blob: f7d35895de1a14daca89bef8b76e81c5853c8ea9 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/json/json_reader.h"
#include <stddef.h>
#include <utility>
#include "base/base_paths.h"
#include "base/files/file_util.h"
#include "base/logging.h"
#include "base/path_service.h"
#include "base/strings/string_piece.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/values.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace {
// MSan will do a better job detecting over-read errors if the input is not
// nul-terminated on the heap. This will copy |input| to a new buffer owned by
// |owner|, returning a base::StringPiece to |owner|.
base::StringPiece MakeNotNullTerminatedInput(const char* input,
std::unique_ptr<char[]>* owner) {
size_t str_len = strlen(input);
owner->reset(new char[str_len]);
memcpy(owner->get(), input, str_len);
return base::StringPiece(owner->get(), str_len);
}
} // namespace
namespace base {
TEST(JSONReaderTest, Whitespace) {
absl::optional<Value> root = JSONReader::Read(" null ");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_none());
}
TEST(JSONReaderTest, InvalidString) {
// These are invalid because they do not represent a JSON value,
// see https://tools.ietf.org/rfc/rfc8259.txt
EXPECT_FALSE(JSONReader::Read(""));
EXPECT_FALSE(JSONReader::Read("nu"));
}
TEST(JSONReaderTest, SimpleBool) {
absl::optional<Value> root = JSONReader::Read("true ");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_bool());
}
TEST(JSONReaderTest, EmbeddedComments) {
absl::optional<Value> root = JSONReader::Read("/* comment */null");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_none());
root = JSONReader::Read("40 /* comment */");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_int());
root = JSONReader::Read("true // comment");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_bool());
// Comments in different contexts.
root = JSONReader::Read("{ \"cheese\": 3\n\n // Here's a comment\n}");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_dict());
root = JSONReader::Read("{ \"cheese\": 3// Here's a comment\n}");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_dict());
// Multiple comment markers.
root = JSONReader::Read(
"{ \"cheese\": 3// Here's a comment // and another\n}");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_dict());
root = JSONReader::Read("/* comment */\"sample string\"");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_string());
EXPECT_EQ("sample string", root->GetString());
root = JSONReader::Read("[1, /* comment, 2 ] */ \n 3]");
ASSERT_TRUE(root);
Value::List* list = root->GetIfList();
ASSERT_TRUE(list);
ASSERT_EQ(2u, list->size());
ASSERT_TRUE((*list)[0].is_int());
EXPECT_EQ(1, (*list)[0].GetInt());
ASSERT_TRUE((*list)[1].is_int());
EXPECT_EQ(3, (*list)[1].GetInt());
root = JSONReader::Read("[1, /*a*/2, 3]");
ASSERT_TRUE(root);
list = root->GetIfList();
ASSERT_TRUE(list);
EXPECT_EQ(3u, (*list).size());
root = JSONReader::Read("/* comment **/42");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_int());
EXPECT_EQ(42, root->GetInt());
root = JSONReader::Read(
"/* comment **/\n"
"// */ 43\n"
"44");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_int());
EXPECT_EQ(44, root->GetInt());
// At one point, this parsed successfully as the value three.
EXPECT_FALSE(JSONReader::Read("/33"));
}
TEST(JSONReaderTest, Ints) {
absl::optional<Value> root = JSONReader::Read("43");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_int());
EXPECT_EQ(43, root->GetInt());
}
TEST(JSONReaderTest, NonDecimalNumbers) {
// According to RFC 8259, oct, hex, and leading zeros are invalid JSON.
EXPECT_FALSE(JSONReader::Read("043"));
EXPECT_FALSE(JSONReader::Read("0x43"));
EXPECT_FALSE(JSONReader::Read("00"));
}
TEST(JSONReaderTest, NumberZero) {
// Test 0 (which needs to be special cased because of the leading zero
// clause).
absl::optional<Value> root = JSONReader::Read("0");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_int());
EXPECT_EQ(0, root->GetInt());
}
TEST(JSONReaderTest, LargeIntPromotion) {
// Numbers that overflow ints should succeed, being internally promoted to
// storage as doubles
absl::optional<Value> root = JSONReader::Read("2147483648");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_double());
EXPECT_DOUBLE_EQ(2147483648.0, root->GetDouble());
root = JSONReader::Read("-2147483649");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_double());
EXPECT_DOUBLE_EQ(-2147483649.0, root->GetDouble());
}
TEST(JSONReaderTest, LargerIntIsLossy) {
// Parse LONG_MAX as a JSON number (not a JSON string). The result of the
// parse is a base::Value, either a (32-bit) int or a (64-bit) double.
// LONG_MAX would overflow an int and can only be approximated by a double.
// In this case, parsing is lossy.
const char* etc807 = "9223372036854775807";
const char* etc808 = "9223372036854775808.000000";
absl::optional<Value> root = JSONReader::Read(etc807);
ASSERT_TRUE(root);
ASSERT_FALSE(root->is_int());
ASSERT_TRUE(root->is_double());
// We use StringPrintf instead of NumberToString, because the NumberToString
// function does not let you specify the precision, and its default output,
// "9.223372036854776e+18", isn't precise enough to see the lossiness.
