blob: 6b34ade19b28f096970741aa4de52a9eea60d1de [file] [log] [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/win/src/win_utils.h"
#include <windows.h>
#include <ntstatus.h>
#include <psapi.h>
#include <stddef.h>
#include <stdint.h>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "base/numerics/safe_math.h"
#include "base/strings/string_util.h"
#include "base/win/pe_image.h"
#include "base/win/scoped_handle.h"
#include "base/win/win_util.h"
#include "sandbox/win/src/internal_types.h"
#include "sandbox/win/src/nt_internals.h"
#include "sandbox/win/src/sandbox_nt_util.h"
namespace {
const size_t kDriveLetterLen = 3;
constexpr wchar_t kNTDotPrefix[] = L"\\\\.\\";
const size_t kNTDotPrefixLen = std::size(kNTDotPrefix) - 1;
// Holds the information about a known registry key.
struct KnownReservedKey {
const wchar_t* name;
HKEY key;
};
// Contains all the known registry key by name and by handle.
const KnownReservedKey kKnownKey[] = {
{L"HKEY_CLASSES_ROOT", HKEY_CLASSES_ROOT},
{L"HKEY_CURRENT_USER", HKEY_CURRENT_USER},
{L"HKEY_LOCAL_MACHINE", HKEY_LOCAL_MACHINE},
{L"HKEY_USERS", HKEY_USERS},
{L"HKEY_PERFORMANCE_DATA", HKEY_PERFORMANCE_DATA},
{L"HKEY_PERFORMANCE_TEXT", HKEY_PERFORMANCE_TEXT},
{L"HKEY_PERFORMANCE_NLSTEXT", HKEY_PERFORMANCE_NLSTEXT},
{L"HKEY_CURRENT_CONFIG", HKEY_CURRENT_CONFIG},
{L"HKEY_DYN_DATA", HKEY_DYN_DATA}};
// These functions perform case independent path comparisons.
bool EqualPath(const std::wstring& first, const std::wstring& second) {
return _wcsicmp(first.c_str(), second.c_str()) == 0;
}
bool EqualPath(const std::wstring& first,
size_t first_offset,
const std::wstring& second,
size_t second_offset) {
return _wcsicmp(first.c_str() + first_offset,
second.c_str() + second_offset) == 0;
}
bool EqualPath(const std::wstring& first,
const wchar_t* second,
size_t second_len) {
return _wcsnicmp(first.c_str(), second, second_len) == 0;
}
bool EqualPath(const std::wstring& first,
size_t first_offset,
const wchar_t* second,
size_t second_len) {
return _wcsnicmp(first.c_str() + first_offset, second, second_len) == 0;
}
// Returns true if |path| starts with "\??\" and returns a path without that
// component.
bool IsNTPath(const std::wstring& path, std::wstring* trimmed_path) {
if ((path.size() < sandbox::kNTPrefixLen) ||
!EqualPath(path, sandbox::kNTPrefix, sandbox::kNTPrefixLen)) {
*trimmed_path = path;
return false;
}
*trimmed_path = path.substr(sandbox::kNTPrefixLen);
return true;
}
// Returns true if |path| starts with "\Device\" and returns a path without that
// component.
bool IsDevicePath(const std::wstring& path, std::wstring* trimmed_path) {
if ((path.size() < sandbox::kNTDevicePrefixLen) ||
(!EqualPath(path, sandbox::kNTDevicePrefix,
sandbox::kNTDevicePrefixLen))) {
*trimmed_path = path;
return false;
}
*trimmed_path = path.substr(sandbox::kNTDevicePrefixLen);
return true;
}
// Returns the offset to the path seperator following
// "\Device\HarddiskVolumeX" in |path|.
size_t PassHarddiskVolume(const std::wstring& path) {
static constexpr wchar_t pattern[] = L"\\Device\\HarddiskVolume";
const size_t patternLen = std::size(pattern) - 1;
// First, check for |pattern|.
if ((path.size() < patternLen) || (!EqualPath(path, pattern, patternLen)))
return std::wstring::npos;
// Find the next path separator, after the pattern match.
return path.find_first_of(L'\\', patternLen - 1);
}
// Returns true if |path| starts with "\Device\HarddiskVolumeX\" and returns a
// path without that component. |removed| will hold the prefix removed.
bool IsDeviceHarddiskPath(const std::wstring& path,
std::wstring* trimmed_path,
std::wstring* removed) {
size_t offset = PassHarddiskVolume(path);
if (offset == std::wstring::npos)
return false;
// Remove up to and including the path separator.
