEffectiveConfig() : nullptr;
SecureDnsMode secure_dns_mode = SecureDnsMode::kOff;
if (config) {
secure_dns_mode = config->secure_dns_mode;
}
return secure_dns_mode;
}
bool HostResolverManager::ShouldForceSystemResolverDueToTestOverride() const {
// If tests have provided a catch-all DNS block and then disabled it, check
// that we are not at risk of sending queries beyond the local network.
if (HostResolverProc::GetDefault() && system_resolver_disabled_for_testing_) {
DCHECK(dns_client_);
DCHECK(dns_client_->GetEffectiveConfig());
DCHECK(base::ranges::none_of(dns_client_->GetEffectiveConfig()->nameservers,
&IPAddress::IsPubliclyRoutable,
&IPEndPoint::address))
<< "Test could query a publicly-routable address.";
}
return !proc_params_.resolver_proc && HostResolverProc::GetDefault() &&
!system_resolver_disabled_for_testing_;
}
void HostResolverManager::PushDnsTasks(bool proc_task_allowed,
SecureDnsMode secure_dns_mode,
bool insecure_tasks_allowed,
bool allow_cache,
bool prioritize_local_lookups,
ResolveContext* resolve_context,
std::deque<TaskType>* out_tasks) {
DCHECK(dns_client_);
DCHECK(dns_client_->GetEffectiveConfig());
// If a catch-all DNS block has been set for unit tests, we shouldn't send
// DnsTasks. It is still necessary to call this method, however, so that the
// correct cache tasks for the secure dns mode are added.
const bool dns_tasks_allowed = !ShouldForceSystemResolverDueToTestOverride();
// Upgrade the insecure DnsTask depending on the secure dns mode.
switch (secure_dns_mode) {
case SecureDnsMode::kSecure:
DCHECK(!allow_cache ||
out_tasks->front() == TaskType::SECURE_CACHE_LOOKUP);
// Policy misconfiguration can put us in secure DNS mode without any DoH
// servers to query. See https://crbug.com/1326526.
if (dns_tasks_allowed && dns_client_->CanUseSecureDnsTransactions())
out_tasks->push_back(TaskType::SECURE_DNS);
break;
case SecureDnsMode::kAutomatic:
DCHECK(!allow_cache || out_tasks->front() == TaskType::CACHE_LOOKUP);
if (dns_client_->FallbackFromSecureTransactionPreferred(
resolve_context)) {
// Don't run a secure DnsTask if there are no available DoH servers.
if (dns_tasks_allowed && insecure_tasks_allowed)
out_tasks->push_back(TaskType::DNS);
} else if (prioritize_local_lookups) {
// If local lookups are prioritized, the cache should be checked for
// both secure and insecure results prior to running a secure DnsTask.
// The task sequence should already contain the appropriate cache task.
if (dns_tasks_allowed) {
out_tasks->push_back(TaskType::SECURE_DNS);
if (insecure_tasks_allowed)
out_tasks->push_back(TaskType::DNS);
}
} else {
if (allow_cache) {
// Remove the initial cache lookup task so that the secure and
// insecure lookups can be separated.
out_tasks->pop_front();
out_tasks->push_back(TaskType::SECURE_CACHE_LOOKUP);
}
if (dns_tasks_allowed)
out_tasks->push_back(TaskType::SECURE_DNS);
if (allow_cache)
out_tasks->push_back(TaskType::INSECURE_CACHE_LOOKUP);
if (dns_tasks_allowed && insecure_tasks_allowed)
out_tasks->push_back(TaskType::DNS);
}
break;
case SecureDnsMode::kOff:
DCHECK(!allow_cache || IsLocalTask(out_tasks->front()));
if (dns_tasks_allowed && insecure_tasks_allowed)
out_tasks->push_back(TaskType::DNS);
break;
default:
NOTREACHED();
break;
}
constexpr TaskType kWantTasks[] = {TaskType::DNS, TaskType::SECURE_DNS};
const bool no_dns_or_secure_tasks =
base::ranges::find_first_of(*out_tasks, kWantTasks) == out_tasks->end();
// The system resolver can be used as a fallback for a non-existent or
// failing DnsTask if allowed by the request parameters.