EXPECT_EQ(std::string(etc808), StringPrintf("%f", root->GetDouble()));
}
TEST(JSONReaderTest, Doubles) {
absl::optional<Value> root = JSONReader::Read("43.1");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_double());
EXPECT_DOUBLE_EQ(43.1, root->GetDouble());
root = JSONReader::Read("4.3e-1");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_double());
EXPECT_DOUBLE_EQ(.43, root->GetDouble());
root = JSONReader::Read("2.1e0");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_double());
EXPECT_DOUBLE_EQ(2.1, root->GetDouble());
root = JSONReader::Read("2.1e+0001");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_double());
EXPECT_DOUBLE_EQ(21.0, root->GetDouble());
root = JSONReader::Read("0.01");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_double());
EXPECT_DOUBLE_EQ(0.01, root->GetDouble());
root = JSONReader::Read("1.00");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_double());
EXPECT_DOUBLE_EQ(1.0, root->GetDouble());
// Some "parse to float64" implementations find this one tricky.
// https://github.com/serde-rs/json/issues/707
root = JSONReader::Read("122.416294033786585");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_double());
EXPECT_DOUBLE_EQ(122.416294033786585, root->GetDouble());
// This is syntaxtically valid, but out of range of a double.
auto value =
JSONReader::ReadAndReturnValueWithError("1e1000", JSON_PARSE_RFC);
ASSERT_FALSE(value.has_value());
}
TEST(JSONReaderTest, FractionalNumbers) {
// Fractional parts must have a digit before and after the decimal point.
EXPECT_FALSE(JSONReader::Read("1."));
EXPECT_FALSE(JSONReader::Read(".1"));
EXPECT_FALSE(JSONReader::Read("1.e10"));
}
TEST(JSONReaderTest, ExponentialNumbers) {
// Exponent must have a digit following the 'e'.
EXPECT_FALSE(JSONReader::Read("1e"));
EXPECT_FALSE(JSONReader::Read("1E"));
EXPECT_FALSE(JSONReader::Read("1e1."));
EXPECT_FALSE(JSONReader::Read("1e1.0"));
}
TEST(JSONReaderTest, InvalidInfNAN) {
// The largest finite double is roughly 1.8e308.
EXPECT_FALSE(JSONReader::Read("1e1000"));
EXPECT_FALSE(JSONReader::Read("-1e1000"));
EXPECT_FALSE(JSONReader::Read("NaN"));
EXPECT_FALSE(JSONReader::Read("nan"));
EXPECT_FALSE(JSONReader::Read("inf"));
}
TEST(JSONReaderTest, InvalidNumbers) {
EXPECT_TRUE(JSONReader::Read("4.3"));
EXPECT_FALSE(JSONReader::Read("4."));
EXPECT_FALSE(JSONReader::Read("4.3.1"));
EXPECT_FALSE(JSONReader::Read("4e3.1"));
EXPECT_FALSE(JSONReader::Read("4.a"));
EXPECT_FALSE(JSONReader::Read("42a"));
}
TEST(JSONReaderTest, SimpleString) {
absl::optional<Value> root = JSONReader::Read("\"hello world\"");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_string());
EXPECT_EQ("hello world", root->GetString());
}
TEST(JSONReaderTest, EmptyString) {
absl::optional<Value> root = JSONReader::Read("\"\"");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_string());
EXPECT_EQ("", root->GetString());
}
TEST(JSONReaderTest, BasicStringEscapes) {
absl::optional<Value> root =
JSONReader::Read("\" \\\"\\\\\\/\\b\\f\\n\\r\\t\\v\"");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_string());
EXPECT_EQ(" \"\\/\b\f\n\r\t\v", root->GetString());
}
TEST(JSONReaderTest, UnicodeEscapes) {
// Test hex and unicode escapes including the null character.
absl::optional<Value> root =
JSONReader::Read("\"\\x41\\xFF\\x00\\u1234\\u0000\"");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_string());
const std::string& str_val = root->GetString();
EXPECT_EQ(std::wstring(L"A\x00FF\0\x1234\0", 5), UTF8ToWide(str_val));
// The contents of a Unicode escape may only be four hex chars. Previously the
// parser accepted things like "0x01" and "0X01".
EXPECT_FALSE(JSONReader::Read("\"\\u0x12\""));
// Surrogate pairs are allowed in JSON.
EXPECT_TRUE(JSONReader::Read("\"\\uD834\\uDD1E\"")); // U+1D11E
}
TEST(JSONReaderTest, InvalidStrings) {
EXPECT_FALSE(JSONReader::Read("\"no closing quote"));
EXPECT_FALSE(JSONReader::Read("\"\\z invalid escape char\""));
EXPECT_FALSE(JSONReader::Read("\"\\xAQ invalid hex code\""));
EXPECT_FALSE(JSONReader::Read("not enough hex chars\\x1\""));
EXPECT_FALSE(JSONReader::Read("\"not enough escape chars\\u123\""));
EXPECT_FALSE(JSONReader::Read("\"extra backslash at end of input\\\""));
}
TEST(JSONReaderTest, BasicArray) {
absl::optional<Value> root = JSONReader::Read("[true, false, null]");
ASSERT_TRUE(root);
Value::List* list = root->GetIfList();
ASSERT_TRUE(list);
EXPECT_EQ(3U, list->size());
// Test with trailing comma. Should be parsed the same as above.
absl::optional<Value> root2 =
JSONReader::Read("[true, false, null, ]", JSON_ALLOW_TRAILING_COMMAS);
ASSERT_TRUE(root2);
EXPECT_EQ(*list, *root2);
}
TEST(JSONReaderTest, EmptyArray) {
absl::optional<Value> value = JSONReader::Read("[]");
ASSERT_TRUE(value);
Value::List* list = value->GetIfList();
ASSERT_TRUE(list);
EXPECT_TRUE(list->empty());
}
TEST(JSONReaderTest, CompleteArray) {
absl::optional<Value> value = JSONReader::Read("[\"a\", 3, 4.56, null]");
ASSERT_TRUE(value);
Value::List* list = value->GetIfList();
ASSERT_TRUE(list);
EXPECT_EQ(4U, list->size());
}
TEST(JSONReaderTest, NestedArrays) {
absl::optional<Value> value = JSONReader::Read(
"[[true], [], {\"smell\": \"nice\",\"taste\": \"yummy\" }, [false, [], "
"[null]], null]");
ASSERT_TRUE(value);
Value::List* list = value->GetIfList();
ASSERT_TRUE(list);
EXPECT_EQ(5U, list->size());
// Lots of trailing commas.
