blob: 103b63e062d85186c0e52e9e75f7848b6e7687d8 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/containers/enum_set.h"
#include <stddef.h>
#include "base/test/gtest_util.h"
#include "testing/gtest/include/gtest/gtest-death-test.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
namespace {
enum class TestEnum {
TEST_BELOW_MIN_NEGATIVE = -1,
TEST_BELOW_MIN = 0,
TEST_1 = 1,
TEST_MIN = TEST_1,
TEST_2,
TEST_3,
TEST_4,
TEST_5,
TEST_MAX = TEST_5,
TEST_6_OUT_OF_BOUNDS,
TEST_7_OUT_OF_BOUNDS
};
using TestEnumSet = EnumSet<TestEnum, TestEnum::TEST_MIN, TestEnum::TEST_MAX>;
enum class TestEnumExtreme {
TEST_0 = 0,
TEST_MIN = TEST_0,
TEST_63 = 63,
TEST_MAX = TEST_63,
TEST_64_OUT_OF_BOUNDS,
};
using TestEnumExtremeSet = EnumSet<TestEnumExtreme,
TestEnumExtreme::TEST_MIN,
TestEnumExtreme::TEST_MAX>;
class EnumSetTest : public ::testing::Test {};
class EnumSetDeathTest : public ::testing::Test {};
TEST_F(EnumSetTest, ClassConstants) {
EXPECT_EQ(TestEnum::TEST_MIN, TestEnumSet::kMinValue);
EXPECT_EQ(TestEnum::TEST_MAX, TestEnumSet::kMaxValue);
EXPECT_EQ(static_cast<size_t>(5), TestEnumSet::kValueCount);
}
// Use static_assert to check that functions we expect to be compile time
// evaluatable are really that way.
TEST_F(EnumSetTest, ConstexprsAreValid) {
static_assert(TestEnumSet::All().Has(TestEnum::TEST_2),
"Expected All() to be integral constant expression");
static_assert(TestEnumSet::FromRange(TestEnum::TEST_2, TestEnum::TEST_4)
.Has(TestEnum::TEST_2),
"Expected FromRange() to be integral constant expression");
static_assert(TestEnumSet(TestEnum::TEST_2).Has(TestEnum::TEST_2),
"Expected TestEnumSet() to be integral constant expression");
static_assert(
TestEnumSet::FromEnumBitmask(1 << static_cast<uint64_t>(TestEnum::TEST_2))
.Has(TestEnum::TEST_2),
"Expected TestEnumSet() to be integral constant expression");
static_assert(
TestEnumSet::single_val_bitstring(TestEnum::TEST_1) == 1,
"Expected single_val_bitstring() to be integral constant expression");
static_assert(TestEnumSet::bitstring(TestEnum::TEST_1, TestEnum::TEST_2) == 3,
"Expected bitstring() to be integral constant expression");
}
TEST_F(EnumSetTest, DefaultConstructor) {
const TestEnumSet enums;
EXPECT_TRUE(enums.Empty());
EXPECT_EQ(static_cast<size_t>(0), enums.Size());
EXPECT_FALSE(enums.Has(TestEnum::TEST_1));
EXPECT_FALSE(enums.Has(TestEnum::TEST_2));
EXPECT_FALSE(enums.Has(TestEnum::TEST_3));
EXPECT_FALSE(enums.Has(TestEnum::TEST_4));
EXPECT_FALSE(enums.Has(TestEnum::TEST_5));
}
TEST_F(EnumSetTest, OneArgConstructor) {
const TestEnumSet enums(TestEnum::TEST_4);
EXPECT_FALSE(enums.Empty());
EXPECT_EQ(static_cast<size_t>(1), enums.Size());
EXPECT_FALSE(enums.Has(TestEnum::TEST_1));
EXPECT_FALSE(enums.Has(TestEnum::TEST_2));
EXPECT_FALSE(enums.Has(TestEnum::TEST_3));
EXPECT_TRUE(enums.Has(TestEnum::TEST_4));
EXPECT_FALSE(enums.Has(TestEnum::TEST_5));
}
TEST_F(EnumSetTest, OneArgConstructorSize) {
TestEnumExtremeSet enums(TestEnumExtreme::TEST_0);