*removed = path.substr(0, offset + 1);
// Remaining path starts after the path separator.
*trimmed_path = path.substr(offset + 1);
return true;
}
bool StartsWithDriveLetter(const std::wstring& path) {
if (path.size() < kDriveLetterLen)
return false;
if (path[1] != L':' || path[2] != L'\\')
return false;
return base::IsAsciiAlpha(path[0]);
}
// Removes "\\\\.\\" from the path.
void RemoveImpliedDevice(std::wstring* path) {
if (EqualPath(*path, kNTDotPrefix, kNTDotPrefixLen))
*path = path->substr(kNTDotPrefixLen);
}
NTSTATUS WrapQueryObject(HANDLE handle,
OBJECT_INFORMATION_CLASS info_class,
std::vector<uint8_t>& buffer,
PULONG reqd) {
if (handle == nullptr || handle == INVALID_HANDLE_VALUE)
return STATUS_INVALID_PARAMETER;
NtQueryObjectFunction NtQueryObject = sandbox::GetNtExports()->QueryObject;
ULONG size = static_cast<ULONG>(buffer.size());
__try {
return NtQueryObject(handle, info_class, buffer.data(), size, reqd);
} __except (GetExceptionCode() == STATUS_INVALID_HANDLE
? EXCEPTION_EXECUTE_HANDLER
: EXCEPTION_CONTINUE_SEARCH) {
return STATUS_INVALID_PARAMETER;
}
}
// `hint` is used for the initial call to NtQueryObject. Note that some data
// in the returned vector might be unused.
std::unique_ptr<std::vector<uint8_t>> QueryObjectInformation(
HANDLE handle,
OBJECT_INFORMATION_CLASS info_class,
ULONG hint) {
// Internal pointers in this buffer cannot move about so cannot just return
// the vector.
auto data = std::make_unique<std::vector<uint8_t>>(hint);
ULONG req = 0;
NTSTATUS ret = WrapQueryObject(handle, info_class, *data, &req);
if (ret == STATUS_INFO_LENGTH_MISMATCH || ret == STATUS_BUFFER_TOO_SMALL ||
ret == STATUS_BUFFER_OVERFLOW) {
data->resize(req);
ret = WrapQueryObject(handle, info_class, *data, nullptr);
}
if (!NT_SUCCESS(ret))
return nullptr;
return data;
}
} // namespace
namespace sandbox {
// Returns true if the provided path points to a pipe.
bool IsPipe(const std::wstring& path) {
size_t start = 0;
if (EqualPath(path, sandbox::kNTPrefix, sandbox::kNTPrefixLen))
start = sandbox::kNTPrefixLen;
const wchar_t kPipe[] = L"pipe\\";
if (path.size() < start + std::size(kPipe) - 1)
return false;
return EqualPath(path, start, kPipe, std::size(kPipe) - 1);
}
std::optional<std::wstring> ResolveRegistryName(std::wstring name) {
for (size_t i = 0; i < std::size(kKnownKey); ++i) {
if (name.find(kKnownKey[i].name) == 0) {
HKEY key;
DWORD disposition;
if (ERROR_SUCCESS != ::RegCreateKeyEx(kKnownKey[i].key, L"", 0, nullptr,
0, MAXIMUM_ALLOWED, nullptr, &key,
&disposition)) {
return std::nullopt;
}
auto result = GetPathFromHandle(key);
::RegCloseKey(key);
if (!result)
return std::nullopt;
result->append(name.substr(wcslen(kKnownKey[i].name)));
return result;
}
}
return std::nullopt;
}
// |full_path| can have any of the following forms:
// \??\c:\some\foo\bar
// \Device\HarddiskVolume0\some\foo\bar
// \??\HarddiskVolume0\some\foo\bar
DWORD IsReparsePoint(const std::wstring& full_path) {
// Check if it's a pipe. We can't query the attributes of a pipe.