absl::optional<Value> root2 = JSONReader::Read(
"[[true], [], {\"smell\": \"nice\",\"taste\": \"yummy\" }, [false, [], "
"[null, ] , ], null,]",
JSON_ALLOW_TRAILING_COMMAS);
ASSERT_TRUE(root2);
EXPECT_EQ(*list, *root2);
}
TEST(JSONReaderTest, InvalidArrays) {
// Missing close brace.
EXPECT_FALSE(JSONReader::Read("[[true], [], [false, [], [null]], null"));
// Too many commas.
EXPECT_FALSE(JSONReader::Read("[true,, null]"));
EXPECT_FALSE(JSONReader::Read("[true,, null]", JSON_ALLOW_TRAILING_COMMAS));
// No commas.
EXPECT_FALSE(JSONReader::Read("[true null]"));
// Trailing comma.
EXPECT_FALSE(JSONReader::Read("[true,]"));
}
TEST(JSONReaderTest, ArrayTrailingComma) {
// Valid if we set |allow_trailing_comma| to true.
absl::optional<Value> value =
JSONReader::Read("[true,]", JSON_ALLOW_TRAILING_COMMAS);
ASSERT_TRUE(value);
Value::List* list = value->GetIfList();
ASSERT_TRUE(list);
ASSERT_EQ(1U, list->size());
const Value& value1 = (*list)[0];
ASSERT_TRUE(value1.is_bool());
EXPECT_TRUE(value1.GetBool());
}
TEST(JSONReaderTest, ArrayTrailingCommaNoEmptyElements) {
// Don't allow empty elements, even if |allow_trailing_comma| is
// true.
EXPECT_FALSE(JSONReader::Read("[,]", JSON_ALLOW_TRAILING_COMMAS));
EXPECT_FALSE(JSONReader::Read("[true,,]", JSON_ALLOW_TRAILING_COMMAS));
EXPECT_FALSE(JSONReader::Read("[,true,]", JSON_ALLOW_TRAILING_COMMAS));
EXPECT_FALSE(JSONReader::Read("[true,,false]", JSON_ALLOW_TRAILING_COMMAS));
}
TEST(JSONReaderTest, EmptyDictionary) {
absl::optional<Value> dict_val = JSONReader::Read("{}");
ASSERT_TRUE(dict_val);
ASSERT_TRUE(dict_val->is_dict());
}
TEST(JSONReaderTest, CompleteDictionary) {
absl::optional<Value> root1 = JSONReader::Read(
"{\"number\":9.87654321, \"null\":null , \"\\x53\" : \"str\", \"bool\": "
"false, \"more\": {} }");
ASSERT_TRUE(root1);
const Value::Dict* root1_dict = root1->GetIfDict();
ASSERT_TRUE(root1_dict);
auto double_val = root1_dict->FindDouble("number");
ASSERT_TRUE(double_val);
EXPECT_DOUBLE_EQ(9.87654321, *double_val);
const Value* null_val = root1_dict->Find("null");
ASSERT_TRUE(null_val);
EXPECT_TRUE(null_val->is_none());
const std::string* str_val = root1_dict->FindString("S");
ASSERT_TRUE(str_val);
EXPECT_EQ("str", *str_val);
auto bool_val = root1_dict->FindBool("bool");
ASSERT_TRUE(bool_val);
ASSERT_FALSE(*bool_val);
absl::optional<Value> root2 = JSONReader::Read(
"{\"number\":9.87654321, \"null\":null , \"\\x53\" : \"str\", \"bool\": "
"false, \"more\": {},}",
JSON_PARSE_CHROMIUM_EXTENSIONS | JSON_ALLOW_TRAILING_COMMAS);
ASSERT_TRUE(root2);
Value::Dict* root2_dict = root2->GetIfDict();
ASSERT_TRUE(root2_dict);
EXPECT_EQ(*root1_dict, *root2_dict);
// Test newline equivalence.