EXPECT_TRUE(enums.Has(TestEnumExtreme::TEST_0));
}
TEST_F(EnumSetTest, TwoArgConstructor) {
const TestEnumSet enums(TestEnum::TEST_4, TestEnum::TEST_2);
EXPECT_FALSE(enums.Empty());
EXPECT_EQ(static_cast<size_t>(2), enums.Size());
EXPECT_FALSE(enums.Has(TestEnum::TEST_1));
EXPECT_TRUE(enums.Has(TestEnum::TEST_2));
EXPECT_FALSE(enums.Has(TestEnum::TEST_3));
EXPECT_TRUE(enums.Has(TestEnum::TEST_4));
EXPECT_FALSE(enums.Has(TestEnum::TEST_5));
}
TEST_F(EnumSetTest, ThreeArgConstructor) {
const TestEnumSet enums(TestEnum::TEST_4, TestEnum::TEST_2, TestEnum::TEST_1);
EXPECT_FALSE(enums.Empty());
EXPECT_EQ(static_cast<size_t>(3), enums.Size());
EXPECT_TRUE(enums.Has(TestEnum::TEST_1));
EXPECT_TRUE(enums.Has(TestEnum::TEST_2));
EXPECT_FALSE(enums.Has(TestEnum::TEST_3));
EXPECT_TRUE(enums.Has(TestEnum::TEST_4));
EXPECT_FALSE(enums.Has(TestEnum::TEST_5));
}
TEST_F(EnumSetTest, DuplicatesInConstructor) {
EXPECT_EQ(TestEnumSet(TestEnum::TEST_4, TestEnum::TEST_2, TestEnum::TEST_1,
TestEnum::TEST_4, TestEnum::TEST_2, TestEnum::TEST_4),
TestEnumSet(TestEnum::TEST_1, TestEnum::TEST_2, TestEnum::TEST_4));
}
TEST_F(EnumSetTest, All) {
const TestEnumSet enums(TestEnumSet::All());
EXPECT_FALSE(enums.Empty());
EXPECT_EQ(static_cast<size_t>(5), enums.Size());
EXPECT_TRUE(enums.Has(TestEnum::TEST_1));
EXPECT_TRUE(enums.Has(TestEnum::TEST_2));
EXPECT_TRUE(enums.Has(TestEnum::TEST_3));
EXPECT_TRUE(enums.Has(TestEnum::TEST_4));
EXPECT_TRUE(enums.Has(TestEnum::TEST_5));
}
TEST_F(EnumSetTest, FromRange) {
EXPECT_EQ(TestEnumSet(TestEnum::TEST_2, TestEnum::TEST_3, TestEnum::TEST_4),
TestEnumSet::FromRange(TestEnum::TEST_2, TestEnum::TEST_4));
EXPECT_EQ(TestEnumSet::All(),
TestEnumSet::FromRange(TestEnum::TEST_1, TestEnum::TEST_5));
EXPECT_EQ(TestEnumSet(TestEnum::TEST_2),
TestEnumSet::FromRange(TestEnum::TEST_2, TestEnum::TEST_2));
using RestrictedRangeSet =
EnumSet<TestEnum, TestEnum::TEST_2, TestEnum::TEST_MAX>;
EXPECT_EQ(
RestrictedRangeSet(TestEnum::TEST_2, TestEnum::TEST_3, TestEnum::TEST_4),
RestrictedRangeSet::FromRange(TestEnum::TEST_2, TestEnum::TEST_4));
EXPECT_EQ(RestrictedRangeSet::All(),
RestrictedRangeSet::FromRange(TestEnum::TEST_2, TestEnum::TEST_5));
}
TEST_F(EnumSetTest, Put) {
TestEnumSet enums(TestEnum::TEST_4);
enums.Put(TestEnum::TEST_3);
EXPECT_EQ(TestEnumSet(TestEnum::TEST_3, TestEnum::TEST_4), enums);
enums.Put(TestEnum::TEST_5);
EXPECT_EQ(TestEnumSet(TestEnum::TEST_3, TestEnum::TEST_4, TestEnum::TEST_5),
enums);
}
TEST_F(EnumSetTest, PutAll) {
TestEnumSet enums(TestEnum::TEST_4, TestEnum::TEST_5);
enums.PutAll(TestEnumSet(TestEnum::TEST_3, TestEnum::TEST_4));
EXPECT_EQ(TestEnumSet(TestEnum::TEST_3, TestEnum::TEST_4, TestEnum::TEST_5),
enums);
}
TEST_F(EnumSetTest, PutRange) {
TestEnumSet enums;
enums.PutRange(TestEnum::TEST_2, TestEnum::TEST_4);
EXPECT_EQ(TestEnumSet(TestEnum::TEST_2, TestEnum::TEST_3, TestEnum::TEST_4),
enums);
}
TEST_F(EnumSetTest, RetainAll) {
