blob: bcc07aa46bdbf7d3b3ba051e1cc1384ccfd0744c [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/resources/resource_pool.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <utility>
#include "base/format_macros.h"
#include "base/memory/memory_coordinator_client_registry.h"
#include "base/strings/stringprintf.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/trace_event/memory_dump_manager.h"
#include "build/build_config.h"
#include "cc/base/container_util.h"
#include "cc/resources/layer_tree_resource_provider.h"
#include "cc/resources/resource_util.h"
#include "cc/resources/scoped_resource.h"
using base::trace_event::MemoryAllocatorDump;
using base::trace_event::MemoryDumpLevelOfDetail;
namespace cc {
namespace {
bool ResourceMeetsSizeRequirements(const gfx::Size& requested_size,
const gfx::Size& actual_size,
bool disallow_non_exact_reuse) {
const float kReuseThreshold = 2.0f;
if (disallow_non_exact_reuse)
return requested_size == actual_size;
// Allocating new resources is expensive, and we'd like to re-use our
// existing ones within reason. Allow a larger resource to be used for a
// smaller request.
if (actual_size.width() < requested_size.width() ||
actual_size.height() < requested_size.height())
return false;
// GetArea will crash on overflow, however all sizes in use are tile sizes.
// These are capped at LayerTreeResourceProvider::max_texture_size(), and will
// not overflow.
float actual_area = actual_size.GetArea();
float requested_area = requested_size.GetArea();
// Don't use a resource that is more than |kReuseThreshold| times the
// requested pixel area, as we want to free unnecessarily large resources.
if (actual_area / requested_area > kReuseThreshold)
return false;
return true;
}
} // namespace
constexpr base::TimeDelta ResourcePool::kDefaultExpirationDelay;
ResourcePool::ResourcePool(
LayerTreeResourceProvider* resource_provider,
scoped_refptr<base::SingleThreadTaskRunner> task_runner,
gfx::BufferUsage usage,
const base::TimeDelta& expiration_delay,
bool disallow_non_exact_reuse)
: resource_provider_(resource_provider),
use_gpu_memory_buffers_(true),
usage_(usage),
task_runner_(std::move(task_runner)),
resource_expiration_delay_(expiration_delay),
disallow_non_exact_reuse_(disallow_non_exact_reuse),
weak_ptr_factory_(this) {
base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
this, "cc::ResourcePool", task_runner_.get());
// Register this component with base::MemoryCoordinatorClientRegistry.
base::MemoryCoordinatorClientRegistry::GetInstance()->Register(this);
}
ResourcePool::ResourcePool(
LayerTreeResourceProvider* resource_provider,
scoped_refptr<base::SingleThreadTaskRunner> task_runner,
viz::ResourceTextureHint hint,
const base::TimeDelta& expiration_delay,
bool disallow_non_exact_reuse)
: resource_provider_(resource_provider),
use_gpu_resources_(true),
use_gpu_memory_buffers_(false),
hint_(hint),
task_runner_(std::move(task_runner)),
resource_expiration_delay_(expiration_delay),
disallow_non_exact_reuse_(disallow_non_exact_reuse),
weak_ptr_factory_(this) {
base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
this, "cc::ResourcePool", task_runner_.get());
// Register this component with base::MemoryCoordinatorClientRegistry.
base::MemoryCoordinatorClientRegistry::GetInstance()->Register(this);
}
ResourcePool::ResourcePool(
LayerTreeResourceProvider* resource_provider,
scoped_refptr<base::SingleThreadTaskRunner> task_runner,
const base::TimeDelta& expiration_delay,
bool disallow_non_exact_reuse)
: resource_provider_(resource_provider),
use_gpu_resources_(false),
use_gpu_memory_buffers_(false),
hint_(viz::ResourceTextureHint::kDefault),
task_runner_(std::move(task_runner)),
resource_expiration_delay_(expiration_delay),
disallow_non_exact_reuse_(disallow_non_exact_reuse),
weak_ptr_factory_(this) {
base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
this, "cc::ResourcePool", task_runner_.get());
// Register this component with base::MemoryCoordinatorClientRegistry.