root2 = JSONReader::Read(
"{\n"
" \"number\":9.87654321,\n"
" \"null\":null,\n"
" \"\\x53\":\"str\",\n"
" \"bool\": false,\n"
" \"more\": {},\n"
"}\n",
JSON_PARSE_CHROMIUM_EXTENSIONS | JSON_ALLOW_TRAILING_COMMAS);
ASSERT_TRUE(root2);
root2_dict = root2->GetIfDict();
ASSERT_TRUE(root2);
EXPECT_EQ(*root1_dict, *root2_dict);
root2 = JSONReader::Read(
"{\r\n"
" \"number\":9.87654321,\r\n"
" \"null\":null,\r\n"
" \"\\x53\":\"str\",\r\n"
" \"bool\": false,\r\n"
" \"more\": {},\r\n"
"}\r\n",
JSON_PARSE_CHROMIUM_EXTENSIONS | JSON_ALLOW_TRAILING_COMMAS);
ASSERT_TRUE(root2);
root2_dict = root2->GetIfDict();
ASSERT_TRUE(root2_dict);
EXPECT_EQ(*root1_dict, *root2_dict);
}
TEST(JSONReaderTest, NestedDictionaries) {
absl::optional<Value> root1 = JSONReader::Read(
"{\"inner\":{\"array\":[true, 3, 4.56, null]},\"false\":false,\"d\":{}}");
ASSERT_TRUE(root1);
const base::Value::Dict* root1_dict = root1->GetIfDict();
ASSERT_TRUE(root1_dict);
const Value::Dict* inner_dict = root1_dict->FindDict("inner");
ASSERT_TRUE(inner_dict);
const Value::List* inner_array = inner_dict->FindList("array");
ASSERT_TRUE(inner_array);
EXPECT_EQ(4U, inner_array->size());
auto bool_value = root1_dict->FindBool("false");
ASSERT_TRUE(bool_value);
EXPECT_FALSE(*bool_value);
inner_dict = root1_dict->FindDict("d");
EXPECT_TRUE(inner_dict);
absl::optional<Value> root2 = JSONReader::Read(
"{\"inner\": {\"array\":[true, 3, 4.56, null] , "
"},\"false\":false,\"d\":{},}",
JSON_ALLOW_TRAILING_COMMAS);
ASSERT_TRUE(root2);
EXPECT_EQ(*root1_dict, *root2);
}
TEST(JSONReaderTest, DictionaryKeysWithPeriods) {
absl::optional<Value> root =
JSONReader::Read("{\"a.b\":3,\"c\":2,\"d.e.f\":{\"g.h.i.j\":1}}");
ASSERT_TRUE(root);
Value::Dict* root_dict = root->GetIfDict();
ASSERT_TRUE(root_dict);
auto integer_value = root_dict->FindInt("a.b");
ASSERT_TRUE(integer_value);
EXPECT_EQ(3, *integer_value);
integer_value = root_dict->FindInt("c");
ASSERT_TRUE(integer_value);
EXPECT_EQ(2, *integer_value);
const Value::Dict* inner_dict = root_dict->FindDict("d.e.f");
ASSERT_TRUE(inner_dict);
EXPECT_EQ(1U, inner_dict->size());
integer_value = inner_dict->FindInt("g.h.i.j");
ASSERT_TRUE(integer_value);
EXPECT_EQ(1, *integer_value);
root = JSONReader::Read("{\"a\":{\"b\":2},\"a.b\":1}");
ASSERT_TRUE(root);
root_dict = root->GetIfDict();
ASSERT_TRUE(root_dict);
const Value* integer_path_value = root_dict->FindByDottedPath("a.b");
ASSERT_TRUE(integer_path_value);
EXPECT_EQ(2, integer_path_value->GetInt());
integer_value = root_dict->FindInt("a.b");
ASSERT_TRUE(integer_value);
EXPECT_EQ(1, *integer_value);
}
TEST(JSONReaderTest, DuplicateKeys) {
absl::optional<Value> root = JSONReader::Read("{\"x\":1,\"x\":2,\"y\":3}");
ASSERT_TRUE(root);
const Value::Dict* root_dict = root->GetIfDict();
ASSERT_TRUE(root_dict);
auto integer_value = root_dict->FindInt("x");
ASSERT_TRUE(integer_value);
EXPECT_EQ(2, *integer_value);
}
TEST(JSONReaderTest, InvalidDictionaries) {
// No closing brace.
EXPECT_FALSE(JSONReader::Read("{\"a\": true"));
// Keys must be quoted strings.
EXPECT_FALSE(JSONReader::Read("{foo:true}"));
EXPECT_FALSE(JSONReader::Read("{1234: false}"));
EXPECT_FALSE(JSONReader::Read("{:false}"));
EXPECT_FALSE(JSONReader::Read("{ , }"));
// Trailing comma.
EXPECT_FALSE(JSONReader::Read("{\"a\":true,}"));
// Too many commas.
EXPECT_FALSE(JSONReader::Read("{\"a\":true,,\"b\":false}"));
EXPECT_FALSE(JSONReader::Read("{\"a\":true,,\"b\":false}",
JSON_ALLOW_TRAILING_COMMAS));
// No separator.
EXPECT_FALSE(JSONReader::Read("{\"a\" \"b\"}"));
// Lone comma.
EXPECT_FALSE(JSONReader::Read("{,}"));
EXPECT_FALSE(JSONReader::Read("{,}", JSON_ALLOW_TRAILING_COMMAS));
EXPECT_FALSE(JSONReader::Read("{\"a\":true,,}", JSON_ALLOW_TRAILING_COMMAS));
EXPECT_FALSE(JSONReader::Read("{,\"a\":true}", JSON_ALLOW_TRAILING_COMMAS));
EXPECT_FALSE(JSONReader::Read("{\"a\":true,,\"b\":false}",
JSON_ALLOW_TRAILING_COMMAS));
}
TEST(JSONReaderTest, StackOverflow) {
std::string evil(1000000, '[');
evil.append(std::string(1000000, ']'));
EXPECT_FALSE(JSONReader::Read(evil));
// A few thousand adjacent lists is fine.
std::string not_evil("[");
not_evil.reserve(15010);
for (int i = 0; i < 5000; ++i)
not_evil.append("[],");
not_evil.append("[]]");
absl::optional<Value> value = JSONReader::Read(not_evil);
ASSERT_TRUE(value);
Value::List* list = value->GetIfList();
ASSERT_TRUE(list);
EXPECT_EQ(5001U, list->size());
}
TEST(JSONReaderTest, UTF8Input) {
absl::optional<Value> root = JSONReader::Read("\"\xe7\xbd\x91\xe9\xa1\xb5\"");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_string());
const std::string& str_val = root->GetString();
EXPECT_EQ(L"\x7f51\x9875", UTF8ToWide(str_val));
root = JSONReader::Read("{\"path\": \"/tmp/\xc3\xa0\xc3\xa8\xc3\xb2.png\"}");
ASSERT_TRUE(root);
const Value::Dict* root_dict = root->GetIfDict();
ASSERT_TRUE(root_dict);
const std::string* maybe_string = root_dict->FindString("path");
ASSERT_TRUE(maybe_string);
EXPECT_EQ("/tmp/\xC3\xA0\xC3\xA8\xC3\xB2.png", *maybe_string);
// JSON can encode non-characters.