TestEnumSet enums(TestEnum::TEST_4, TestEnum::TEST_5);
enums.RetainAll(TestEnumSet(TestEnum::TEST_3, TestEnum::TEST_4));
EXPECT_EQ(TestEnumSet(TestEnum::TEST_4), enums);
}
TEST_F(EnumSetTest, Remove) {
TestEnumSet enums(TestEnum::TEST_4, TestEnum::TEST_5);
enums.Remove(TestEnum::TEST_1);
enums.Remove(TestEnum::TEST_3);
EXPECT_EQ(TestEnumSet(TestEnum::TEST_4, TestEnum::TEST_5), enums);
enums.Remove(TestEnum::TEST_4);
EXPECT_EQ(TestEnumSet(TestEnum::TEST_5), enums);
enums.Remove(TestEnum::TEST_5);
enums.Remove(TestEnum::TEST_6_OUT_OF_BOUNDS);
EXPECT_TRUE(enums.Empty());
}
TEST_F(EnumSetTest, RemoveAll) {
TestEnumSet enums(TestEnum::TEST_4, TestEnum::TEST_5);
enums.RemoveAll(TestEnumSet(TestEnum::TEST_3, TestEnum::TEST_4));
EXPECT_EQ(TestEnumSet(TestEnum::TEST_5), enums);
}
TEST_F(EnumSetTest, Clear) {
TestEnumSet enums(TestEnum::TEST_4, TestEnum::TEST_5);
enums.Clear();
EXPECT_TRUE(enums.Empty());
}
TEST_F(EnumSetTest, Has) {
const TestEnumSet enums(TestEnum::TEST_4, TestEnum::TEST_5);
EXPECT_FALSE(enums.Has(TestEnum::TEST_1));
EXPECT_FALSE(enums.Has(TestEnum::TEST_2));
EXPECT_FALSE(enums.Has(TestEnum::TEST_3));
EXPECT_TRUE(enums.Has(TestEnum::TEST_4));
EXPECT_TRUE(enums.Has(TestEnum::TEST_5));
EXPECT_FALSE(enums.Has(TestEnum::TEST_6_OUT_OF_BOUNDS));
}
TEST_F(EnumSetTest, HasAll) {
const TestEnumSet enums1(TestEnum::TEST_4, TestEnum::TEST_5);
const TestEnumSet enums2(TestEnum::TEST_3, TestEnum::TEST_4);
const TestEnumSet enums3 = Union(enums1, enums2);
EXPECT_TRUE(enums1.HasAll(enums1));
EXPECT_FALSE(enums1.HasAll(enums2));
EXPECT_FALSE(enums1.HasAll(enums3));
EXPECT_FALSE(enums2.HasAll(enums1));
EXPECT_TRUE(enums2.HasAll(enums2));
EXPECT_FALSE(enums2.HasAll(enums3));
EXPECT_TRUE(enums3.HasAll(enums1));
EXPECT_TRUE(enums3.HasAll(enums2));
EXPECT_TRUE(enums3.HasAll(enums3));
}
TEST_F(EnumSetTest, HasAny) {
const TestEnumSet enums1(TestEnum::TEST_4, TestEnum::TEST_5);
const TestEnumSet enums2(TestEnum::TEST_3, TestEnum::TEST_4);
const TestEnumSet enums3(TestEnum::TEST_1, TestEnum::TEST_2);
EXPECT_TRUE(enums1.HasAny(enums1));
EXPECT_TRUE(enums1.HasAny(enums2));
EXPECT_FALSE(enums1.HasAny(enums3));
EXPECT_TRUE(enums2.HasAny(enums1));
EXPECT_TRUE(enums2.HasAny(enums2));
EXPECT_FALSE(enums2.HasAny(enums3));
EXPECT_FALSE(enums3.HasAny(enums1));
EXPECT_FALSE(enums3.HasAny(enums2));
EXPECT_TRUE(enums3.HasAny(enums3));
}
TEST_F(EnumSetTest, Iterators) {
const TestEnumSet enums1(TestEnum::TEST_4, TestEnum::TEST_5);
TestEnumSet enums2;
for (TestEnum e : enums1) {
enums2.Put(e);
}
EXPECT_EQ(enums2, enums1);
}
TEST_F(EnumSetTest, RangeBasedForLoop) {
const TestEnumSet enums1(TestEnum::TEST_2, TestEnum::TEST_5);
TestEnumSet enums2;
for (TestEnum e : enums1) {
enums2.Put(e);
}
EXPECT_EQ(enums2, enums1);
}
TEST_F(EnumSetTest, IteratorComparisonOperators) {
const TestEnumSet enums(TestEnum::TEST_2, TestEnum::TEST_4);
const auto first_it = enums.begin();
const auto second_it = ++enums.begin();
// Copy for equality testing.
