blob: 36866eb754cb99e99b7a8dadeaad7ce96fc13093 [file] [log] [blame]
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <tuple>
#include <utility>
#include <vector>
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/events/event.h"
#include "ui/events/event_target_iterator.h"
#include "ui/events/event_targeter.h"
#include "ui/events/event_utils.h"
#include "ui/events/test/events_test_utils.h"
#include "ui/events/test/test_event_handler.h"
#include "ui/events/test/test_event_processor.h"
#include "ui/events/test/test_event_target.h"
#include "ui/events/test/test_event_targeter.h"
typedef std::vector<std::string> HandlerSequenceRecorder;
namespace ui {
namespace test {
class EventProcessorTest : public testing::Test {
public:
EventProcessorTest() {}
EventProcessorTest(const EventProcessorTest&) = delete;
EventProcessorTest& operator=(const EventProcessorTest&) = delete;
~EventProcessorTest() override {}
protected:
// testing::Test:
void SetUp() override {
processor_.SetRoot(std::make_unique<TestEventTarget>());
processor_.Reset();
root()->SetEventTargeter(
std::make_unique<TestEventTargeter>(root(), false));
}
TestEventTarget* root() {
return static_cast<TestEventTarget*>(processor_.GetRoot());
}
TestEventProcessor* processor() {
return &processor_;
}
void DispatchEvent(Event* event) {
processor_.OnEventFromSource(event);
}
void SetTarget(TestEventTarget* target) {
static_cast<TestEventTargeter*>(root()->GetEventTargeter())
->set_target(target);
}
private:
TestEventProcessor processor_;
};
TEST_F(EventProcessorTest, Basic) {
auto child = std::make_unique<TestEventTarget>();
child->SetEventTargeter(
std::make_unique<TestEventTargeter>(child.get(), false));
SetTarget(child.get());
root()->AddChild(std::move(child));
MouseEvent mouse(ET_MOUSE_MOVED, gfx::Point(10, 10), gfx::Point(10, 10),
EventTimeForNow(), EF_NONE, EF_NONE);
DispatchEvent(&mouse);
EXPECT_TRUE(root()->child_at(0)->DidReceiveEvent(ET_MOUSE_MOVED));
EXPECT_FALSE(root()->DidReceiveEvent(ET_MOUSE_MOVED));
SetTarget(root());
root()->RemoveChild(root()->child_at(0));
DispatchEvent(&mouse);
EXPECT_TRUE(root()->DidReceiveEvent(ET_MOUSE_MOVED));
}
// ReDispatchEventHandler is used to receive mouse events and forward them
// to a specified EventProcessor. Verifies that the event has the correct
// target and phase both before and after the nested event processing. Also
// verifies that the location of the event remains the same after it has
// been processed by the second EventProcessor.
class ReDispatchEventHandler : public TestEventHandler {
public:
ReDispatchEventHandler(EventProcessor* processor, EventTarget* target)
: processor_(processor), expected_target_(target) {}
ReDispatchEventHandler(const ReDispatchEventHandler&) = delete;
ReDispatchEventHandler& operator=(const ReDispatchEventHandler&) = delete;
~ReDispatchEventHandler() override {}
// TestEventHandler:
void OnMouseEvent(MouseEvent* event) override {
TestEventHandler::OnMouseEvent(event);
EXPECT_EQ(expected_target_, event->target());
EXPECT_EQ(EP_TARGET, event->phase());
gfx::Point location(event->location());
EventDispatchDetails details = processor_->OnEventFromSource(event);
EXPECT_FALSE(details.dispatcher_destroyed);
EXPECT_FALSE(details.target_destroyed);
// The nested event-processing should not have mutated the target,
// phase, or location of |event|.
EXPECT_EQ(expected_target_, event->target());
EXPECT_EQ(EP_TARGET, event->phase());
EXPECT_EQ(location, event->location());
}
private:
raw_ptr<EventProcessor> processor_;
raw_ptr<EventTarget> expected_target_;
};
// Verifies that the phase and target information of an event is not mutated
// as a result of sending the event to an event processor while it is still
// being processed by another event processor.