if (proc_task_allowed &&
(no_dns_or_secure_tasks || allow_fallback_to_proctask_))
out_tasks->push_back(TaskType::PROC);
}
void HostResolverManager::CreateTaskSequence(
const JobKey& job_key,
ResolveHostParameters::CacheUsage cache_usage,
SecureDnsPolicy secure_dns_policy,
std::deque<TaskType>* out_tasks) {
DCHECK(out_tasks->empty());
// A cache lookup should generally be performed first. For jobs involving a
// DnsTask, this task may be replaced.
bool allow_cache =
cache_usage != ResolveHostParameters::CacheUsage::DISALLOWED;
if (secure_dns_policy == SecureDnsPolicy::kBootstrap) {
DCHECK_EQ(SecureDnsMode::kOff, job_key.secure_dns_mode);
if (allow_cache)
out_tasks->push_front(TaskType::INSECURE_CACHE_LOOKUP);
out_tasks->push_front(TaskType::CONFIG_PRESET);
if (allow_cache)
out_tasks->push_front(TaskType::SECURE_CACHE_LOOKUP);
} else if (allow_cache) {
if (job_key.secure_dns_mode == SecureDnsMode::kSecure) {
out_tasks->push_front(TaskType::SECURE_CACHE_LOOKUP);
} else {
out_tasks->push_front(TaskType::CACHE_LOOKUP);
}
}
// Determine what type of task a future Job should start.
bool prioritize_local_lookups =
cache_usage ==
HostResolver::ResolveHostParameters::CacheUsage::STALE_ALLOWED;
const bool has_address_type = HasAddressType(job_key.query_types);
switch (job_key.source) {
case HostResolverSource::ANY:
// Force address queries with canonname to use ProcTask to counter poor
// CNAME support in DnsTask. See https://crbug.com/872665
//
// Otherwise, default to DnsTask (with allowed fallback to ProcTask for
// address queries). But if hostname appears to be an MDNS name (ends in
// *.local), go with ProcTask for address queries and MdnsTask for non-
// address queries.
if ((job_key.flags & HOST_RESOLVER_CANONNAME) && has_address_type) {
out_tasks->push_back(TaskType::PROC);
} else if (!ResemblesMulticastDNSName(GetHostname(job_key.host))) {
bool proc_task_allowed = has_address_type && job_key.secure_dns_mode !=
SecureDnsMode::kSecure;
if (dns_client_ && dns_client_->GetEffectiveConfig()) {
bool insecure_allowed =
dns_client_->CanUseInsecureDnsTransactions() &&
!dns_client_->FallbackFromInsecureTransactionPreferred() &&
(has_address_type ||
dns_client_->CanQueryAdditionalTypesViaInsecureDns());
PushDnsTasks(proc_task_allowed, job_key.secure_dns_mode,
insecure_allowed, allow_cache, prioritize_local_lookups,
&*job_key.resolve_context, out_tasks);
} else if (proc_task_allowed) {
out_tasks->push_back(TaskType::PROC);
}
} else if (has_address_type) {
// For *.local address queries, try the system resolver even if the
// secure dns mode is SECURE. Public recursive resolvers aren't expected
// to handle these queries.
out_tasks->push_back(TaskType::PROC);
} else {
out_tasks->push_back(TaskType::MDNS);
}
break;
case HostResolverSource::SYSTEM:
out_tasks->push_back(TaskType::PROC);
break;
case HostResolverSource::DNS:
if (dns_client_ && dns_client_->GetEffectiveConfig()) {
bool insecure_allowed =
dns_client_->CanUseInsecureDnsTransactions() &&
(has_address_type ||
dns_client_->CanQueryAdditionalTypesViaInsecureDns());
PushDnsTasks(false /* proc_task_allowed */, job_key.secure_dns_mode,
insecure_allowed, allow_cache, prioritize_local_lookups,
&*job_key.resolve_context, out_tasks);
}
break;
case HostResolverSource::MULTICAST_DNS:
out_tasks->push_back(TaskType::MDNS);
break;
case HostResolverSource::LOCAL_ONLY:
// If no external source allowed, a job should not be created or started
break;
}
// `HOST_RESOLVER_CANONNAME` is only supported through system resolution.