const auto first_it_copy = first_it;
// Sanity check, as the rest of the test relies on |first_it| and
// |first_it_copy| pointing to the same element and |first_it| and |second_it|
// pointing to different elements.
ASSERT_EQ(*first_it, *first_it_copy);
ASSERT_NE(*first_it, *second_it);
EXPECT_TRUE(first_it == first_it_copy);
EXPECT_FALSE(first_it != first_it_copy);
EXPECT_TRUE(first_it != second_it);
EXPECT_FALSE(first_it == second_it);
}
TEST_F(EnumSetTest, IteratorIncrementOperators) {
const TestEnumSet enums(TestEnum::TEST_2, TestEnum::TEST_4);
const auto begin = enums.begin();
auto post_inc_it = begin;
auto pre_inc_it = begin;
auto post_inc_return_it = post_inc_it++;
auto pre_inc_return_it = ++pre_inc_it;
// |pre_inc_it| and |post_inc_it| should point to the same element.
EXPECT_EQ(pre_inc_it, post_inc_it);
EXPECT_EQ(*pre_inc_it, *post_inc_it);
// |pre_inc_it| should NOT point to the first element.
EXPECT_NE(begin, pre_inc_it);
EXPECT_NE(*begin, *pre_inc_it);
// |post_inc_it| should NOT point to the first element.
EXPECT_NE(begin, post_inc_it);
EXPECT_NE(*begin, *post_inc_it);
// Prefix increment should return new iterator.
EXPECT_EQ(pre_inc_return_it, post_inc_it);
EXPECT_EQ(*pre_inc_return_it, *post_inc_it);
// Postfix increment should return original iterator.
EXPECT_EQ(post_inc_return_it, begin);
EXPECT_EQ(*post_inc_return_it, *begin);
}
TEST_F(EnumSetTest, Union) {
const TestEnumSet enums1(TestEnum::TEST_4, TestEnum::TEST_5);
const TestEnumSet enums2(TestEnum::TEST_3, TestEnum::TEST_4);
const TestEnumSet enums3 = Union(enums1, enums2);
EXPECT_EQ(TestEnumSet(TestEnum::TEST_3, TestEnum::TEST_4, TestEnum::TEST_5),
enums3);
}
TEST_F(EnumSetTest, Intersection) {
const TestEnumSet enums1(TestEnum::TEST_4, TestEnum::TEST_5);
const TestEnumSet enums2(TestEnum::TEST_3, TestEnum::TEST_4);
const TestEnumSet enums3 = Intersection(enums1, enums2);
EXPECT_EQ(TestEnumSet(TestEnum::TEST_4), enums3);
}
TEST_F(EnumSetTest, Difference) {
const TestEnumSet enums1(TestEnum::TEST_4, TestEnum::TEST_5);
const TestEnumSet enums2(TestEnum::TEST_3, TestEnum::TEST_4);
const TestEnumSet enums3 = Difference(enums1, enums2);
EXPECT_EQ(TestEnumSet(TestEnum::TEST_5), enums3);
}
TEST_F(EnumSetTest, ToFromEnumBitmask) {
const TestEnumSet empty;
EXPECT_EQ(empty.ToEnumBitmask(), 0ULL);
EXPECT_EQ(TestEnumSet::FromEnumBitmask(0), empty);
const TestEnumSet enums1(TestEnum::TEST_2);
const uint64_t val1 = 1ULL << static_cast<uint64_t>(TestEnum::TEST_2);
EXPECT_EQ(enums1.ToEnumBitmask(), val1);
EXPECT_EQ(TestEnumSet::FromEnumBitmask(val1), enums1);
const TestEnumSet enums2(TestEnum::TEST_3, TestEnum::TEST_4);
const uint64_t val2 = 1ULL << static_cast<uint64_t>(TestEnum::TEST_3) |
1ULL << static_cast<uint64_t>(TestEnum::TEST_4);
EXPECT_EQ(enums2.ToEnumBitmask(), val2);
EXPECT_EQ(TestEnumSet::FromEnumBitmask(val2), enums2);
}
TEST_F(EnumSetTest, ToFromEnumBitmaskExtreme) {
const TestEnumExtremeSet empty;
EXPECT_EQ(empty.ToEnumBitmask(), 0ULL);
EXPECT_EQ(TestEnumExtremeSet::FromEnumBitmask(0ULL), empty);
