blob: e599740cc97566dc52ebe22aeffbb4897b94298d [file] [log] [blame]
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std;
use std::ffi::{CString, CStr};
use std::fmt;
use std::error;
use std::fs::{File, OpenOptions, remove_file};
use std::io::{self, stdin};
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
use std::io::stdout;
use std::os::unix::net::UnixDatagram;
use std::path::{Path, PathBuf};
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, Mutex, Barrier};
use std::thread;
use std::thread::JoinHandle;
use libc;
use device_manager;
use devices;
use io_jail::{self, Minijail};
use kernel_cmdline;
use kvm::*;
use net_util::Tap;
use qcow::{self, QcowFile};
use sys_util::*;
use sys_util;
use vhost;
use vm_control::VmRequest;
use Config;
use DiskType;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
use arch::LinuxArch;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
use x86_64::X8664arch as Arch;
pub enum Error {
BalloonDeviceNew(devices::virtio::BalloonError),
BlockDeviceNew(sys_util::Error),
ChownWaylandRoot(sys_util::Error),
CloneEventFd(sys_util::Error),
Cmdline(kernel_cmdline::Error),
CreateEventFd(sys_util::Error),
CreateGuestMemory(Box<error::Error>),
CreateIrqChip(Box<error::Error>),
CreateKvm(sys_util::Error),
CreateSignalFd(sys_util::SignalFdError),
CreateSocket(io::Error),
CreateVcpu(sys_util::Error),
CreateVm(Box<error::Error>),
DeviceJail(io_jail::Error),
DevicePivotRoot(io_jail::Error),
Disk(io::Error),
DiskImageLock(sys_util::Error),
GetWaylandGroup(sys_util::Error),
NetDeviceNew(devices::virtio::NetError),
NoVarEmpty,
OpenKernel(PathBuf, io::Error),
QcowDeviceCreate(qcow::Error),
RegisterBalloon(device_manager::Error),
RegisterBlock(device_manager::Error),
RegisterIrqfd(sys_util::Error),
RegisterNet(device_manager::Error),
RegisterRng(device_manager::Error),
RegisterVsock(device_manager::Error),
RegisterWayland(device_manager::Error),
RngDeviceNew(devices::virtio::RngError),
SettingGidMap(io_jail::Error),
SettingUidMap(io_jail::Error),
SetTssAddr(sys_util::Error),
SignalFd(sys_util::SignalFdError),
SpawnVcpu(io::Error),
VhostNetDeviceNew(devices::virtio::vhost::Error),
VhostVsockDeviceNew(devices::virtio::vhost::Error),
WaylandDeviceNew(sys_util::Error),
WaylandTempDir(sys_util::Error),
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
SetupSystemMemory(Box<error::Error>),
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
ConfigureVcpu(Box<error::Error>),
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
LoadKernel(Box<error::Error>),
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
SetupIoBus(Box<error::Error>),
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
SetupMMIOBus(Box<error::Error>),
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
&Error::BalloonDeviceNew(ref e) => write!(f, "failed to create balloon: {:?}", e),
&Error::BlockDeviceNew(ref e) => write!(f, "failed to create block device: {:?}", e),
&Error::ChownWaylandRoot(ref e) => {
write!(f, "error chowning wayland root directory: {:?}", e)
}
&Error::CloneEventFd(ref e) => write!(f, "failed to clone eventfd: {:?}", e),
&Error::Cmdline(ref e) => write!(f, "the given kernel command line was invalid: {}", e),
&Error::CreateEventFd(ref e) => write!(f, "failed to create eventfd: {:?}", e),
&Error::CreateGuestMemory(ref e) => write!(f, "failed to create guest memory: {:?}", e),
&Error::CreateIrqChip(ref e) => {
write!(f, "failed to create in-kernel IRQ chip: {:?}", e)
}
&Error::CreateKvm(ref e) => write!(f, "failed to open /dev/kvm: {:?}", e),
&Error::CreateSignalFd(ref e) => write!(f, "failed to create signalfd: {:?}", e),
&Error::CreateSocket(ref e) => write!(f, "failed to create socket: {}", e),
&Error::CreateVcpu(ref e) => write!(f, "failed to create VCPU: {:?}", e),
&Error::CreateVm(ref e) => write!(f, "failed to create KVM VM object: {:?}", e),
&Error::DeviceJail(ref e) => write!(f, "failed to jail device: {}", e),
&Error::DevicePivotRoot(ref e) => write!(f, "failed to pivot root device: {}", e),
&Error::Disk(ref e) => write!(f, "failed to load disk image: {}", e),
&Error::DiskImageLock(ref e) => write!(f, "failed to lock disk image: {:?}", e),
&Error::GetWaylandGroup(ref e) => {
write!(f, "could not find gid for wayland group: {:?}", e)
}