base::MemoryCoordinatorClientRegistry::GetInstance()->Register(this);
}
ResourcePool::~ResourcePool() {
base::trace_event::MemoryDumpManager::GetInstance()->UnregisterDumpProvider(
this);
// Unregister this component with memory_coordinator::ClientRegistry.
base::MemoryCoordinatorClientRegistry::GetInstance()->Unregister(this);
DCHECK_EQ(0u, in_use_resources_.size());
while (!busy_resources_.empty()) {
DidFinishUsingResource(PopBack(&busy_resources_));
}
SetResourceUsageLimits(0, 0);
DCHECK_EQ(0u, unused_resources_.size());
DCHECK_EQ(0u, in_use_memory_usage_bytes_);
DCHECK_EQ(0u, total_memory_usage_bytes_);
DCHECK_EQ(0u, total_resource_count_);
}
ResourcePool::PoolResource* ResourcePool::ReuseResource(
const gfx::Size& size,
viz::ResourceFormat format,
const gfx::ColorSpace& color_space) {
// Finding resources in |unused_resources_| from MRU to LRU direction, touches
// LRU resources only if needed, which increases possibility of expiring more
// LRU resources within kResourceExpirationDelayMs.
for (auto it = unused_resources_.begin(); it != unused_resources_.end();
++it) {
PoolResource* resource = it->get();
DCHECK(resource_provider_->CanLockForWrite(resource->resource_id()));
if (resource->format() != format)
continue;
if (!ResourceMeetsSizeRequirements(size, resource->size(),
disallow_non_exact_reuse_))
continue;
if (resource->color_space() != color_space)
continue;
// Transfer resource to |in_use_resources_|.
in_use_resources_[resource->unique_id()] = std::move(*it);
unused_resources_.erase(it);
in_use_memory_usage_bytes_ += ResourceUtil::UncheckedSizeInBytes<size_t>(
resource->size(), resource->format());
return resource;
}
return nullptr;
}
ResourcePool::PoolResource* ResourcePool::CreateResource(
const gfx::Size& size,
viz::ResourceFormat format,
const gfx::ColorSpace& color_space) {
DCHECK(ResourceUtil::VerifySizeInBytes<size_t>(size, format));
viz::ResourceId resource_id;
if (use_gpu_memory_buffers_) {
resource_id = resource_provider_->CreateGpuMemoryBufferResource(
size, viz::ResourceTextureHint::kDefault, format, usage_, color_space);
} else if (use_gpu_resources_) {
resource_id = resource_provider_->CreateGpuTextureResource(
size, hint_, format, color_space);
} else {
DCHECK_EQ(format, viz::RGBA_8888);
resource_id = resource_provider_->CreateBitmapResource(size, color_space);
}
auto pool_resource = std::make_unique<PoolResource>(
next_resource_unique_id_++, size, format, color_space, resource_id);
total_memory_usage_bytes_ +=
ResourceUtil::UncheckedSizeInBytes<size_t>(size, format);
++total_resource_count_;
PoolResource* resource = pool_resource.get();
in_use_resources_[resource->unique_id()] = std::move(pool_resource);
in_use_memory_usage_bytes_ +=
ResourceUtil::UncheckedSizeInBytes<size_t>(size, format);
return resource;
}
ResourcePool::InUsePoolResource ResourcePool::AcquireResource(
const gfx::Size& size,
viz::ResourceFormat format,
const gfx::ColorSpace& color_space) {
PoolResource* resource = ReuseResource(size, format, color_space);
if (!resource)
resource = CreateResource(size, format, color_space);
return InUsePoolResource(resource,
use_gpu_resources_ || use_gpu_memory_buffers_);
}
// Iterate over all three resource lists (unused, in-use, and busy), updating
// the invalidation and content IDs to allow for future partial raster. The
// first unused resource found (if any) will be returned and used for partial
// raster directly.
//
// Note that this may cause us to have multiple resources with the same content
// ID. This is not a correctness risk, as all these resources will have valid
// invalidations can can be used safely. Note that we could improve raster
// performance at the cost of search time if we found the resource with the
// smallest invalidation ID to raster in to.