const TestEnumExtremeSet enums1(TestEnumExtreme::TEST_63);
const uint64_t val1 = 1ULL << static_cast<uint64_t>(TestEnumExtreme::TEST_63);
EXPECT_EQ(enums1.ToEnumBitmask(), val1);
EXPECT_EQ(TestEnumExtremeSet::FromEnumBitmask(val1), enums1);
}
TEST_F(EnumSetTest, FromEnumBitmaskIgnoresExtraBits) {
const TestEnumSet kSets[] = {
TestEnumSet(),
TestEnumSet(TestEnum::TEST_MIN),
TestEnumSet(TestEnum::TEST_MAX),
TestEnumSet(TestEnum::TEST_MIN, TestEnum::TEST_MAX),
TestEnumSet(TestEnum::TEST_MIN, TestEnum::TEST_MAX),
TestEnumSet(TestEnum::TEST_2, TestEnum::TEST_4),
};
size_t i = 0;
for (const TestEnumSet& set : kSets) {
SCOPED_TRACE(i++);
const uint64_t val = set.ToEnumBitmask();
// Produce a bitstring for a single enum value. When `e` is in range
// relative to TestEnumSet, this function behaves identically to
// `single_val_bitstring`. When `e` is not in range, this function attempts
// to compute a value, while `single_val_bitstring` intentionally crashes.
auto single_val_bitstring = [](TestEnum e) -> uint64_t {
uint64_t shift_amount = static_cast<uint64_t>(e);
// Shifting left more than the number of bits in the lhs would be UB.
CHECK_LT(shift_amount, sizeof(uint64_t) * 8);
return 1ULL << shift_amount;
};
const uint64_t kJunkVals[] = {
// Add junk bits above TEST_MAX.
val | single_val_bitstring(TestEnum::TEST_6_OUT_OF_BOUNDS),
val | single_val_bitstring(TestEnum::TEST_7_OUT_OF_BOUNDS),
val | single_val_bitstring(TestEnum::TEST_6_OUT_OF_BOUNDS) |
single_val_bitstring(TestEnum::TEST_7_OUT_OF_BOUNDS),
// Add junk bits below TEST_MIN.
val | single_val_bitstring(TestEnum::TEST_BELOW_MIN),
};
for (uint64_t junk_val : kJunkVals) {
SCOPED_TRACE(junk_val);
ASSERT_NE(val, junk_val);
const TestEnumSet set_from_junk = TestEnumSet::FromEnumBitmask(junk_val);
EXPECT_EQ(set_from_junk, set);
EXPECT_EQ(set_from_junk.ToEnumBitmask(), set.ToEnumBitmask());
// Iterating both sets should produce the same sequence.
auto it1 = set.begin();
auto it2 = set_from_junk.begin();
while (it1 != set.end() && it2 != set_from_junk.end()) {
EXPECT_EQ(*it1, *it2);
++it1;
++it2;
}
EXPECT_TRUE(it1 == set.end());
EXPECT_TRUE(it2 == set_from_junk.end());
}
}
}
TEST_F(EnumSetDeathTest, SingleValBitstringCrashesOnOutOfRange) {
EXPECT_CHECK_DEATH(
TestEnumSet::single_val_bitstring(TestEnum::TEST_BELOW_MIN));
EXPECT_CHECK_DEATH(
TestEnumSet::single_val_bitstring(TestEnum::TEST_6_OUT_OF_BOUNDS));
EXPECT_CHECK_DEATH(
TestEnumSet::single_val_bitstring(TestEnum::TEST_7_OUT_OF_BOUNDS));
}
TEST_F(EnumSetTest, SparseEnum) {
enum class TestEnumSparse {
TEST_1 = 1,
TEST_MIN = 1,
TEST_50 = 50,
TEST_100 = 100,
TEST_MAX = TEST_100,
};
using TestEnumSparseSet = EnumSet<TestEnumSparse, TestEnumSparse::TEST_MIN,
TestEnumSparse::TEST_MAX>;
TestEnumSparseSet sparse;
sparse.Put(TestEnumSparse::TEST_MIN);
sparse.Put(TestEnumSparse::TEST_MAX);
EXPECT_EQ(sparse.Size(), 2u);
// TestEnumSparseSet::All() does not compile because there are more than 64
// possible values. See NCTEST_ALL_METHOD_DISALLOWED_ON_LARGE_SPARSE_ENUM in
// enum_set_unittest.nc.
