blob: 23721884dc7e82371729b964d423091f2f6a0c16 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/storage_partition_impl_map.h"
#include <unordered_set>
#include <utility>
#include "base/barrier_closure.h"
#include "base/command_line.h"
#include "base/containers/contains.h"
#include "base/files/file_enumerator.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/callback_helpers.h"
#include "base/location.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/task/single_thread_task_runner.h"
#include "base/task/thread_pool.h"
#include "build/build_config.h"
#include "content/browser/background_fetch/background_fetch_context.h"
#include "content/browser/blob_storage/chrome_blob_storage_context.h"
#include "content/browser/code_cache/generated_code_cache_context.h"
#include "content/browser/cookie_store/cookie_store_manager.h"
#include "content/browser/file_system/browser_file_system_helper.h"
#include "content/browser/loader/prefetch_url_loader_service.h"
#include "content/browser/resource_context_impl.h"
#include "content/browser/storage_partition_impl.h"
#include "content/browser/webui/url_data_manager_backend.h"
#include "content/public/browser/browser_context.h"
#include "content/public/browser/browser_task_traits.h"
#include "content/public/browser/browser_thread.h"
#include "content/public/browser/content_browser_client.h"
#include "content/public/browser/storage_partition.h"
#include "content/public/common/content_client.h"
#include "content/public/common/content_constants.h"
#include "content/public/common/content_features.h"
#include "content/public/common/content_switches.h"
#include "content/public/common/url_constants.h"
#include "crypto/sha2.h"
#include "services/network/public/cpp/features.h"
#include "storage/browser/blob/blob_storage_context.h"
#include "third_party/blink/public/common/storage_key/storage_key.h"
namespace content {
namespace {
// These constants are used to create the directory structure under the profile
// where renderers with a non-default storage partition keep their persistent
// state. This will contain a set of directories that partially mirror the
// directory structure of BrowserContext::GetPath().
//
// The kStoragePartitionDirname contains an extensions directory which is
// further partitioned by extension id, followed by another level of directories
// for the "default" extension storage partition and one directory for each
// persistent partition used by a webview tag. Example:
//
// Storage/ext/ABCDEF/def
// Storage/ext/ABCDEF/hash(partition name)
//
// The code in GetStoragePartitionPath() constructs these path names.
//
// TODO(nasko): Move extension related path code out of content.
const base::FilePath::CharType kStoragePartitionDirname[] =
FILE_PATH_LITERAL("Storage");
const base::FilePath::CharType kExtensionsDirname[] =
FILE_PATH_LITERAL("ext");
const base::FilePath::CharType kDefaultPartitionDirname[] =
FILE_PATH_LITERAL("def");
const base::FilePath::CharType kTrashDirname[] =
FILE_PATH_LITERAL("trash");
// Because partition names are user specified, they can be arbitrarily long
// which makes them unsuitable for paths names. We use a truncation of a
// SHA256 hash to perform a deterministic shortening of the string. The
// kPartitionNameHashBytes constant controls the length of the truncation.
// We use 6 bytes, which gives us 99.999% reliability against collisions over
// 1 million partition domains.
//
// Analysis:
// We assume that all partition names within one partition domain are
// controlled by the the same entity. Thus there is no chance for adverserial
// attack and all we care about is accidental collision. To get 5 9s over
// 1 million domains, we need the probability of a collision in any one domain
// to be
//
// p < nroot(1000000, .99999) ~= 10^-11
//
// We use the following birthday attack approximation to calculate the max
// number of unique names for this probability:
//
// n(p,H) = sqrt(2*H * ln(1/(1-p)))
//
// For a 6-byte hash, H = 2^(6*8). n(10^-11, H) ~= 75
//
// An average partition domain is likely to have less than 10 unique
// partition names which is far lower than 75.
//
// Note, that for 4 9s of reliability, the limit is 237 partition names per
// partition domain.
const int kPartitionNameHashBytes = 6;
// Needed for selecting all files in ObliterateOneDirectory() below.
#if BUILDFLAG(IS_POSIX)
const int kAllFileTypes = base::FileEnumerator::FILES |
base::FileEnumerator::DIRECTORIES |
base::FileEnumerator::SHOW_SYM_LINKS;
#else
const int kAllFileTypes = base::FileEnumerator::FILES |
base::FileEnumerator::DIRECTORIES;
#endif
base::FilePath GetStoragePartitionDomainPath(
const std::string& partition_domain) {
CHECK(base::IsStringUTF8(partition_domain));
return base::FilePath(kStoragePartitionDirname).Append(kExtensionsDirname)
.Append(base::FilePath::FromUTF8Unsafe(partition_domain));
}
// Helper function for doing a depth-first deletion of the data on disk.