ResourcePool::InUsePoolResource
ResourcePool::TryAcquireResourceForPartialRaster(
uint64_t new_content_id,
const gfx::Rect& new_invalidated_rect,
uint64_t previous_content_id,
gfx::Rect* total_invalidated_rect) {
DCHECK(new_content_id);
DCHECK(previous_content_id);
*total_invalidated_rect = gfx::Rect();
auto iter_resource_to_return = unused_resources_.end();
int minimum_area = 0;
// First update all unused resources. While updating, track the resource with
// the smallest invalidation. That resource will be returned to the caller.
for (auto it = unused_resources_.begin(); it != unused_resources_.end();
++it) {
PoolResource* resource = it->get();
if (resource->content_id() == previous_content_id) {
UpdateResourceContentIdAndInvalidation(resource, new_content_id,
new_invalidated_rect);
// Return the resource with the smallest invalidation.
int area = resource->invalidated_rect().size().GetArea();
if (iter_resource_to_return == unused_resources_.end() ||
area < minimum_area) {
iter_resource_to_return = it;
minimum_area = area;
}
}
}
// Next, update all busy and in_use resources.
for (const auto& resource : busy_resources_) {
if (resource->content_id() == previous_content_id) {
UpdateResourceContentIdAndInvalidation(resource.get(), new_content_id,
new_invalidated_rect);
}
}
for (const auto& resource_pair : in_use_resources_) {
PoolResource* resource = resource_pair.second.get();
if (resource->content_id() == previous_content_id) {
UpdateResourceContentIdAndInvalidation(resource, new_content_id,
new_invalidated_rect);
}
}
// If we found an unused resource to return earlier, move it to
// |in_use_resources_| and return it.
if (iter_resource_to_return != unused_resources_.end()) {
PoolResource* resource = iter_resource_to_return->get();
DCHECK(resource_provider_->CanLockForWrite(resource->resource_id()));
// Transfer resource to |in_use_resources_|.
in_use_resources_[resource->unique_id()] =
std::move(*iter_resource_to_return);
unused_resources_.erase(iter_resource_to_return);
in_use_memory_usage_bytes_ += ResourceUtil::UncheckedSizeInBytes<size_t>(
resource->size(), resource->format());
*total_invalidated_rect = resource->invalidated_rect();
// Clear the invalidated rect and content ID on the resource being retunred.
// These will be updated when raster completes successfully.
resource->set_invalidated_rect(gfx::Rect());
resource->set_content_id(0);
return InUsePoolResource(resource,
use_gpu_resources_ || use_gpu_memory_buffers_);
}
return InUsePoolResource();
}
void ResourcePool::ReleaseResource(InUsePoolResource in_use_resource) {
PoolResource* pool_resource = in_use_resource.resource_;
in_use_resource.SetWasFreedByResourcePool();
// Ensure that the provided resource is valid.
// TODO(ericrk): Remove this once we've investigated further.
// crbug.com/598286.
CHECK(pool_resource);
auto it = in_use_resources_.find(pool_resource->unique_id());
if (it == in_use_resources_.end()) {
// We should never hit this. Do some digging to try to determine the cause.
// TODO(ericrk): Remove this once we've investigated further.
// crbug.com/598286.
// Maybe this is a double free - see if the resource exists in our busy
// list.
auto found_busy = std::find_if(
busy_resources_.begin(), busy_resources_.end(),
[pool_resource](const std::unique_ptr<PoolResource>& busy_resource) {
return busy_resource->unique_id() == pool_resource->unique_id();
});
CHECK(found_busy == busy_resources_.end());
// Also check if the resource exists in our unused resources list.
auto found_unused = std::find_if(
unused_resources_.begin(), unused_resources_.end(),
[pool_resource](const std::unique_ptr<PoolResource>& unused_resource) {
return unused_resource->unique_id() == pool_resource->unique_id();
});
CHECK(found_unused == unused_resources_.end());
// Resource doesn't exist in any of our lists. CHECK.
CHECK(false);
}
// Also ensure that the resource wasn't null in our list.
// TODO(ericrk): Remove this once we've investigated further.
// crbug.com/598286.