const char* const noncharacters[] = {
"\"\xEF\xB7\x90\"", // U+FDD0
"\"\xEF\xB7\x9F\"", // U+FDDF
"\"\xEF\xB7\xAF\"", // U+FDEF
"\"\xEF\xBF\xBE\"", // U+FFFE
"\"\xEF\xBF\xBF\"", // U+FFFF
"\"\xF0\x9F\xBF\xBE\"", // U+01FFFE
"\"\xF0\x9F\xBF\xBF\"", // U+01FFFF
"\"\xF0\xAF\xBF\xBE\"", // U+02FFFE
"\"\xF0\xAF\xBF\xBF\"", // U+02FFFF
"\"\xF0\xBF\xBF\xBE\"", // U+03FFFE
"\"\xF0\xBF\xBF\xBF\"", // U+03FFFF
"\"\xF1\x8F\xBF\xBE\"", // U+04FFFE
"\"\xF1\x8F\xBF\xBF\"", // U+04FFFF
"\"\xF1\x9F\xBF\xBE\"", // U+05FFFE
"\"\xF1\x9F\xBF\xBF\"", // U+05FFFF
"\"\xF1\xAF\xBF\xBE\"", // U+06FFFE
"\"\xF1\xAF\xBF\xBF\"", // U+06FFFF
"\"\xF1\xBF\xBF\xBE\"", // U+07FFFE
"\"\xF1\xBF\xBF\xBF\"", // U+07FFFF
"\"\xF2\x8F\xBF\xBE\"", // U+08FFFE
"\"\xF2\x8F\xBF\xBF\"", // U+08FFFF
"\"\xF2\x9F\xBF\xBE\"", // U+09FFFE
"\"\xF2\x9F\xBF\xBF\"", // U+09FFFF
"\"\xF2\xAF\xBF\xBE\"", // U+0AFFFE
"\"\xF2\xAF\xBF\xBF\"", // U+0AFFFF
"\"\xF2\xBF\xBF\xBE\"", // U+0BFFFE
"\"\xF2\xBF\xBF\xBF\"", // U+0BFFFF
"\"\xF3\x8F\xBF\xBE\"", // U+0CFFFE
"\"\xF3\x8F\xBF\xBF\"", // U+0CFFFF
"\"\xF3\x9F\xBF\xBE\"", // U+0DFFFE
"\"\xF3\x9F\xBF\xBF\"", // U+0DFFFF
"\"\xF3\xAF\xBF\xBE\"", // U+0EFFFE
"\"\xF3\xAF\xBF\xBF\"", // U+0EFFFF
"\"\xF3\xBF\xBF\xBE\"", // U+0FFFFE
"\"\xF3\xBF\xBF\xBF\"", // U+0FFFFF
"\"\xF4\x8F\xBF\xBE\"", // U+10FFFE
"\"\xF4\x8F\xBF\xBF\"", // U+10FFFF
};
for (auto* noncharacter : noncharacters) {
root = JSONReader::Read(noncharacter);
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_string());
EXPECT_EQ(std::string(noncharacter + 1, strlen(noncharacter) - 2),
root->GetString());
}
}
TEST(JSONReaderTest, InvalidUTF8Input) {
EXPECT_FALSE(JSONReader::Read("\"345\xb0\xa1\xb0\xa2\""));
EXPECT_FALSE(JSONReader::Read("\"123\xc0\x81\""));
EXPECT_FALSE(JSONReader::Read("\"abc\xc0\xae\""));
}
TEST(JSONReaderTest, UTF16Escapes) {
absl::optional<Value> root = JSONReader::Read("\"\\u20ac3,14\"");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_string());
EXPECT_EQ(
"\xe2\x82\xac"
"3,14",
root->GetString());
root = JSONReader::Read("\"\\ud83d\\udca9\\ud83d\\udc6c\"");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_string());
EXPECT_EQ("\xf0\x9f\x92\xa9\xf0\x9f\x91\xac", root->GetString());
}
TEST(JSONReaderTest, InvalidUTF16Escapes) {
const char* const cases[] = {
"\"\\u123\"", // Invalid scalar.
"\"\\ud83d\"", // Invalid scalar.
"\"\\u$%@!\"", // Invalid scalar.
"\"\\uzz89\"", // Invalid scalar.
"\"\\ud83d\\udca\"", // Invalid lower surrogate.
"\"\\ud83d\\ud83d\"", // Invalid lower surrogate.
"\"\\ud83d\\uaaaZ\"", // Invalid lower surrogate.
"\"\\ud83foo\"", // No lower surrogate.
"\"\\ud83d\\foo\"", // No lower surrogate.
"\"\\ud83\\foo\"", // Invalid upper surrogate.
"\"\\ud83d\\u1\"", // No lower surrogate.
"\"\\ud83\\u1\"", // Invalid upper surrogate.