TEST_F(EventProcessorTest, NestedEventProcessing) {
// Add one child to the default event processor used in this test suite.
auto child = std::make_unique<TestEventTarget>();
SetTarget(child.get());
root()->AddChild(std::move(child));
// Define a second root target and child.
auto second_root_scoped = std::make_unique<TestEventTarget>();
TestEventTarget* second_root = second_root_scoped.get();
auto second_child = std::make_unique<TestEventTarget>();
second_root->SetEventTargeter(
std::make_unique<TestEventTargeter>(second_child.get(), false));
second_root->AddChild(std::move(second_child));
// Define a second event processor which owns the second root.
auto second_processor = std::make_unique<TestEventProcessor>();
second_processor->SetRoot(std::move(second_root_scoped));
// Indicate that an event which is dispatched to the child target owned by the
// first event processor should be handled by |target_handler| instead.
auto target_handler = std::make_unique<ReDispatchEventHandler>(
second_processor.get(), root()->child_at(0));
EventHandler* old_handler =
root()->child_at(0)->SetTargetHandler(target_handler.get());
// Dispatch a mouse event to the tree of event targets owned by the first
// event processor, checking in ReDispatchEventHandler that the phase and
// target information of the event is correct.
MouseEvent mouse(ET_MOUSE_MOVED, gfx::Point(10, 10), gfx::Point(10, 10),
EventTimeForNow(), EF_NONE, EF_NONE);
DispatchEvent(&mouse);
// Verify also that |mouse| was seen by the child nodes contained in both
// event processors and that the event was not handled.
EXPECT_EQ(1, target_handler->num_mouse_events());
EXPECT_TRUE(second_root->child_at(0)->DidReceiveEvent(ET_MOUSE_MOVED));
EXPECT_FALSE(mouse.handled());
second_root->child_at(0)->ResetReceivedEvents();
root()->child_at(0)->ResetReceivedEvents();
target_handler->Reset();
// Indicate that the child of the second root should handle events, and
// dispatch another mouse event to verify that it is marked as handled.
second_root->child_at(0)->set_mark_events_as_handled(true);
MouseEvent mouse2(ET_MOUSE_MOVED, gfx::Point(10, 10), gfx::Point(10, 10),
EventTimeForNow(), EF_NONE, EF_NONE);
DispatchEvent(&mouse2);
EXPECT_EQ(1, target_handler->num_mouse_events());
EXPECT_TRUE(second_root->child_at(0)->DidReceiveEvent(ET_MOUSE_MOVED));
EXPECT_TRUE(mouse2.handled());
old_handler = root()->child_at(0)->SetTargetHandler(old_handler);
EXPECT_EQ(old_handler, target_handler.get());
}
// Verifies that OnEventProcessingFinished() is called when an event
// has been handled.
TEST_F(EventProcessorTest, OnEventProcessingFinished) {
auto child = std::make_unique<TestEventTarget>();
child->set_mark_events_as_handled(true);
SetTarget(child.get());
root()->AddChild(std::move(child));
// Dispatch a mouse event. We expect the event to be seen by the target,
// handled, and we expect OnEventProcessingFinished() to be invoked once.
MouseEvent mouse(ET_MOUSE_MOVED, gfx::Point(10, 10), gfx::Point(10, 10),
EventTimeForNow(), EF_NONE, EF_NONE);
DispatchEvent(&mouse);
EXPECT_TRUE(root()->child_at(0)->DidReceiveEvent(ET_MOUSE_MOVED));
EXPECT_FALSE(root()->DidReceiveEvent(ET_MOUSE_MOVED));
EXPECT_TRUE(mouse.handled());
EXPECT_EQ(1, processor()->num_times_processing_finished());
}
// Verifies that OnEventProcessingStarted() has been called when starting to
// process an event, and that processing does not take place if
// OnEventProcessingStarted() marks the event as handled. Also verifies that
// OnEventProcessingFinished() is also called in either case.
TEST_F(EventProcessorTest, OnEventProcessingStarted) {
auto child = std::make_unique<TestEventTarget>();
SetTarget(child.get());
root()->AddChild(std::move(child));
// Dispatch a mouse event. We expect the event to be seen by the target,
// OnEventProcessingStarted() should be called once, and
// OnEventProcessingFinished() should be called once. The event should
// remain unhandled.