}
TEST_F(EnumSetTest, SparseEnumSmall) {
enum class TestEnumSparse {
TEST_1 = 1,
TEST_MIN = 1,
TEST_50 = 50,
TEST_60 = 60,
TEST_MAX = TEST_60,
};
using TestEnumSparseSet = EnumSet<TestEnumSparse, TestEnumSparse::TEST_MIN,
TestEnumSparse::TEST_MAX>;
TestEnumSparseSet sparse;
sparse.Put(TestEnumSparse::TEST_MIN);
sparse.Put(TestEnumSparse::TEST_MAX);
EXPECT_EQ(sparse.Size(), 2u);
// This may seem a little surprising! There are only 3 distinct values in
// TestEnumSparse, so why does TestEnumSparseSet think it has 60 of them? This
// is an artifact of EnumSet's design, as it has no way of knowing which
// values between the min and max are actually named in the enum's definition.
EXPECT_EQ(TestEnumSparseSet::All().Size(), 60u);
}
TEST_F(EnumSetTest, SingleValBitstringCrashesOnOutOfRange) {
EXPECT_CHECK_DEATH(
TestEnumSet::single_val_bitstring(TestEnum::TEST_BELOW_MIN));
EXPECT_CHECK_DEATH(
TestEnumSet::single_val_bitstring(TestEnum::TEST_6_OUT_OF_BOUNDS));
EXPECT_CHECK_DEATH(
TestEnumSet::single_val_bitstring(TestEnum::TEST_7_OUT_OF_BOUNDS));
}
TEST_F(EnumSetDeathTest, SingleValBitstringEnumWithNegatives) {
enum class TestEnumNeg {
TEST_BELOW_MIN = -3,
TEST_A = -2,
TEST_MIN = TEST_A,
TEST_B = -1,
TEST_C = 0,
TEST_D = 1,
TEST_E = 2,
TEST_MAX = TEST_E,
TEST_F = 3,
};
// This EnumSet starts negative and ends positive.
using TestEnumWithNegSet =
EnumSet<TestEnumNeg, TestEnumNeg::TEST_MIN, TestEnumNeg::TEST_MAX>;
// Should crash because TEST_BELOW_MIN is not in range.
EXPECT_CHECK_DEATH(
TestEnumWithNegSet::single_val_bitstring(TestEnumNeg::TEST_BELOW_MIN));
// TEST_D is in range, but note that TEST_MIN is negative. This should work.
EXPECT_EQ(TestEnumWithNegSet::single_val_bitstring(TestEnumNeg::TEST_D),
1u << 3);
// Even though TEST_A is negative, it is in range, so this should work.
EXPECT_EQ(TestEnumWithNegSet::single_val_bitstring(TestEnumNeg::TEST_A),
1u << 0);
}
TEST_F(EnumSetDeathTest, SingleValBitstringEnumWithOnlyNegatives) {
enum class TestEnumNeg {
TEST_BELOW_MIN = -10,
TEST_A = -9,
TEST_MIN = TEST_A,
TEST_B = -8,
TEST_C = -7,
TEST_D = -6,
TEST_MAX = TEST_D,
TEST_F = -5,
};
// This EnumSet starts negative and ends negative.
using TestEnumWithNegSet =
EnumSet<TestEnumNeg, TestEnumNeg::TEST_MIN, TestEnumNeg::TEST_MAX>;
// Should crash because TEST_BELOW_MIN is not in range.
EXPECT_CHECK_DEATH(
TestEnumWithNegSet::single_val_bitstring(TestEnumNeg::TEST_BELOW_MIN));
// TEST_D is in range, but note that TEST_MIN is negative. This should work.