};
absl::optional<Value> root;
for (auto* i : cases) {
root = JSONReader::Read(i);
EXPECT_FALSE(root) << i;
}
}
TEST(JSONReaderTest, LiteralRoots) {
absl::optional<Value> root = JSONReader::Read("null");
ASSERT_TRUE(root);
EXPECT_TRUE(root->is_none());
root = JSONReader::Read("true");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_bool());
EXPECT_TRUE(root->GetBool());
root = JSONReader::Read("10");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_int());
EXPECT_EQ(10, root->GetInt());
root = JSONReader::Read("\"root\"");
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_string());
EXPECT_EQ("root", root->GetString());
}
TEST(JSONReaderTest, ReadFromFile) {
FilePath path;
ASSERT_TRUE(PathService::Get(base::DIR_TEST_DATA, &path));
path = path.AppendASCII("json");
ASSERT_TRUE(base::PathExists(path));
std::string input;
ASSERT_TRUE(ReadFileToString(path.AppendASCII("bom_feff.json"), &input));
auto root = JSONReader::ReadAndReturnValueWithError(input);
ASSERT_TRUE(root.has_value()) << root.error().message;
EXPECT_TRUE(root->is_dict());
}
// Tests that the root of a JSON object can be deleted safely while its
// children outlive it.
TEST(JSONReaderTest, StringOptimizations) {
Value dict_literal_0;
Value dict_literal_1;
Value dict_string_0;
Value dict_string_1;
Value list_value_0;
Value list_value_1;
{
absl::optional<Value> root = JSONReader::Read(
"{"
" \"test\": {"
" \"foo\": true,"
" \"bar\": 3.14,"
" \"baz\": \"bat\","
" \"moo\": \"cow\""
" },"
" \"list\": ["
" \"a\","
" \"b\""
" ]"
"}",
JSON_PARSE_RFC);
ASSERT_TRUE(root);
Value::Dict* root_dict = root->GetIfDict();
ASSERT_TRUE(root_dict);
Value::Dict* dict = root_dict->FindDict("test");
ASSERT_TRUE(dict);
Value::List* list = root_dict->FindList("list");
ASSERT_TRUE(list);
Value* to_move = dict->Find("foo");
ASSERT_TRUE(to_move);
dict_literal_0 = std::move(*to_move);
to_move = dict->Find("bar");
ASSERT_TRUE(to_move);
dict_literal_1 = std::move(*to_move);
to_move = dict->Find("baz");
ASSERT_TRUE(to_move);
dict_string_0 = std::move(*to_move);
to_move = dict->Find("moo");
ASSERT_TRUE(to_move);
dict_string_1 = std::move(*to_move);
ASSERT_TRUE(dict->Remove("foo"));
ASSERT_TRUE(dict->Remove("bar"));
ASSERT_TRUE(dict->Remove("baz"));
ASSERT_TRUE(dict->Remove("moo"));
ASSERT_EQ(2u, list->size());
list_value_0 = std::move((*list)[0]);
list_value_1 = std::move((*list)[1]);
list->clear();
}
ASSERT_TRUE(dict_literal_0.is_bool());
EXPECT_TRUE(dict_literal_0.GetBool());
ASSERT_TRUE(dict_literal_1.is_double());
EXPECT_EQ(3.14, dict_literal_1.GetDouble());
ASSERT_TRUE(dict_string_0.is_string());
EXPECT_EQ("bat", dict_string_0.GetString());
ASSERT_TRUE(dict_string_1.is_string());
EXPECT_EQ("cow", dict_string_1.GetString());
ASSERT_TRUE(list_value_0.is_string());
EXPECT_EQ("a", list_value_0.GetString());
ASSERT_TRUE(list_value_1.is_string());
EXPECT_EQ("b", list_value_1.GetString());
}
// A smattering of invalid JSON designed to test specific portions of the
// parser implementation against buffer overflow. Best run with DCHECKs so
// that the one in NextChar fires.
TEST(JSONReaderTest, InvalidSanity) {
const char* const kInvalidJson[] = {
"/* test *", "{\"foo\"", "{\"foo\":", " [", "\"\\u123g\"", "{\n\"eh:\n}",
};
for (size_t i = 0; i < std::size(kInvalidJson); ++i) {
LOG(INFO) << "Sanity test " << i << ": <" << kInvalidJson[i] << ">";
auto root = JSONReader::ReadAndReturnValueWithError(kInvalidJson[i]);
EXPECT_FALSE(root.has_value());
EXPECT_NE("", root.error().message);
}
}
TEST(JSONReaderTest, IllegalTrailingNull) {
const char json[] = {'"', 'n', 'u', 'l', 'l', '"', '\0'};
std::string json_string(json, sizeof(json));
auto root = JSONReader::ReadAndReturnValueWithError(json_string);
EXPECT_FALSE(root.has_value());
EXPECT_NE("", root.error().message);
}
TEST(JSONReaderTest, ASCIIControlCodes) {
// A literal NUL byte or a literal new line, in a JSON string, should be
// rejected. RFC 8259 section 7 says "the characters that MUST be escaped
// [include]... the control characters (U+0000 through U+001F)".
//
// Nonetheless, we accept them, for backwards compatibility.
const char json[] = {'"', 'a', '\0', 'b', '\n', 'c', '"'};
absl::optional<Value> root =
JSONReader::Read(std::string(json, sizeof(json)));
ASSERT_TRUE(root);
ASSERT_TRUE(root->is_string());
EXPECT_EQ(5u, root->GetString().length());
}
TEST(JSONReaderTest, MaxNesting) {
std::string json(R"({"outer": { "inner": {"foo": true}}})");
EXPECT_FALSE(JSONReader::Read(json, JSON_PARSE_RFC, 3));
EXPECT_TRUE(JSONReader::Read(json, JSON_PARSE_RFC, 4));
}
TEST(JSONReaderTest, Decode4ByteUtf8Char) {
// kUtf8Data contains a 4 byte unicode character (a smiley!) that JSONReader
// should be able to handle. The UTF-8 encoding of U+1F607 SMILING FACE WITH
// HALO is "\xF0\x9F\x98\x87".
const char kUtf8Data[] = "[\"😇\",[],[],[],{\"google:suggesttype\":[]}]";
absl::optional<Value> root = JSONReader::Read(kUtf8Data, JSON_PARSE_RFC);
ASSERT_TRUE(root);
Value::List* list = root->GetIfList();
ASSERT_TRUE(list);
ASSERT_EQ(5u, list->size());
ASSERT_TRUE((*list)[0].is_string());
EXPECT_EQ("\xF0\x9F\x98\x87", (*list)[0].GetString());
}
TEST(JSONReaderTest, DecodeUnicodeNonCharacter) {
// Tests Unicode code points (encoded as escaped UTF-16) that are not valid
// characters.