MouseEvent mouse(ET_MOUSE_MOVED, gfx::Point(10, 10), gfx::Point(10, 10),
EventTimeForNow(), EF_NONE, EF_NONE);
DispatchEvent(&mouse);
EXPECT_TRUE(root()->child_at(0)->DidReceiveEvent(ET_MOUSE_MOVED));
EXPECT_FALSE(root()->DidReceiveEvent(ET_MOUSE_MOVED));
EXPECT_FALSE(mouse.handled());
EXPECT_EQ(1, processor()->num_times_processing_started());
EXPECT_EQ(1, processor()->num_times_processing_finished());
processor()->Reset();
root()->ResetReceivedEvents();
root()->child_at(0)->ResetReceivedEvents();
// Dispatch another mouse event, but with OnEventProcessingStarted() marking
// the event as handled to prevent processing. We expect the event to not be
// seen by the target this time, but OnEventProcessingStarted() and
// OnEventProcessingFinished() should both still be called once.
processor()->set_should_processing_occur(false);
MouseEvent mouse2(ET_MOUSE_MOVED, gfx::Point(10, 10), gfx::Point(10, 10),
EventTimeForNow(), EF_NONE, EF_NONE);
DispatchEvent(&mouse2);
EXPECT_FALSE(root()->child_at(0)->DidReceiveEvent(ET_MOUSE_MOVED));
EXPECT_FALSE(root()->DidReceiveEvent(ET_MOUSE_MOVED));
EXPECT_TRUE(mouse2.handled());
EXPECT_EQ(1, processor()->num_times_processing_started());
EXPECT_EQ(1, processor()->num_times_processing_finished());
}
// Tests that unhandled events are correctly dispatched to the next-best
// target as decided by the TestEventTargeter.
TEST_F(EventProcessorTest, DispatchToNextBestTarget) {
auto child = std::make_unique<TestEventTarget>();
auto grandchild = std::make_unique<TestEventTarget>();
// Install a TestEventTargeter which permits bubbling.
root()->SetEventTargeter(
std::make_unique<TestEventTargeter>(grandchild.get(), true));
child->AddChild(std::move(grandchild));
root()->AddChild(std::move(child));
ASSERT_EQ(1u, root()->child_count());
ASSERT_EQ(1u, root()->child_at(0)->child_count());
ASSERT_EQ(0u, root()->child_at(0)->child_at(0)->child_count());
TestEventTarget* child_r = root()->child_at(0);
TestEventTarget* grandchild_r = child_r->child_at(0);
// When the root has a TestEventTargeter installed which permits bubbling,
// events targeted at the grandchild target should be dispatched to all three
// targets.
KeyEvent key_event(ET_KEY_PRESSED, VKEY_ESCAPE, EF_NONE);
DispatchEvent(&key_event);
EXPECT_TRUE(root()->DidReceiveEvent(ET_KEY_PRESSED));
EXPECT_TRUE(child_r->DidReceiveEvent(ET_KEY_PRESSED));
EXPECT_TRUE(grandchild_r->DidReceiveEvent(ET_KEY_PRESSED));
root()->ResetReceivedEvents();
child_r->ResetReceivedEvents();
grandchild_r->ResetReceivedEvents();
// Add a pre-target handler on the child of the root that will mark the event
// as handled. No targets in the hierarchy should receive the event.
TestEventHandler handler;
child_r->AddPreTargetHandler(&handler);
key_event = KeyEvent(ET_KEY_PRESSED, VKEY_ESCAPE, EF_NONE);
DispatchEvent(&key_event);
EXPECT_FALSE(root()->DidReceiveEvent(ET_KEY_PRESSED));
EXPECT_FALSE(child_r->DidReceiveEvent(ET_KEY_PRESSED));
EXPECT_FALSE(grandchild_r->DidReceiveEvent(ET_KEY_PRESSED));
EXPECT_EQ(1, handler.num_key_events());
handler.Reset();
// Add a post-target handler on the child of the root that will mark the event
// as handled. Only the grandchild (the initial target) should receive the
// event.
child_r->RemovePreTargetHandler(&handler);
child_r->AddPostTargetHandler(&handler);
key_event = KeyEvent(ET_KEY_PRESSED, VKEY_ESCAPE, EF_NONE);
DispatchEvent(&key_event);
EXPECT_FALSE(root()->DidReceiveEvent(ET_KEY_PRESSED));
EXPECT_FALSE(child_r->DidReceiveEvent(ET_KEY_PRESSED));
EXPECT_TRUE(grandchild_r->DidReceiveEvent(ET_KEY_PRESSED));
EXPECT_EQ(1, handler.num_key_events());
handler.Reset();
grandchild_r->ResetReceivedEvents();
child_r->RemovePostTargetHandler(&handler);
// Mark the event as handled when it reaches the EP_TARGET phase of
// dispatch at the child of the root. The child and grandchild
// targets should both receive the event, but the root should not.