&Error::NetDeviceNew(ref e) => write!(f, "failed to set up virtio networking: {:?}", e),
&Error::NoVarEmpty => write!(f, "/var/empty doesn't exist, can't jail devices."),
&Error::OpenKernel(ref p, ref e) => {
write!(f, "failed to open kernel image {:?}: {}", p, e)
}
&Error::QcowDeviceCreate(ref e) => {
write!(f, "failed to read qcow formatted file {:?}", e)
}
&Error::RegisterBalloon(ref e) => {
write!(f, "error registering balloon device: {:?}", e)
},
&Error::RegisterBlock(ref e) => write!(f, "error registering block device: {:?}", e),
&Error::RegisterIrqfd(ref e) => write!(f, "error registering irqfd: {:?}", e),
&Error::RegisterNet(ref e) => write!(f, "error registering net device: {:?}", e),
&Error::RegisterRng(ref e) => write!(f, "error registering rng device: {:?}", e),
&Error::RegisterVsock(ref e) => {
write!(f, "error registering virtual socket device: {:?}", e)
}
&Error::RegisterWayland(ref e) => write!(f, "error registering wayland device: {}", e),
&Error::RngDeviceNew(ref e) => write!(f, "failed to set up rng: {:?}", e),
&Error::SettingGidMap(ref e) => write!(f, "error setting GID map: {}", e),
&Error::SettingUidMap(ref e) => write!(f, "error setting UID map: {}", e),
&Error::SetTssAddr(ref e) => write!(f, "failed to set TSS address: {:?}", e),
&Error::SignalFd(ref e) => write!(f, "failed to read signal fd: {:?}", e),
&Error::SpawnVcpu(ref e) => write!(f, "failed to spawn VCPU thread: {:?}", e),
&Error::VhostNetDeviceNew(ref e) => {
write!(f, "failed to set up vhost networking: {:?}", e)
}
&Error::VhostVsockDeviceNew(ref e) => {
write!(f, "failed to set up virtual socket device: {:?}", e)
}
&Error::WaylandDeviceNew(ref e) => {
write!(f, "failed to create wayland device: {:?}", e)
}
&Error::WaylandTempDir(ref e) => {
write!(f, "failed to create wayland device jail directroy: {:?}", e)
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
&Error::SetupSystemMemory(ref e) => write!(f, "error setting up system memory: {}", e),
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
&Error::ConfigureVcpu(ref e) => write!(f, "failed to configure vcpu: {}", e),
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
&Error::LoadKernel(ref e) => write!(f, "failed to load kernel: {}", e),
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
&Error::SetupIoBus(ref e) => write!(f, "failed to setup iobus: {}", e),
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
&Error::SetupMMIOBus(ref e) => write!(f, "failed to setup mmio bus: {}", e),
}
}
}
type Result<T> = std::result::Result<T, Error>;
struct UnlinkUnixDatagram(UnixDatagram);
impl AsRef<UnixDatagram> for UnlinkUnixDatagram {
fn as_ref(&self) -> &UnixDatagram{
&self.0
}
}
impl Drop for UnlinkUnixDatagram {
fn drop(&mut self) {
if let Ok(addr) = self.0.local_addr() {
if let Some(path) = addr.as_pathname() {
if let Err(e) = remove_file(path) {
warn!("failed to remove control socket file: {:?}", e);
}
}
}
}
}
fn create_base_minijail(root: &Path, seccomp_policy: &Path) -> Result<Minijail> {
// All child jails run in a new user namespace without any users mapped,
// they run as nobody unless otherwise configured.
let mut j = Minijail::new().map_err(|e| Error::DeviceJail(e))?;
j.namespace_pids();
j.namespace_user();
j.namespace_user_disable_setgroups();
// Don't need any capabilities.
j.use_caps(0);
// Create a new mount namespace with an empty root FS.
j.namespace_vfs();
j.enter_pivot_root(root)
.map_err(|e| Error::DevicePivotRoot(e))?;
// Run in an empty network namespace.
j.namespace_net();
// Apply the block device seccomp policy.
j.no_new_privs();
// Use TSYNC only for the side effect of it using SECCOMP_RET_TRAP, which will correctly kill
// the entire device process if a worker thread commits a seccomp violation.
j.set_seccomp_filter_tsync();
j.parse_seccomp_filters(seccomp_policy)
.map_err(|e| Error::DeviceJail(e))?;
j.use_seccomp_filter();
// Don't do init setup.
j.run_as_init();
Ok(j)
}
fn setup_mmio_bus(cfg: &Config,
vm: &mut Vm,
mem: &GuestMemory,
cmdline: &mut kernel_cmdline::Cmdline,
control_sockets: &mut Vec<UnlinkUnixDatagram>,
balloon_device_socket: UnixDatagram)
-> Result<devices::Bus> {
static DEFAULT_PIVOT_ROOT: &'static str = "/var/empty";
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
let mut device_manager = Arch::get_device_manager(vm, mem.clone()).