EXPECT_TRUE(JSONReader::Read("[\"\\uFDD0\"]")); // U+FDD0
EXPECT_TRUE(JSONReader::Read("[\"\\uFDDF\"]")); // U+FDDF
EXPECT_TRUE(JSONReader::Read("[\"\\uFDEF\"]")); // U+FDEF
EXPECT_TRUE(JSONReader::Read("[\"\\uFFFE\"]")); // U+FFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uFFFF\"]")); // U+FFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uD83F\\uDFFE\"]")); // U+01FFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uD83F\\uDFFF\"]")); // U+01FFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uD87F\\uDFFE\"]")); // U+02FFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uD87F\\uDFFF\"]")); // U+02FFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uD8BF\\uDFFE\"]")); // U+03FFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uD8BF\\uDFFF\"]")); // U+03FFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uD8FF\\uDFFE\"]")); // U+04FFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uD8FF\\uDFFF\"]")); // U+04FFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uD93F\\uDFFE\"]")); // U+05FFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uD93F\\uDFFF\"]")); // U+05FFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uD97F\\uDFFE\"]")); // U+06FFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uD97F\\uDFFF\"]")); // U+06FFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uD9BF\\uDFFE\"]")); // U+07FFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uD9BF\\uDFFF\"]")); // U+07FFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uD9FF\\uDFFE\"]")); // U+08FFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uD9FF\\uDFFF\"]")); // U+08FFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uDA3F\\uDFFE\"]")); // U+09FFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uDA3F\\uDFFF\"]")); // U+09FFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uDA7F\\uDFFE\"]")); // U+0AFFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uDA7F\\uDFFF\"]")); // U+0AFFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uDABF\\uDFFE\"]")); // U+0BFFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uDABF\\uDFFF\"]")); // U+0BFFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uDAFF\\uDFFE\"]")); // U+0CFFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uDAFF\\uDFFF\"]")); // U+0CFFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uDB3F\\uDFFE\"]")); // U+0DFFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uDB3F\\uDFFF\"]")); // U+0DFFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uDB7F\\uDFFE\"]")); // U+0EFFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uDB7F\\uDFFF\"]")); // U+0EFFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uDBBF\\uDFFE\"]")); // U+0FFFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uDBBF\\uDFFF\"]")); // U+0FFFFF
EXPECT_TRUE(JSONReader::Read("[\"\\uDBFF\\uDFFE\"]")); // U+10FFFE
EXPECT_TRUE(JSONReader::Read("[\"\\uDBFF\\uDFFF\"]")); // U+10FFFF
}
TEST(JSONReaderTest, DecodeNegativeEscapeSequence) {
EXPECT_FALSE(JSONReader::Read("[\"\\x-A\"]"));
EXPECT_FALSE(JSONReader::Read("[\"\\u-00A\"]"));
}
// Verifies invalid code points are replaced.
TEST(JSONReaderTest, ReplaceInvalidCharacters) {
// U+D800 is a lone high surrogate.
const std::string invalid_high = "\"\xED\xA0\x80\"";
absl::optional<Value> value =
JSONReader::Read(invalid_high, JSON_REPLACE_INVALID_CHARACTERS);
ASSERT_TRUE(value);
ASSERT_TRUE(value->is_string());
// Expect three U+FFFD (one for each UTF-8 byte in the invalid code point).
EXPECT_EQ("\xEF\xBF\xBD\xEF\xBF\xBD\xEF\xBF\xBD", value->GetString());
// U+DFFF is a lone low surrogate.
const std::string invalid_low = "\"\xED\xBF\xBF\"";
value = JSONReader::Read(invalid_low, JSON_REPLACE_INVALID_CHARACTERS);
ASSERT_TRUE(value);
ASSERT_TRUE(value->is_string());
// Expect three U+FFFD (one for each UTF-8 byte in the invalid code point).
EXPECT_EQ("\xEF\xBF\xBD\xEF\xBF\xBD\xEF\xBF\xBD", value->GetString());
}
TEST(JSONReaderTest, ReplaceInvalidUTF16EscapeSequence) {
// U+D800 is a lone high surrogate.
const std::string invalid_high = "\"_\\uD800_\"";
absl::optional<Value> value =
JSONReader::Read(invalid_high, JSON_REPLACE_INVALID_CHARACTERS);
ASSERT_TRUE(value);
ASSERT_TRUE(value->is_string());
EXPECT_EQ("_\xEF\xBF\xBD_", value->GetString());
// U+DFFF is a lone low surrogate.