child_r->set_mark_events_as_handled(true);
key_event = KeyEvent(ET_KEY_PRESSED, VKEY_ESCAPE, EF_NONE);
DispatchEvent(&key_event);
EXPECT_FALSE(root()->DidReceiveEvent(ET_KEY_PRESSED));
EXPECT_TRUE(child_r->DidReceiveEvent(ET_KEY_PRESSED));
EXPECT_TRUE(grandchild_r->DidReceiveEvent(ET_KEY_PRESSED));
root()->ResetReceivedEvents();
child_r->ResetReceivedEvents();
grandchild_r->ResetReceivedEvents();
child_r->set_mark_events_as_handled(false);
}
// Tests that unhandled events are seen by the correct sequence of
// targets, pre-target handlers, and post-target handlers when
// a TestEventTargeter is installed on the root target which permits bubbling.
TEST_F(EventProcessorTest, HandlerSequence) {
auto child = std::make_unique<TestEventTarget>();
auto grandchild = std::make_unique<TestEventTarget>();
// Install a TestEventTargeter which permits bubbling.
root()->SetEventTargeter(
std::make_unique<TestEventTargeter>(grandchild.get(), true));
child->AddChild(std::move(grandchild));
root()->AddChild(std::move(child));
ASSERT_EQ(1u, root()->child_count());
ASSERT_EQ(1u, root()->child_at(0)->child_count());
ASSERT_EQ(0u, root()->child_at(0)->child_at(0)->child_count());
TestEventTarget* child_r = root()->child_at(0);
TestEventTarget* grandchild_r = child_r->child_at(0);
HandlerSequenceRecorder recorder;
root()->set_target_name("R");
root()->set_recorder(&recorder);
child_r->set_target_name("C");
child_r->set_recorder(&recorder);
grandchild_r->set_target_name("G");
grandchild_r->set_recorder(&recorder);
TestEventHandler pre_root;
pre_root.set_handler_name("PreR");
pre_root.set_recorder(&recorder);
root()->AddPreTargetHandler(&pre_root);
TestEventHandler pre_child;
pre_child.set_handler_name("PreC");
pre_child.set_recorder(&recorder);
child_r->AddPreTargetHandler(&pre_child);
TestEventHandler pre_grandchild;
pre_grandchild.set_handler_name("PreG");
pre_grandchild.set_recorder(&recorder);
grandchild_r->AddPreTargetHandler(&pre_grandchild);
TestEventHandler post_root;
post_root.set_handler_name("PostR");
post_root.set_recorder(&recorder);
root()->AddPostTargetHandler(&post_root);
TestEventHandler post_child;
post_child.set_handler_name("PostC");
post_child.set_recorder(&recorder);
child_r->AddPostTargetHandler(&post_child);
TestEventHandler post_grandchild;
post_grandchild.set_handler_name("PostG");
post_grandchild.set_recorder(&recorder);
grandchild_r->AddPostTargetHandler(&post_grandchild);
MouseEvent mouse(ET_MOUSE_MOVED, gfx::Point(10, 10), gfx::Point(10, 10),
EventTimeForNow(), EF_NONE, EF_NONE);
DispatchEvent(&mouse);
std::string expected[] = { "PreR", "PreC", "PreG", "G", "PostG", "PostC",
"PostR", "PreR", "PreC", "C", "PostC", "PostR", "PreR", "R", "PostR" };
EXPECT_EQ(std::vector<std::string>(expected, expected + std::size(expected)),
recorder);
grandchild_r->RemovePreTargetHandler(&pre_grandchild);
child_r->RemovePreTargetHandler(&pre_child);
root()->RemovePreTargetHandler(&pre_root);
grandchild_r->set_recorder(nullptr);
child_r->set_recorder(nullptr);
root()->set_recorder(nullptr);
}
namespace {
enum DestroyTarget { kProcessor, kTargeter };
class DestroyDuringDispatchEventProcessor : public TestEventProcessor {
public:
DestroyDuringDispatchEventProcessor() = default;
DestroyDuringDispatchEventProcessor(
const DestroyDuringDispatchEventProcessor&) = delete;
DestroyDuringDispatchEventProcessor& operator=(
const DestroyDuringDispatchEventProcessor&) = delete;
~DestroyDuringDispatchEventProcessor() override = default;
protected:
EventDispatchDetails PostDispatchEvent(EventTarget* target,
const Event& event) override;
};
class DestroyDuringDispatchEventTarget : public TestEventTarget {
public:
explicit DestroyDuringDispatchEventTarget(DestroyTarget target)
: destroy_target_(target),