CHECK(it->second.get());
pool_resource->set_last_usage(base::TimeTicks::Now());
// Transfer resource to |busy_resources_|.
busy_resources_.push_front(std::move(it->second));
in_use_resources_.erase(it);
in_use_memory_usage_bytes_ -= ResourceUtil::UncheckedSizeInBytes<size_t>(
pool_resource->size(), pool_resource->format());
// Now that we have evictable resources, schedule an eviction call for this
// resource if necessary.
ScheduleEvictExpiredResourcesIn(resource_expiration_delay_);
}
void ResourcePool::OnContentReplaced(
const ResourcePool::InUsePoolResource& in_use_resource,
uint64_t content_id) {
PoolResource* resource = in_use_resource.resource_;
DCHECK(resource);
resource->set_content_id(content_id);
resource->set_invalidated_rect(gfx::Rect());
}
void ResourcePool::SetResourceUsageLimits(size_t max_memory_usage_bytes,
size_t max_resource_count) {
max_memory_usage_bytes_ = max_memory_usage_bytes;
max_resource_count_ = max_resource_count;
ReduceResourceUsage();
}
void ResourcePool::ReduceResourceUsage() {
while (!unused_resources_.empty()) {
if (!ResourceUsageTooHigh())
break;
// LRU eviction pattern. Most recently used might be blocked by
// a read lock fence but it's still better to evict the least
// recently used as it prevents a resource that is hard to reuse
// because of unique size from being kept around. Resources that
// can't be locked for write might also not be truly free-able.
// We can free the resource here but it doesn't mean that the
// memory is necessarily returned to the OS.
DeleteResource(PopBack(&unused_resources_));
}
}
bool ResourcePool::ResourceUsageTooHigh() {
if (total_resource_count_ > max_resource_count_)
return true;
if (total_memory_usage_bytes_ > max_memory_usage_bytes_)
return true;
return false;
}
void ResourcePool::DeleteResource(std::unique_ptr<PoolResource> resource) {
size_t resource_bytes = ResourceUtil::UncheckedSizeInBytes<size_t>(
resource->size(), resource->format());
total_memory_usage_bytes_ -= resource_bytes;
--total_resource_count_;
resource_provider_->DeleteResource(resource->resource_id());
}
void ResourcePool::UpdateResourceContentIdAndInvalidation(
PoolResource* resource,
uint64_t new_content_id,
const gfx::Rect& new_invalidated_rect) {
gfx::Rect updated_invalidated_rect = new_invalidated_rect;
if (!resource->invalidated_rect().IsEmpty())
updated_invalidated_rect.Union(resource->invalidated_rect());
resource->set_content_id(new_content_id);
resource->set_invalidated_rect(updated_invalidated_rect);
}
void ResourcePool::CheckBusyResources() {
for (auto it = busy_resources_.begin(); it != busy_resources_.end();) {
PoolResource* resource = it->get();
if (resource_provider_->CanLockForWrite(resource->resource_id())) {
DidFinishUsingResource(std::move(*it));
it = busy_resources_.erase(it);
} else if (resource_provider_->IsLost(resource->resource_id())) {
// Remove lost resources from pool.
DeleteResource(std::move(*it));
it = busy_resources_.erase(it);
} else {
++it;
}
}
}
void ResourcePool::DidFinishUsingResource(
std::unique_ptr<PoolResource> resource) {
unused_resources_.push_front(std::move(resource));
}
void ResourcePool::ScheduleEvictExpiredResourcesIn(
base::TimeDelta time_from_now) {
if (evict_expired_resources_pending_)
return;
evict_expired_resources_pending_ = true;
task_runner_->PostDelayedTask(
FROM_HERE,
base::BindOnce(&ResourcePool::EvictExpiredResources,
weak_ptr_factory_.GetWeakPtr()),
time_from_now);
}
void ResourcePool::EvictExpiredResources() {
evict_expired_resources_pending_ = false;
base::TimeTicks current_time = base::TimeTicks::Now();
EvictResourcesNotUsedSince(current_time - resource_expiration_delay_);
if (unused_resources_.empty() && busy_resources_.empty()) {
// If nothing is evictable, we have deleted one (and possibly more)
// resources without any new activity. Flush to ensure these deletions are
// processed.
resource_provider_->FlushPendingDeletions();
return;
}
// If we still have evictable resources, schedule a call to
// EvictExpiredResources at the time when the LRU buffer expires.