const std::string invalid_low = "\"_\\uDFFF_\"";
value = JSONReader::Read(invalid_low, JSON_REPLACE_INVALID_CHARACTERS);
ASSERT_TRUE(value);
ASSERT_TRUE(value->is_string());
EXPECT_EQ("_\xEF\xBF\xBD_", value->GetString());
}
TEST(JSONReaderTest, ParseNumberErrors) {
const struct {
const char* input;
bool parse_success;
double value;
} kCases[] = {
// clang-format off
{"1", true, 1},
{"2.", false, 0},
{"42", true, 42},
{"6e", false, 0},
{"43e2", true, 4300},
{"43e-", false, 0},
{"9e-3", true, 0.009},
{"2e+", false, 0},
{"2e+2", true, 200},
// clang-format on
};
for (unsigned int i = 0; i < std::size(kCases); ++i) {
auto test_case = kCases[i];
SCOPED_TRACE(StringPrintf("case %u: \"%s\"", i, test_case.input));
std::unique_ptr<char[]> input_owner;
StringPiece input =
MakeNotNullTerminatedInput(test_case.input, &input_owner);
absl::optional<Value> result = JSONReader::Read(input);
EXPECT_EQ(test_case.parse_success, result.has_value());
if (!result)
continue;
ASSERT_TRUE(result->is_double() || result->is_int());
EXPECT_EQ(test_case.value, result->GetDouble());
}
}
TEST(JSONReaderTest, UnterminatedInputs) {
const char* const kCases[] = {
// clang-format off
"/",
"//",
"/*",
"\"xxxxxx",
"\"",
"{ ",
"[\t",
"tru",
"fals",
"nul",
"\"\\x",
"\"\\x2",
"\"\\u123",
"\"\\uD803\\u",
"\"\\",
"\"\\/",
// clang-format on
};
for (unsigned int i = 0; i < std::size(kCases); ++i) {
auto* test_case = kCases[i];
SCOPED_TRACE(StringPrintf("case %u: \"%s\"", i, test_case));
std::unique_ptr<char[]> input_owner;
StringPiece input = MakeNotNullTerminatedInput(test_case, &input_owner);
EXPECT_FALSE(JSONReader::Read(input));
}
}
TEST(JSONReaderTest, LineColumnCounting) {
const struct {
const char* input;
int error_line;
int error_column;
} kCases[] = {
// For all but the "q_is_not_etc" case, the error (indicated by ^ in the
// comments) is seeing a digit when expecting ',' or ']'.
{
// Line and column counts are 1-based, not 0-based.
"q_is_not_the_start_of_any_valid_JSON_token",
1,
1,
},
{
"[2,4,6 8",
// -----^
1,
8,
},
{
"[2,4,6\t8",
// ------^
1,
8,
},
{
"[2,4,6\n8",
// ------^
2,
1,
},
{
"[\n0,\n1,\n2,\n3,4,5,6 7,\n8,\n9\n]",
// ---------------------^
5,
9,
},
{
// Same as the previous example, but with "\r\n"s instead of "\n"s.
"[\r\n0,\r\n1,\r\n2,\r\n3,4,5,6 7,\r\n8,\r\n9\r\n]",
// -----------------------------^
5,
9,
},
// The JSON spec forbids unescaped ASCII control characters (including
// line breaks) within a string, but our implementation is more lenient.
{
"[\"3\n1\" 4",
// --------^
2,
4,
},
{
"[\"3\r\n1\" 4",
// ----------^
2,
4,
},
};
for (unsigned int i = 0; i < std::size(kCases); ++i) {
auto test_case = kCases[i];
SCOPED_TRACE(StringPrintf("case %u: \"%s\"", i, test_case.input));
auto root = JSONReader::ReadAndReturnValueWithError(
test_case.input, JSON_PARSE_RFC | JSON_ALLOW_CONTROL_CHARS);
EXPECT_FALSE(root.has_value());
EXPECT_EQ(test_case.error_line, root.error().line);
EXPECT_EQ(test_case.error_column, root.error().column);
}
}
TEST(JSONReaderTest, ChromiumExtensions) {
// All of these cases should parse with JSON_PARSE_CHROMIUM_EXTENSIONS but
// fail with JSON_PARSE_RFC.
const struct {
// The JSON input.
const char* input;
// What JSON_* option permits this extension.
int option;
} kCases[] = {
{"{ /* comment */ \"foo\": 3 }", JSON_ALLOW_COMMENTS},
{"{ // comment\n \"foo\": 3 }", JSON_ALLOW_COMMENTS},
{"[\"\\xAB\"]", JSON_ALLOW_X_ESCAPES},
{"[\"\b\"]", JSON_ALLOW_CONTROL_CHARS},
{"[\"\f\"]", JSON_ALLOW_CONTROL_CHARS},
{"[\"\n\"]", JSON_ALLOW_CONTROL_CHARS},
{"[\"\r\"]", JSON_ALLOW_CONTROL_CHARS},
{"[\"\t\"]", JSON_ALLOW_CONTROL_CHARS},
{"[\"\v\"]", JSON_ALLOW_CONTROL_CHARS},
{"[\"\\v\"]", JSON_ALLOW_VERT_TAB},
};
for (size_t i = 0; i < std::size(kCases); ++i) {
SCOPED_TRACE(testing::Message() << "case " << i);
const auto& test_case = kCases[i];
auto result = JSONReader::ReadAndReturnValueWithError(test_case.input,
JSON_PARSE_RFC);
EXPECT_FALSE(result.has_value());
result = JSONReader::ReadAndReturnValueWithError(
test_case.input, JSON_PARSE_RFC | test_case.option);
EXPECT_TRUE(result.has_value());
result = JSONReader::ReadAndReturnValueWithError(
test_case.input, JSON_PARSE_CHROMIUM_EXTENSIONS);
EXPECT_TRUE(result.has_value());
result = JSONReader::ReadAndReturnValueWithError(
test_case.input, JSON_PARSE_CHROMIUM_EXTENSIONS & ~test_case.option);
EXPECT_FALSE(result.has_value());
}
}
} // namespace base