processor_(std::make_unique<DestroyDuringDispatchEventProcessor>()) {}
DestroyDuringDispatchEventTarget(const DestroyDuringDispatchEventTarget&) =
delete;
DestroyDuringDispatchEventTarget& operator=(
const DestroyDuringDispatchEventTarget&) = delete;
TestEventProcessor* processor() { return processor_.get(); }
void Destroy() {
switch (destroy_target_) {
case kProcessor:
processor_.reset();
break;
case kTargeter:
SetEventTargeter(nullptr);
}
}
private:
DestroyTarget destroy_target_;
std::unique_ptr<TestEventProcessor> processor_;
};
EventDispatchDetails DestroyDuringDispatchEventProcessor::PostDispatchEvent(
EventTarget* target,
const Event& event) {
static_cast<DestroyDuringDispatchEventTarget*>(target)->Destroy();
return EventDispatchDetails();
}
} // namespace
TEST(EventProcessorCrashTest, DestroyDuringDispatch) {
for (auto destroy_target : {kProcessor, kTargeter}) {
SCOPED_TRACE(destroy_target == kProcessor ? "Processor" : "Targeter");
auto root = std::make_unique<TestEventTarget>();
auto target =
std::make_unique<DestroyDuringDispatchEventTarget>(destroy_target);
root->SetEventTargeter(
std::make_unique<TestEventTargeter>(target.get(), false));
TestEventProcessor* processor = target->processor();
auto* target_ptr = target.get();
processor->SetRoot(std::move(root));
MouseEvent mouse(ET_MOUSE_MOVED, gfx::Point(10, 10), gfx::Point(10, 10),
EventTimeForNow(), EF_NONE, EF_NONE);
if (destroy_target == kProcessor) {
EXPECT_TRUE(processor->OnEventFromSource(&mouse).dispatcher_destroyed);
} else {
EXPECT_FALSE(processor->OnEventFromSource(&mouse).dispatcher_destroyed);
EXPECT_FALSE(target_ptr->GetEventTargeter());
}
}
}
namespace {
class DestroyDuringFindTargetEventTargeter : public TestEventTargeter {
public:
DestroyDuringFindTargetEventTargeter(std::unique_ptr<TestEventTarget> root,
DestroyTarget target)
: TestEventTargeter(nullptr, false),
destroy_target_(target),
root_(root.get()),
processor_(std::make_unique<TestEventProcessor>()) {
processor_->SetRoot(std::move(root));
}
DestroyDuringFindTargetEventTargeter(
const DestroyDuringFindTargetEventTargeter&) = delete;
DestroyDuringFindTargetEventTargeter& operator=(
const DestroyDuringFindTargetEventTargeter&) = delete;
~DestroyDuringFindTargetEventTargeter() override = default;
// EventTargeter:
EventTarget* FindTargetForEvent(EventTarget* root, Event* event) override {
switch (destroy_target_) {
case kProcessor:
processor_.reset();
break;
case kTargeter:
processor_.release();
DCHECK_EQ(this, root_->GetEventTargeter());
root_->SetEventTargeter(nullptr);
}
return nullptr;
}
EventProcessor* processor() { return processor_.get(); }
private:
DestroyTarget destroy_target_;
raw_ptr<TestEventTarget> root_;
std::unique_ptr<TestEventProcessor> processor_;
};
} // namespace
TEST(EventProcessorCrashTest, DestroyDuringFindTarget) {
for (auto destroy_target : {kProcessor, kTargeter}) {
SCOPED_TRACE(destroy_target == kProcessor ? "Processor" : "Targeter");
auto root = std::make_unique<TestEventTarget>();
TestEventTarget* root_ptr = root.get();
auto event_targeter =
std::make_unique<DestroyDuringFindTargetEventTargeter>(std::move(root),
destroy_target);
auto* processor = event_targeter->processor();
root_ptr->SetEventTargeter(std::move(event_targeter));
MouseEvent mouse(ET_MOUSE_MOVED, gfx::Point(10, 10), gfx::Point(10, 10),
EventTimeForNow(), EF_NONE, EF_NONE);
if (destroy_target == kProcessor) {
EXPECT_TRUE(processor->OnEventFromSource(&mouse).dispatcher_destroyed);
} else {
EXPECT_FALSE(processor->OnEventFromSource(&mouse).dispatcher_destroyed);
EXPECT_FALSE(root_ptr->GetEventTargeter());
// TestEventTargeter releases the processor when deleting the targeter.
delete processor;
}
}
}
} // namespace test
} // namespace ui