ScheduleEvictExpiredResourcesIn(GetUsageTimeForLRUResource() +
resource_expiration_delay_ - current_time);
}
void ResourcePool::EvictResourcesNotUsedSince(base::TimeTicks time_limit) {
while (!unused_resources_.empty()) {
// |unused_resources_| is not strictly ordered with regards to last_usage,
// as this may not exactly line up with the time a resource became non-busy.
// However, this should be roughly ordered, and will only introduce slight
// delays in freeing expired resources.
if (unused_resources_.back()->last_usage() > time_limit)
return;
DeleteResource(PopBack(&unused_resources_));
}
// Also free busy resources older than the delay. With a sufficiently large
// delay, such as the 1 second used here, any "busy" resources which have
// expired are not likely to be busy. Additionally, freeing a "busy" resource
// has no downside other than incorrect accounting.
while (!busy_resources_.empty()) {
if (busy_resources_.back()->last_usage() > time_limit)
return;
DeleteResource(PopBack(&busy_resources_));
}
}
base::TimeTicks ResourcePool::GetUsageTimeForLRUResource() const {
if (!unused_resources_.empty()) {
return unused_resources_.back()->last_usage();
}
// This is only called when we have at least one evictable resource.
DCHECK(!busy_resources_.empty());
return busy_resources_.back()->last_usage();
}
bool ResourcePool::OnMemoryDump(const base::trace_event::MemoryDumpArgs& args,
base::trace_event::ProcessMemoryDump* pmd) {
if (args.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND) {
std::string dump_name = base::StringPrintf(
"cc/tile_memory/provider_%d", resource_provider_->tracing_id());
MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(dump_name);
dump->AddScalar(MemoryAllocatorDump::kNameSize,
MemoryAllocatorDump::kUnitsBytes,
total_memory_usage_bytes_);
} else {
for (const auto& resource : unused_resources_) {
resource->OnMemoryDump(pmd, resource_provider_, true /* is_free */);
}
for (const auto& resource : busy_resources_) {
resource->OnMemoryDump(pmd, resource_provider_, false /* is_free */);
}
for (const auto& entry : in_use_resources_) {
entry.second->OnMemoryDump(pmd, resource_provider_, false /* is_free */);
}
}
return true;
}
void ResourcePool::OnPurgeMemory() {
// Release all resources, regardless of how recently they were used.
EvictResourcesNotUsedSince(base::TimeTicks() + base::TimeDelta::Max());
}
ResourcePool::PoolResource::PoolResource(size_t unique_id,
const gfx::Size& size,
viz::ResourceFormat format,
const gfx::ColorSpace& color_space,
viz::ResourceId resource_id)
: unique_id_(unique_id),
size_(size),
format_(format),
color_space_(color_space),
resource_id_(resource_id) {}
ResourcePool::PoolResource::~PoolResource() = default;
void ResourcePool::PoolResource::OnMemoryDump(
base::trace_event::ProcessMemoryDump* pmd,
const LayerTreeResourceProvider* resource_provider,
bool is_free) const {
// Resource IDs are not process-unique, so log with the
// LayerTreeResourceProvider's unique id.
std::string parent_node =
base::StringPrintf("cc/resource_memory/provider_%d/resource_%d",
resource_provider->tracing_id(), resource_id_);
std::string dump_name =
base::StringPrintf("cc/tile_memory/provider_%d/resource_%d",
resource_provider->tracing_id(), resource_id_);
MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(dump_name);
pmd->AddSuballocation(dump->guid(), parent_node);
uint64_t total_bytes =
ResourceUtil::UncheckedSizeInBytesAligned<size_t>(size_, format_);
dump->AddScalar(MemoryAllocatorDump::kNameSize,
MemoryAllocatorDump::kUnitsBytes, total_bytes);
if (is_free) {
dump->AddScalar("free_size", MemoryAllocatorDump::kUnitsBytes, total_bytes);
}
}
} // namespace cc