// Examines paths directly in |current_dir| (no recursion) and tries to
// delete from disk anything that is in, or isn't a parent of something in
// |paths_to_keep|. Paths that need further expansion are added to
// |paths_to_consider|.
void ObliterateOneDirectory(const base::FilePath& current_dir,
const std::vector<base::FilePath>& paths_to_keep,
std::vector<base::FilePath>* paths_to_consider) {
CHECK(current_dir.IsAbsolute());
base::FileEnumerator enumerator(current_dir, false, kAllFileTypes);
for (base::FilePath to_delete = enumerator.Next(); !to_delete.empty();
to_delete = enumerator.Next()) {
// Enum tracking which of the 3 possible actions to take for |to_delete|.
enum { kSkip, kEnqueue, kDelete } action = kDelete;
for (auto to_keep = paths_to_keep.begin(); to_keep != paths_to_keep.end();
++to_keep) {
if (to_delete == *to_keep) {
action = kSkip;
break;
} else if (to_delete.IsParent(*to_keep)) {
// |to_delete| contains a path to keep. Add to stack for further
// processing.
action = kEnqueue;
break;
}
}
switch (action) {
case kDelete:
base::DeletePathRecursively(to_delete);
break;
case kEnqueue:
paths_to_consider->push_back(to_delete);
break;
case kSkip:
break;
}
}
}
// Synchronously attempts to delete |unnormalized_root|, preserving only
// entries in |paths_to_keep|. If there are no entries in |paths_to_keep| on
// disk, then it completely removes |unnormalized_root|. All paths must be
// absolute paths.
void BlockingObliteratePath(
const base::FilePath& unnormalized_browser_context_root,
const base::FilePath& unnormalized_root,
const std::vector<base::FilePath>& paths_to_keep,
const scoped_refptr<base::TaskRunner>& closure_runner,
base::OnceClosure on_gc_required) {
// Early exit required because MakeAbsoluteFilePath() will fail on POSIX
// if |unnormalized_root| does not exist. This is safe because there is
// nothing to do in this situation anwyays.
if (!base::PathExists(unnormalized_root)) {
return;
}
// Never try to obliterate things outside of the browser context root or the
// browser context root itself. Die hard.
base::FilePath root = base::MakeAbsoluteFilePath(unnormalized_root);
base::FilePath browser_context_root =
base::MakeAbsoluteFilePath(unnormalized_browser_context_root);
CHECK(!root.empty());
CHECK(!browser_context_root.empty());
CHECK(browser_context_root.IsParent(root) && browser_context_root != root);
// Reduce |paths_to_keep| set to those under the root and actually on disk.
std::vector<base::FilePath> valid_paths_to_keep;
for (auto it = paths_to_keep.begin(); it != paths_to_keep.end(); ++it) {
if (root.IsParent(*it) && base::PathExists(*it))
valid_paths_to_keep.push_back(*it);
}
// If none of the |paths_to_keep| are valid anymore then we just whack the
// root and be done with it. Otherwise, signal garbage collection and do
// a best-effort delete of the on-disk structures.
if (valid_paths_to_keep.empty()) {
base::DeletePathRecursively(root);
return;
}
closure_runner->PostTask(FROM_HERE, std::move(on_gc_required));
// Otherwise, start at the root and delete everything that is not in
// |valid_paths_to_keep|.
std::vector<base::FilePath> paths_to_consider;
paths_to_consider.push_back(root);
while(!paths_to_consider.empty()) {
base::FilePath path = paths_to_consider.back();
paths_to_consider.pop_back();
ObliterateOneDirectory(path, valid_paths_to_keep, &paths_to_consider);
}
}
// Ensures each path in |active_paths| is a direct child of storage_root.
void NormalizeActivePaths(const base::FilePath& storage_root,
std::unordered_set<base::FilePath>* active_paths) {
std::unordered_set<base::FilePath> normalized_active_paths;
for (auto iter = active_paths->begin(); iter != active_paths->end(); ++iter) {
base::FilePath relative_path;
if (!storage_root.AppendRelativePath(*iter, &relative_path))
continue;
std::vector<base::FilePath::StringType> components =
relative_path.GetComponents();
DCHECK(!relative_path.empty());
normalized_active_paths.insert(storage_root.Append(components.front()));
}
active_paths->swap(normalized_active_paths);
}
// Deletes all entries inside the |storage_root| that are not in the
// |active_paths|. Deletion is done in 2 steps:
//
// (1) Moving all garbage collected paths into a trash directory.