if (job_key.flags & HOST_RESOLVER_CANONNAME) {
DCHECK(base::ranges::find(*out_tasks, TaskType::DNS) == out_tasks->end());
DCHECK(base::ranges::find(*out_tasks, TaskType::MDNS) == out_tasks->end());
}
}
void HostResolverManager::GetEffectiveParametersForRequest(
const absl::variant<url::SchemeHostPort, std::string>& host,
DnsQueryType dns_query_type,
HostResolverFlags flags,
SecureDnsPolicy secure_dns_policy,
bool is_ip,
const NetLogWithSource& net_log,
DnsQueryTypeSet* out_effective_types,
HostResolverFlags* out_effective_flags,
SecureDnsMode* out_effective_secure_dns_mode) {
const SecureDnsMode secure_dns_mode =
GetEffectiveSecureDnsMode(secure_dns_policy);
*out_effective_secure_dns_mode = secure_dns_mode;
*out_effective_flags = flags | additional_resolver_flags_;
if (dns_query_type != DnsQueryType::UNSPECIFIED) {
*out_effective_types = dns_query_type;
return;
}
DnsQueryTypeSet effective_types(DnsQueryType::A, DnsQueryType::AAAA);
// Disable AAAA queries when we cannot do anything with the results.
bool use_local_ipv6 = true;
if (dns_client_) {
const DnsConfig* config = dns_client_->GetEffectiveConfig();
if (config)
use_local_ipv6 = config->use_local_ipv6;
}
// When resolving IPv4 literals, there's no need to probe for IPv6. When
// resolving IPv6 literals, there's no benefit to artificially limiting our
// resolution based on a probe. Prior logic ensures that this is an automatic
// query, so the code requesting the resolution should be amenable to
// receiving an IPv6 resolution.
if (!use_local_ipv6 && !is_ip && !IsIPv6Reachable(net_log)) {
*out_effective_flags |= HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6;
effective_types.Remove(DnsQueryType::AAAA);
}
// Optimistically enable feature-controlled queries. These queries may be
// skipped at a later point.
// `features::kUseDnsHttpsSvcb` has precedence, so if enabled, ignore any
// other related features.
if (base::FeatureList::IsEnabled(features::kUseDnsHttpsSvcb)) {
static const char* const kSchemesForHttpsQuery[] = {
url::kHttpScheme, url::kHttpsScheme, url::kWsScheme, url::kWssScheme};
if (base::Contains(kSchemesForHttpsQuery, GetScheme(host)))
effective_types.Put(DnsQueryType::HTTPS);
} else if (base::FeatureList::IsEnabled(features::kDnsHttpssvc) &&
(httpssvc_domain_cache_.IsExperimental(GetHostname(host)) ||
httpssvc_domain_cache_.IsControl(GetHostname(host)))) {
if (features::kDnsHttpssvcUseIntegrity.Get())
effective_types.Put(DnsQueryType::INTEGRITY);
if (features::kDnsHttpssvcUseHttpssvc.Get())
effective_types.Put(DnsQueryType::HTTPS_EXPERIMENTAL);
}
*out_effective_types = effective_types;
}
namespace {
bool RequestWillUseWiFi(NetworkChangeNotifier::NetworkHandle network) {
NetworkChangeNotifier::ConnectionType connection_type;
if (network == NetworkChangeNotifier::kInvalidNetworkHandle)
connection_type = NetworkChangeNotifier::GetConnectionType();
else
connection_type = NetworkChangeNotifier::GetNetworkConnectionType(network);
return connection_type == NetworkChangeNotifier::CONNECTION_WIFI;
}
} // namespace
bool HostResolverManager::IsIPv6Reachable(const NetLogWithSource& net_log) {
// Don't bother checking if the request will use WiFi and IPv6 is assumed to
// not work on WiFi.
if (!check_ipv6_on_wifi_ && RequestWillUseWiFi(target_network_))
return false;
// Cache the result for kIPv6ProbePeriodMs (measured from after
// IsGloballyReachable() completes).