if (IsPipe(full_path))
return ERROR_NOT_A_REPARSE_POINT;
std::wstring path;
bool nt_path = IsNTPath(full_path, &path);
bool has_drive = StartsWithDriveLetter(path);
bool is_device_path = IsDevicePath(path, &path);
if (!has_drive && !is_device_path && !nt_path)
return ERROR_INVALID_NAME;
bool added_implied_device = false;
if (!has_drive) {
path = std::wstring(kNTDotPrefix) + path;
added_implied_device = true;
}
std::wstring::size_type last_pos = std::wstring::npos;
bool passed_once = false;
do {
path = path.substr(0, last_pos);
DWORD attributes = ::GetFileAttributes(path.c_str());
if (INVALID_FILE_ATTRIBUTES == attributes) {
DWORD error = ::GetLastError();
if (error != ERROR_FILE_NOT_FOUND && error != ERROR_PATH_NOT_FOUND &&
error != ERROR_INVALID_NAME) {
// Unexpected error.
if (passed_once && added_implied_device &&
(path.rfind(L'\\') == kNTDotPrefixLen - 1)) {
break;
}
return error;
}
} else if (FILE_ATTRIBUTE_REPARSE_POINT & attributes) {
// This is a reparse point.
return ERROR_SUCCESS;
}
passed_once = true;
last_pos = path.rfind(L'\\');
} while (last_pos > 2); // Skip root dir.
return ERROR_NOT_A_REPARSE_POINT;
}
// We get a |full_path| of the forms accepted by IsReparsePoint(), and the name
// we'll get from |handle| will be \device\harddiskvolume1\some\foo\bar.
bool SameObject(HANDLE handle, const wchar_t* full_path) {
// Check if it's a pipe.
if (IsPipe(full_path))
return true;
auto actual_path = GetPathFromHandle(handle);
if (!actual_path)
return false;
std::wstring path(full_path);
DCHECK_NT(!path.empty());
// This may end with a backslash.
const wchar_t kBackslash = '\\';
if (path.back() == kBackslash)
path = path.substr(0, path.length() - 1);
// Perfect match (case-insensitive check).
if (EqualPath(actual_path.value(), path))
return true;
bool nt_path = IsNTPath(path, &path);
bool has_drive = StartsWithDriveLetter(path);
if (!has_drive && nt_path) {
std::wstring simple_actual_path;
if (!IsDevicePath(actual_path.value(), &simple_actual_path))
return false;
// Perfect match (case-insensitive check).
return (EqualPath(simple_actual_path, path));
}
if (!has_drive)
return false;
// We only need 3 chars, but let's alloc a buffer for four.
wchar_t drive[4] = {0};
wchar_t vol_name[MAX_PATH];
memcpy(drive, &path[0], 2 * sizeof(*drive));
// We'll get a double null terminated string.
DWORD vol_length = ::QueryDosDeviceW(drive, vol_name, MAX_PATH);
if (vol_length < 2 || vol_length == MAX_PATH)
return false;
// Ignore the nulls at the end.
vol_length = static_cast<DWORD>(wcslen(vol_name));
// The two paths should be the same length.
if (vol_length + path.size() - 2 != actual_path->size())
return false;
// Check up to the drive letter.
if (!EqualPath(actual_path.value(), vol_name, vol_length))
return false;
// Check the path after the drive letter.
if (!EqualPath(actual_path.value(), vol_length, path, 2))
return false;
return true;
}
// Just make a best effort here. There are lots of corner cases that we're
// not expecting - and will fail to make long.
bool ConvertToLongPath(std::wstring* native_path,
const std::wstring* drive_letter) {
if (IsPipe(*native_path))
return true;
bool is_device_harddisk_path = false;
bool is_nt_path = false;
bool added_implied_device = false;
std::wstring temp_path;
std::wstring to_restore;
// Process a few prefix types.
if (IsNTPath(*native_path, &temp_path)) {
// "\??\"
if (!StartsWithDriveLetter(temp_path)) {
// Prepend with "\\.\".
temp_path = std::wstring(kNTDotPrefix) + temp_path;
added_implied_device = true;
}
is_nt_path = true;
} else if (IsDeviceHarddiskPath(*native_path, &temp_path, &to_restore)) {
// "\Device\HarddiskVolumeX\" - hacky attempt making ::GetLongPathName
// work for native device paths. Remove "\Device\HarddiskVolumeX\" and
// replace with drive letter.