// (2) Asynchronously deleting the trash directory.
//
// The deletion is asynchronous because after (1) completes, calling code can
// safely continue to use the paths that had just been garbage collected
// without fear of race conditions.
//
// This code also ignores failed moves rather than attempting a smarter retry.
// Moves shouldn't fail here unless there is some out-of-band error (eg.,
// FS corruption). Retry logic is dangerous in the general case because
// there is not necessarily a guaranteed case where the logic may succeed.
//
// This function is still named BlockingGarbageCollect() because it does
// execute a few filesystem operations synchronously.
void BlockingGarbageCollect(
const base::FilePath& storage_root,
const scoped_refptr<base::TaskRunner>& file_access_runner,
std::unordered_set<base::FilePath> active_paths) {
CHECK(storage_root.IsAbsolute());
NormalizeActivePaths(storage_root, &active_paths);
base::FileEnumerator enumerator(storage_root, false, kAllFileTypes);
base::FilePath trash_directory;
if (!base::CreateTemporaryDirInDir(storage_root, kTrashDirname,
&trash_directory)) {
// Unable to continue without creating the trash directory so give up.
return;
}
for (base::FilePath path = enumerator.Next(); !path.empty();
path = enumerator.Next()) {
if (!base::Contains(active_paths, path) && path != trash_directory) {
// Since |trash_directory| is unique for each run of this function there
// can be no colllisions on the move.
base::Move(path, trash_directory.Append(path.BaseName()));
}
}
file_access_runner->PostTask(
FROM_HERE, base::GetDeletePathRecursivelyCallback(trash_directory));
}
} // namespace
// static
base::FilePath StoragePartitionImplMap::GetStoragePartitionPath(
const std::string& partition_domain,
const std::string& partition_name) {
if (partition_domain.empty())
return base::FilePath();
base::FilePath path = GetStoragePartitionDomainPath(partition_domain);
// TODO(ajwong): Mangle in-memory into this somehow, either by putting
// it into the partition_name, or by manually adding another path component
// here. Otherwise, it's possible to have an in-memory StoragePartition and
// a persistent one that return the same FilePath for GetPath().
if (!partition_name.empty()) {
// For analysis of why we can ignore collisions, see the comment above
// kPartitionNameHashBytes.
char buffer[kPartitionNameHashBytes];
crypto::SHA256HashString(partition_name, &buffer[0],
sizeof(buffer));
return path.AppendASCII(base::HexEncode(buffer, sizeof(buffer)));
}
return path.Append(kDefaultPartitionDirname);
}
StoragePartitionImplMap::StoragePartitionImplMap(
BrowserContext* browser_context)
: browser_context_(browser_context),
file_access_runner_(base::ThreadPool::CreateSequencedTaskRunner(
{base::MayBlock(), base::TaskPriority::BEST_EFFORT})),
resource_context_initialized_(false) {}
StoragePartitionImplMap::~StoragePartitionImplMap() {
}
StoragePartitionImpl* StoragePartitionImplMap::Get(
const StoragePartitionConfig& partition_config,
bool can_create) {
// Find the previously created partition if it's available.
PartitionMap::const_iterator it = partitions_.find(partition_config);
if (it != partitions_.end())
return it->second.get();
if (!can_create)
return nullptr;
base::FilePath relative_partition_path = GetStoragePartitionPath(
partition_config.partition_domain(), partition_config.partition_name());
absl::optional<StoragePartitionConfig> fallback_config =
partition_config.GetFallbackForBlobUrls();
StoragePartitionImpl* fallback_for_blob_urls =
fallback_config.has_value() ? Get(*fallback_config, /*can_create=*/false)
: nullptr;
std::unique_ptr<StoragePartitionImpl> partition_ptr(
StoragePartitionImpl::Create(browser_context_, partition_config,
relative_partition_path));
StoragePartitionImpl* partition = partition_ptr.get();
partitions_[partition_config] = std::move(partition_ptr);
partition->Initialize(fallback_for_blob_urls);
// Arm the serviceworker cookie change observation API.