bool cached = true;
if (last_ipv6_probe_time_.is_null() ||
(tick_clock_->NowTicks() - last_ipv6_probe_time_).InMilliseconds() >
kIPv6ProbePeriodMs) {
SetLastIPv6ProbeResult(
IsGloballyReachable(IPAddress(kIPv6ProbeAddress), net_log));
cached = false;
}
net_log.AddEvent(
NetLogEventType::HOST_RESOLVER_MANAGER_IPV6_REACHABILITY_CHECK, [&] {
return NetLogIPv6AvailableParams(last_ipv6_probe_result_, cached);
});
return last_ipv6_probe_result_;
}
void HostResolverManager::SetLastIPv6ProbeResult(bool last_ipv6_probe_result) {
last_ipv6_probe_result_ = last_ipv6_probe_result;
last_ipv6_probe_time_ = tick_clock_->NowTicks();
}
bool HostResolverManager::IsGloballyReachable(const IPAddress& dest,
const NetLogWithSource& net_log) {
std::unique_ptr<DatagramClientSocket> socket(
ClientSocketFactory::GetDefaultFactory()->CreateDatagramClientSocket(
DatagramSocket::DEFAULT_BIND, net_log.net_log(), net_log.source()));
int rv = socket->Connect(IPEndPoint(dest, 53));
if (rv != OK)
return false;
IPEndPoint endpoint;
rv = socket->GetLocalAddress(&endpoint);
if (rv != OK)
return false;
DCHECK_EQ(ADDRESS_FAMILY_IPV6, endpoint.GetFamily());
const IPAddress& address = endpoint.address();
bool is_link_local =
(address.bytes()[0] == 0xFE) && ((address.bytes()[1] & 0xC0) == 0x80);
if (is_link_local)
return false;
const uint8_t kTeredoPrefix[] = {0x20, 0x01, 0, 0};
if (IPAddressStartsWith(address, kTeredoPrefix))
return false;
return true;
}
void HostResolverManager::RunLoopbackProbeJob() {
// Run this asynchronously as it can take 40-100ms and should not block
// initialization.
base::ThreadPool::PostTaskAndReplyWithResult(
FROM_HERE,
{base::MayBlock(), base::TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN},
base::BindOnce(&HaveOnlyLoopbackAddresses),
base::BindOnce(&HostResolverManager::SetHaveOnlyLoopbackAddresses,
weak_ptr_factory_.GetWeakPtr()));
}
void HostResolverManager::RemoveAllJobs(const ResolveContext* context) {
for (auto it = jobs_.begin(); it != jobs_.end();) {
const JobKey& key = it->first;
if (&*key.resolve_context == context) {
RemoveJob(it++);
} else {
++it;
}
}
}
void HostResolverManager::AbortJobsWithoutTargetNetwork(bool in_progress_only) {
// In Abort, a Request callback could spawn new Jobs with matching keys, so
// first collect and remove all running jobs from `jobs_`.
std::vector<std::unique_ptr<Job>> jobs_to_abort;
for (auto it = jobs_.begin(); it != jobs_.end();) {
Job* job = it->second.get();
if (!job->HasTargetNetwork() && (!in_progress_only || job->is_running())) {
jobs_to_abort.push_back(RemoveJob(it++));
} else {
++it;
}
}
// Pause the dispatcher so it won't start any new dispatcher jobs while
// aborting the old ones. This is needed so that it won't start the second
// DnsTransaction for a job in `jobs_to_abort` if the DnsConfig just became
// invalid.
PrioritizedDispatcher::Limits limits = dispatcher_->GetLimits();
dispatcher_->SetLimits(
PrioritizedDispatcher::Limits(limits.reserved_slots.size(), 0));
// Life check to bail once `this` is deleted.
base::WeakPtr<HostResolverManager> self = weak_ptr_factory_.GetWeakPtr();
// Then Abort them.
for (size_t i = 0; self.get() && i < jobs_to_abort.size(); ++i) {
jobs_to_abort[i]->Abort();
}
if (self)
dispatcher_->SetLimits(limits);
}
void HostResolverManager::AbortInsecureDnsTasks(int error, bool fallback_only) {
// Aborting jobs potentially modifies |jobs_| and may even delete some jobs.
// Create safe closures of all current jobs.
std::vector<base::OnceClosure> job_abort_closures;
for (auto& job : jobs_) {
job_abort_closures.push_back(
job.second->GetAbortInsecureDnsTaskClosure(error, fallback_only));
}
// Pause the dispatcher so it won't start any new dispatcher jobs while
// aborting the old ones. This is needed so that it won't start the second
// DnsTransaction for a job if the DnsConfig just changed.