// Nothing we can do if we don't have a drive letter. Leave |native_path|
// as is.
if (!drive_letter || drive_letter->empty())
return false;
temp_path = *drive_letter + temp_path;
is_device_harddisk_path = true;
} else if (IsDevicePath(*native_path, &temp_path)) {
// "\Device\" - there's nothing we can do to convert to long here.
return false;
}
DWORD size = MAX_PATH;
std::unique_ptr<wchar_t[]> long_path_buf(new wchar_t[size]);
DWORD return_value =
::GetLongPathName(temp_path.c_str(), long_path_buf.get(), size);
while (return_value >= size) {
size *= 2;
long_path_buf.reset(new wchar_t[size]);
return_value =
::GetLongPathName(temp_path.c_str(), long_path_buf.get(), size);
}
DWORD last_error = ::GetLastError();
if (0 == return_value && (ERROR_FILE_NOT_FOUND == last_error ||
ERROR_PATH_NOT_FOUND == last_error ||
ERROR_INVALID_NAME == last_error)) {
// The file does not exist, but maybe a sub path needs to be expanded.
std::wstring::size_type last_slash = temp_path.rfind(L'\\');
if (std::wstring::npos == last_slash)
return false;
std::wstring begin = temp_path.substr(0, last_slash);
std::wstring end = temp_path.substr(last_slash);
if (!ConvertToLongPath(&begin))
return false;
// Ok, it worked. Let's reset the return value.
temp_path = begin + end;
return_value = 1;
} else if (0 != return_value) {
temp_path = long_path_buf.get();
}
// If successful, re-apply original namespace prefix before returning.
if (return_value != 0) {
if (added_implied_device)
RemoveImpliedDevice(&temp_path);
if (is_nt_path) {
*native_path = kNTPrefix;
*native_path += temp_path;
} else if (is_device_harddisk_path) {
// Remove the added drive letter.
temp_path = temp_path.substr(kDriveLetterLen);
*native_path = to_restore;
*native_path += temp_path;
} else {
*native_path = temp_path;
}
return true;
}
return false;
}
std::optional<std::wstring> GetNtPathFromWin32Path(const std::wstring& path) {
base::win::ScopedHandle file(::CreateFileW(
path.c_str(), 0, FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
nullptr, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, nullptr));
if (!file.is_valid()) {
return std::nullopt;
}
return GetPathFromHandle(file.get());
}
std::optional<std::wstring> GetPathFromHandle(HANDLE handle) {
auto buffer = QueryObjectInformation(handle, ObjectNameInformation, 512);
if (!buffer)
return std::nullopt;
OBJECT_NAME_INFORMATION* name =
reinterpret_cast<OBJECT_NAME_INFORMATION*>(buffer->data());
return std::wstring(
name->ObjectName.Buffer,
name->ObjectName.Length / sizeof(name->ObjectName.Buffer[0]));
}
std::optional<std::wstring> GetTypeNameFromHandle(HANDLE handle) {
// No typename is currently longer than 32 characters on Windows 11, so use a
// hint of 128 bytes.