EXPECT_EQ(TestEnumWithNegSet::single_val_bitstring(TestEnumNeg::TEST_D),
1u << 3);
// Even though TEST_A is negative, it is in range, so this should work.
EXPECT_EQ(TestEnumWithNegSet::single_val_bitstring(TestEnumNeg::TEST_A),
1u << 0);
}
TEST_F(EnumSetDeathTest, VariadicConstructorCrashesOnOutOfRange) {
// Constructor should crash given out-of-range values.
EXPECT_CHECK_DEATH(TestEnumSet(TestEnum::TEST_BELOW_MIN).Empty());
EXPECT_CHECK_DEATH(TestEnumSet(TestEnum::TEST_BELOW_MIN_NEGATIVE).Empty());
EXPECT_CHECK_DEATH(TestEnumSet(TestEnum::TEST_6_OUT_OF_BOUNDS).Empty());
}
TEST_F(EnumSetDeathTest, FromRangeCrashesOnBadInputs) {
// FromRange crashes when the bounds are in range, but out of order.
EXPECT_CHECK_DEATH(
TestEnumSet().FromRange(TestEnum::TEST_3, TestEnum::TEST_1));
// FromRange crashes when the start value is out of range.
EXPECT_CHECK_DEATH(
TestEnumSet().FromRange(TestEnum::TEST_BELOW_MIN, TestEnum::TEST_1));
EXPECT_CHECK_DEATH(TestEnumSet().FromRange(TestEnum::TEST_BELOW_MIN_NEGATIVE,
TestEnum::TEST_1));
EXPECT_CHECK_DEATH(TestEnumSet().FromRange(TestEnum::TEST_6_OUT_OF_BOUNDS,
TestEnum::TEST_1));
// FromRange crashes when the end value is out of range.
EXPECT_CHECK_DEATH(
TestEnumSet().FromRange(TestEnum::TEST_3, TestEnum::TEST_BELOW_MIN));
EXPECT_CHECK_DEATH(TestEnumSet().FromRange(
TestEnum::TEST_3, TestEnum::TEST_BELOW_MIN_NEGATIVE));
EXPECT_CHECK_DEATH(TestEnumSet().FromRange(TestEnum::TEST_3,
TestEnum::TEST_6_OUT_OF_BOUNDS));
// Crashes when start and end are both out of range.
EXPECT_CHECK_DEATH(TestEnumSet().FromRange(TestEnum::TEST_7_OUT_OF_BOUNDS,
TestEnum::TEST_6_OUT_OF_BOUNDS));
EXPECT_CHECK_DEATH(TestEnumSet().FromRange(TestEnum::TEST_6_OUT_OF_BOUNDS,
TestEnum::TEST_7_OUT_OF_BOUNDS));
}
TEST_F(EnumSetDeathTest, PutCrashesOnOutOfRange) {
EXPECT_CHECK_DEATH(TestEnumSet().Put(TestEnum::TEST_BELOW_MIN));
EXPECT_CHECK_DEATH(TestEnumSet().Put(TestEnum::TEST_BELOW_MIN_NEGATIVE));
EXPECT_CHECK_DEATH(TestEnumSet().Put(TestEnum::TEST_6_OUT_OF_BOUNDS));
EXPECT_CHECK_DEATH(TestEnumSet().Put(TestEnum::TEST_7_OUT_OF_BOUNDS));
}
TEST_F(EnumSetDeathTest, PutRangeCrashesOnBadInputs) {
// Crashes when one input is out of range.
EXPECT_CHECK_DEATH(TestEnumSet().PutRange(TestEnum::TEST_BELOW_MIN_NEGATIVE,
TestEnum::TEST_BELOW_MIN));
EXPECT_CHECK_DEATH(
TestEnumSet().PutRange(TestEnum::TEST_3, TestEnum::TEST_7_OUT_OF_BOUNDS));
// Crashes when both inputs are out of range.
EXPECT_CHECK_DEATH(TestEnumSet().PutRange(TestEnum::TEST_6_OUT_OF_BOUNDS,
TestEnum::TEST_7_OUT_OF_BOUNDS));
// Crashes when inputs are out of order.
EXPECT_CHECK_DEATH(
TestEnumSet().PutRange(TestEnum::TEST_2, TestEnum::TEST_1));
}
} // namespace
} // namespace base