PrioritizedDispatcher::Limits limits = dispatcher_->GetLimits();
dispatcher_->SetLimits(
PrioritizedDispatcher::Limits(limits.reserved_slots.size(), 0));
for (base::OnceClosure& closure : job_abort_closures)
std::move(closure).Run();
dispatcher_->SetLimits(limits);
}
// TODO(crbug.com/995984): Consider removing this and its usage.
void HostResolverManager::TryServingAllJobsFromHosts() {
if (!dns_client_ || !dns_client_->GetEffectiveConfig())
return;
// TODO(szym): Do not do this if nsswitch.conf instructs not to.
// http://crbug.com/117655
// Life check to bail once |this| is deleted.
base::WeakPtr<HostResolverManager> self = weak_ptr_factory_.GetWeakPtr();
for (auto it = jobs_.begin(); self.get() && it != jobs_.end();) {
Job* job = it->second.get();
++it;
// This could remove |job| from |jobs_|, but iterator will remain valid.
job->ServeFromHosts();
}
}
void HostResolverManager::OnIPAddressChanged() {
DCHECK(!IsBoundToNetwork());
last_ipv6_probe_time_ = base::TimeTicks();
// Abandon all ProbeJobs.
probe_weak_ptr_factory_.InvalidateWeakPtrs();
InvalidateCaches();
#if (BUILDFLAG(IS_POSIX) && !BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID)) || \
BUILDFLAG(IS_FUCHSIA)
RunLoopbackProbeJob();
#endif
AbortJobsWithoutTargetNetwork(true /* in_progress_only */);
// `this` may be deleted inside AbortJobsWithoutTargetNetwork().
}
void HostResolverManager::OnConnectionTypeChanged(
NetworkChangeNotifier::ConnectionType type) {
DCHECK(!IsBoundToNetwork());
UpdateConnectionType(type);
}
void HostResolverManager::OnSystemDnsConfigChanged(
absl::optional<DnsConfig> config) {
DCHECK(!IsBoundToNetwork());
// If tests have provided a catch-all DNS block and then disabled it, check
// that we are not at risk of sending queries beyond the local network.
if (HostResolverProc::GetDefault() && system_resolver_disabled_for_testing_ &&
config.has_value()) {
DCHECK(base::ranges::none_of(config->nameservers,
&IPAddress::IsPubliclyRoutable,
&IPEndPoint::address))
<< "Test could query a publicly-routable address.";
}
bool changed = false;
bool transactions_allowed_before = false;
if (dns_client_) {
transactions_allowed_before = dns_client_->CanUseSecureDnsTransactions() ||
dns_client_->CanUseInsecureDnsTransactions();
changed = dns_client_->SetSystemConfig(std::move(config));
}
// Always invalidate cache, even if no change is seen.
InvalidateCaches();
if (changed) {
// Need to update jobs iff transactions were previously allowed because
// in-progress jobs may be running using a now-invalid configuration.
if (transactions_allowed_before)
UpdateJobsForChangedConfig();
}
}
void HostResolverManager::UpdateJobsForChangedConfig() {
// Life check to bail once `this` is deleted.
base::WeakPtr<HostResolverManager> self = weak_ptr_factory_.GetWeakPtr();
// Existing jobs that were set up using the nameservers and secure dns mode
// from the original config need to be aborted (does not apply to jobs
// targeting a specific network).
AbortJobsWithoutTargetNetwork(false /* in_progress_only */);
// `this` may be deleted inside AbortJobsWithoutTargetNetwork().
if (self.get())
TryServingAllJobsFromHosts();
}
void HostResolverManager::OnFallbackResolve(int dns_task_error) {
DCHECK(dns_client_);
DCHECK_NE(OK, dns_task_error);
// Nothing to do if DnsTask is already not preferred.
if (dns_client_->FallbackFromInsecureTransactionPreferred())
return;
dns_client_->IncrementInsecureFallbackFailures();
// If DnsClient became not preferred, fallback all fallback-allowed insecure
// DnsTasks to ProcTasks.