partition->GetCookieStoreManager()->ListenToCookieChanges(
partition->GetNetworkContext(), base::DoNothing());
PostCreateInitialization(partition, partition_config.in_memory());
return partition;
}
void StoragePartitionImplMap::AsyncObliterate(
const std::string& partition_domain,
base::OnceClosure on_gc_required,
base::OnceClosure done_callback) {
// Find the active partitions for the domain. Because these partitions are
// active, it is not possible to just delete the directories that contain
// the backing data structures without causing the browser to crash. Instead,
// of deleteing the directory, we tell each storage context later to
// remove any data they have saved. This will leave the directory structure
// intact but it will only contain empty databases.
std::vector<StoragePartitionImpl*> active_partitions;
std::vector<base::FilePath> paths_to_keep;
for (PartitionMap::const_iterator it = partitions_.begin();
it != partitions_.end();
++it) {
const StoragePartitionConfig& config = it->first;
if (config.partition_domain() == partition_domain) {
active_partitions.push_back(it->second.get());
if (!config.in_memory()) {
paths_to_keep.push_back(it->second->GetPath());
}
}
}
// Create a barrier closure for keeping track of the callbacks in
// AsyncObliterate(). We have one callback for each active partition that is
// cleared and an additional one for BlockingObliteratePath()'s task reply.
int num_tasks = active_partitions.size() + 1;
auto subtask_done_callback =
base::BarrierClosure(num_tasks, std::move(done_callback));
for (auto*& active_partition : active_partitions) {
active_partition->ClearData(
// All except shader cache.
~StoragePartition::REMOVE_DATA_MASK_SHADER_CACHE,
StoragePartition::QUOTA_MANAGED_STORAGE_MASK_ALL, blink::StorageKey(),
base::Time(), base::Time::Max(), subtask_done_callback);
}
// Start a best-effort delete of the on-disk storage excluding paths that are
// known to still be in use. This is to delete any previously created
// StoragePartition state that just happens to not have been used during this
// run of the browser.
base::FilePath domain_root = browser_context_->GetPath().Append(
GetStoragePartitionDomainPath(partition_domain));
base::ThreadPool::PostTaskAndReply(
FROM_HERE, {base::MayBlock(), base::TaskPriority::BEST_EFFORT},
base::BindOnce(&BlockingObliteratePath, browser_context_->GetPath(),
domain_root, paths_to_keep,
base::SingleThreadTaskRunner::GetCurrentDefault(),
std::move(on_gc_required)),
subtask_done_callback);
}
void StoragePartitionImplMap::GarbageCollect(
std::unordered_set<base::FilePath> active_paths,
base::OnceClosure done) {
// Include all paths for current StoragePartitions in the active_paths since
// they cannot be deleted safely.
for (const auto& part : partitions_) {
const StoragePartitionConfig& config = part.first;
if (!config.in_memory())
active_paths.insert(part.second->GetPath());
}
// Find the directory holding the StoragePartitions and delete everything in
// there that isn't considered active.
base::FilePath storage_root = browser_context_->GetPath().Append(
GetStoragePartitionDomainPath(std::string()));
file_access_runner_->PostTaskAndReply(
FROM_HERE,
base::BindOnce(&BlockingGarbageCollect, storage_root, file_access_runner_,
std::move(active_paths)),
std::move(done));
}
void StoragePartitionImplMap::ForEach(
BrowserContext::StoragePartitionCallback callback) {
for (PartitionMap::const_iterator it = partitions_.begin();
it != partitions_.end();
++it) {
callback.Run(it->second.get());
}
}
void StoragePartitionImplMap::PostCreateInitialization(
StoragePartitionImpl* partition,
bool in_memory) {
// TODO(ajwong): ResourceContexts no longer have any storage related state.
// We should move this into a place where it is called once per
// BrowserContext creation rather than piggybacking off the default context
// creation.
// Note: moving this into Get() before partitions_[] is set causes reentrency.
if (!resource_context_initialized_) {
resource_context_initialized_ = true;
InitializeResourceContext(browser_context_);
}
if (!in_memory) {
// Clean up any lingering AppCache user data on disk, now that AppCache
// has been deprecated and removed.
base::ThreadPool::PostTask(
FROM_HERE, {base::MayBlock(), base::TaskPriority::BEST_EFFORT},
base::BindOnce(
[](const base::FilePath& dir) { base::DeletePathRecursively(dir); },
partition->GetPath().Append(kAppCacheDirname)));
}
partition->GetBackgroundFetchContext()->Initialize();
}
} // namespace content