auto buffer = QueryObjectInformation(handle, ObjectTypeInformation, 128);
if (!buffer)
return std::nullopt;
OBJECT_TYPE_INFORMATION* name =
reinterpret_cast<OBJECT_TYPE_INFORMATION*>(buffer->data());
return std::wstring(name->Name.Buffer,
name->Name.Length / sizeof(name->Name.Buffer[0]));
}
bool CopyToChildMemory(HANDLE child,
const void* local_buffer,
size_t buffer_bytes,
void** remote_buffer) {
DCHECK(remote_buffer);
if (0 == buffer_bytes) {
*remote_buffer = nullptr;
return true;
}
// Allocate memory in the target process without specifying the address
void* remote_data = ::VirtualAllocEx(child, nullptr, buffer_bytes, MEM_COMMIT,
PAGE_READWRITE);
if (!remote_data)
return false;
SIZE_T bytes_written;
bool success = ::WriteProcessMemory(child, remote_data, local_buffer,
buffer_bytes, &bytes_written);
if (!success || bytes_written != buffer_bytes) {
::VirtualFreeEx(child, remote_data, 0, MEM_RELEASE);
return false;
}
*remote_buffer = remote_data;
return true;
}
DWORD GetLastErrorFromNtStatus(NTSTATUS status) {
return GetNtExports()->RtlNtStatusToDosError(status);
}
// This function uses the undocumented PEB ImageBaseAddress field to extract
// the base address of the new process.
void* GetProcessBaseAddress(HANDLE process) {
PROCESS_BASIC_INFORMATION process_basic_info = {};
NTSTATUS status = GetNtExports()->QueryInformationProcess(
process, ProcessBasicInformation, &process_basic_info,
sizeof(process_basic_info), nullptr);
if (STATUS_SUCCESS != status)
return nullptr;
NT_PEB peb = {};
SIZE_T bytes_read = 0;
if (!::ReadProcessMemory(process, process_basic_info.PebBaseAddress, &peb,
sizeof(peb), &bytes_read) ||
(sizeof(peb) != bytes_read)) {
return nullptr;
}
void* base_address = peb.ImageBaseAddress;
char magic[2] = {};
if (!::ReadProcessMemory(process, base_address, magic, sizeof(magic),
&bytes_read) ||
(sizeof(magic) != bytes_read)) {
return nullptr;
}
if (magic[0] != 'M' || magic[1] != 'Z')
return nullptr;
return base_address;
}
std::optional<ProcessHandleMap> GetCurrentProcessHandles() {
DWORD handle_count;
if (!::GetProcessHandleCount(::GetCurrentProcess(), &handle_count))
return std::nullopt;
// The system call will return only handles up to the buffer size so add a
// margin of error of an additional 1000 handles.
std::vector<char> buffer((handle_count + 1000) * sizeof(uint32_t));
DWORD return_length;
NTSTATUS status = GetNtExports()->QueryInformationProcess(
::GetCurrentProcess(), ProcessHandleTable, buffer.data(),
static_cast<ULONG>(buffer.size()), &return_length);
if (!NT_SUCCESS(status)) {
::SetLastError(GetLastErrorFromNtStatus(status));
return std::nullopt;
}
DCHECK(buffer.size() >= return_length);
DCHECK((buffer.size() % sizeof(uint32_t)) == 0);
ProcessHandleMap handle_map;
const uint32_t* handle_values = reinterpret_cast<uint32_t*>(buffer.data());
size_t count = return_length / sizeof(uint32_t);
for (size_t index = 0; index < count; ++index) {
HANDLE handle = base::win::Uint32ToHandle(handle_values[index]);
auto type_name = GetTypeNameFromHandle(handle);
if (type_name)
handle_map[type_name.value()].push_back(handle);
}
return handle_map;
}
} // namespace sandbox
void ResolveNTFunctionPtr(const char* name, void* ptr) {
static volatile HMODULE ntdll = nullptr;
if (!ntdll) {
HMODULE ntdll_local = ::GetModuleHandle(sandbox::kNtdllName);
// Use PEImage to sanity-check that we have a valid ntdll handle.
base::win::PEImage ntdll_peimage(ntdll_local);
CHECK_NT(ntdll_peimage.VerifyMagic());
// Race-safe way to set static ntdll.
::InterlockedCompareExchangePointer(
reinterpret_cast<PVOID volatile*>(&ntdll), ntdll_local, nullptr);
}
CHECK_NT(ntdll);
FARPROC* function_ptr = reinterpret_cast<FARPROC*>(ptr);
*function_ptr = ::GetProcAddress(ntdll, name);
CHECK_NT(*function_ptr);
}