if (dns_client_->FallbackFromInsecureTransactionPreferred())
AbortInsecureDnsTasks(ERR_FAILED, true /* fallback_only */);
}
int HostResolverManager::GetOrCreateMdnsClient(MDnsClient** out_client) {
#if BUILDFLAG(ENABLE_MDNS)
if (!mdns_client_) {
if (!mdns_socket_factory_)
mdns_socket_factory_ = std::make_unique<MDnsSocketFactoryImpl>(net_log_);
mdns_client_ = MDnsClient::CreateDefault();
}
int rv = OK;
if (!mdns_client_->IsListening())
rv = mdns_client_->StartListening(mdns_socket_factory_.get());
DCHECK_NE(ERR_IO_PENDING, rv);
DCHECK(rv != OK || mdns_client_->IsListening());
if (rv == OK)
*out_client = mdns_client_.get();
return rv;
#else
// Should not request MDNS resoltuion unless MDNS is enabled.
NOTREACHED();
return ERR_UNEXPECTED;
#endif
}
void HostResolverManager::InvalidateCaches(bool network_change) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(!invalidation_in_progress_);
#if DCHECK_IS_ON()
base::WeakPtr<HostResolverManager> self_ptr = weak_ptr_factory_.GetWeakPtr();
size_t num_jobs = jobs_.size();
#endif
invalidation_in_progress_ = true;
for (auto& context : registered_contexts_) {
context.InvalidateCachesAndPerSessionData(
dns_client_ ? dns_client_->GetCurrentSession() : nullptr,
network_change);
}
invalidation_in_progress_ = false;
#if DCHECK_IS_ON()
// Sanity checks that invalidation does not have reentrancy issues.
DCHECK(self_ptr);
DCHECK_EQ(num_jobs, jobs_.size());
#endif
}
void HostResolverManager::UpdateConnectionType(
NetworkChangeNotifier::ConnectionType type) {
proc_params_.unresponsive_delay =
GetTimeDeltaForConnectionTypeFromFieldTrialOrDefault(
"DnsUnresponsiveDelayMsByConnectionType",
ProcTaskParams::kDnsDefaultUnresponsiveDelay, type);
// Note that NetworkChangeNotifier always sends a CONNECTION_NONE notification
// before non-NONE notifications. This check therefore just ensures each
// connection change notification is handled once and has nothing to do with
// whether the change is to offline or online.
if (type == NetworkChangeNotifier::CONNECTION_NONE && dns_client_) {
dns_client_->ReplaceCurrentSession();
InvalidateCaches(true /* network_change */);
}
}
std::unique_ptr<DnsProbeRunner> HostResolverManager::CreateDohProbeRunner(
ResolveContext* resolve_context) {
DCHECK(resolve_context);
DCHECK(registered_contexts_.HasObserver(resolve_context));
if (!dns_client_->CanUseSecureDnsTransactions())
return nullptr;
return dns_client_->GetTransactionFactory()->CreateDohProbeRunner(
resolve_context);
}
HostResolverManager::RequestImpl::~RequestImpl() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (!job_.has_value())
return;
job_.value()->CancelRequest(this);
LogCancelRequest();
}
void HostResolverManager::RequestImpl::ChangeRequestPriority(
RequestPriority priority) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
CHECK(job_.has_value());
job_.value()->ChangeRequestPriority(this, priority);
}
const HostResolverManager::JobKey& HostResolverManager::RequestImpl::GetJobKey()
const {
CHECK(job_.has_value());
return job_.value()->key();
}
void HostResolverManager::RequestImpl::OnJobCancelled(const JobKey& job_key) {
CHECK(job_.has_value());
CHECK(job_key == job_.value()->key());
job_.reset();
DCHECK(!complete_);
DCHECK(callback_);
callback_.Reset();
// No results should be set.
DCHECK(!results_);
LogCancelRequest();
}
void HostResolverManager::RequestImpl::OnJobCompleted(
const JobKey& job_key,
int error,
bool is_secure_network_error) {
set_error_info(error, is_secure_network_error);
CHECK(job_.has_value());
CHECK(job_key == job_.value()->key());
job_.reset();
DCHECK(!complete_);
complete_ = true;
LogFinishRequest(error, true /* async_completion */);
DCHECK(callback_);
std::move(callback_).Run(HostResolver::SquashErrorCode(error));
}
} // namespace net