map_err(|e| Error::SetupMMIOBus(e))?;
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
let mut device_manager = device_manager::DeviceManager::new(vm,
mem.clone(),
0, 0, 0);
// An empty directory for jailed device's pivot root.
let empty_root_path = Path::new(DEFAULT_PIVOT_ROOT);
if cfg.multiprocess && !empty_root_path.exists() {
return Err(Error::NoVarEmpty);
}
for disk in &cfg.disks {
let mut raw_image = OpenOptions::new()
.read(true)
.write(disk.writable)
.open(&disk.path)
.map_err(|e| Error::Disk(e))?;
// Lock the disk image to prevent other crosvm instances from using it.
let lock_op = if disk.writable {
FlockOperation::LockExclusive
} else {
FlockOperation::LockShared
};
flock(&raw_image, lock_op, true).map_err(Error::DiskImageLock)?;
let block_box: Box<devices::virtio::VirtioDevice> = match disk.disk_type {
DiskType::FlatFile => { // Access as a raw block device.
Box::new(devices::virtio::Block::new(raw_image)
.map_err(|e| Error::BlockDeviceNew(e))?)
}
DiskType::Qcow => { // Valid qcow header present
let qcow_image = QcowFile::from(raw_image)
.map_err(|e| Error::QcowDeviceCreate(e))?;
Box::new(devices::virtio::Block::new(qcow_image)
.map_err(|e| Error::BlockDeviceNew(e))?)
}
};
let jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("block_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
}
else {
None
};
device_manager
.register_mmio(block_box, jail, cmdline)
.map_err(Error::RegisterBlock)?;
}
let rng_box = Box::new(devices::virtio::Rng::new().map_err(Error::RngDeviceNew)?);
let rng_jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("rng_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
device_manager
.register_mmio(rng_box, rng_jail, cmdline)
.map_err(Error::RegisterRng)?;
let balloon_box = Box::new(devices::virtio::Balloon::new(balloon_device_socket)
.map_err(Error::BalloonDeviceNew)?);
let balloon_jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("balloon_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
device_manager.register_mmio(balloon_box, balloon_jail, cmdline)
.map_err(Error::RegisterBalloon)?;
// We checked above that if the IP is defined, then the netmask is, too.
if let Some(host_ip) = cfg.host_ip {
if let Some(netmask) = cfg.netmask {
if let Some(mac_address) = cfg.mac_address {
let net_box: Box<devices::virtio::VirtioDevice> = if cfg.vhost_net {
Box::new(devices::virtio::vhost::Net::<Tap, vhost::Net<Tap>>::new(host_ip,
netmask,
mac_address,
&mem)
.map_err(|e| Error::VhostNetDeviceNew(e))?)
} else {
Box::new(devices::virtio::Net::<Tap>::new(host_ip, netmask, mac_address)
.map_err(|e| Error::NetDeviceNew(e))?)
};
let jail = if cfg.multiprocess {
let policy_path: PathBuf = if cfg.vhost_net {
cfg.seccomp_policy_dir.join("vhost_net_device.policy")
} else {
cfg.seccomp_policy_dir.join("net_device.policy")
};
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
device_manager
.register_mmio(net_box, jail, cmdline)
.map_err(Error::RegisterNet)?;
}
}
}
if let Some(wayland_socket_path) = cfg.wayland_socket_path.as_ref() {
let jailed_wayland_path = Path::new("/wayland-0");
let (host_socket, device_socket) = UnixDatagram::pair().map_err(Error::CreateSocket)?;
control_sockets.push(UnlinkUnixDatagram(host_socket));
let wl_box = Box::new(devices::virtio::Wl::new(if cfg.multiprocess {
&jailed_wayland_path
} else {
wayland_socket_path.as_path()
},
device_socket)
.map_err(Error::WaylandDeviceNew)?);
let jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("wl_device.policy");
let mut jail = create_base_minijail(empty_root_path, &policy_path)?;
// Create a tmpfs in the device's root directory so that we can bind mount the
// wayland socket into it. The size=67108864 is size=64*1024*1024 or size=64MB.
jail.mount_with_data(Path::new("none"), Path::new("/"), "tmpfs",
(libc::MS_NOSUID | libc::MS_NODEV | libc::MS_NOEXEC) as usize,
"size=67108864")
.unwrap();
// Bind mount the wayland socket into jail's root. This is necessary since each
// new wayland context must open() the socket.
jail.mount_bind(wayland_socket_path.as_path(), jailed_wayland_path, true)
.unwrap();
// Set the uid/gid for the jailed process, and give a basic id map. This
// is required for the above bind mount to work.
let crosvm_user_group = CStr::from_bytes_with_nul(b"crosvm\0").unwrap();
let crosvm_uid = match get_user_id(&crosvm_user_group) {
Ok(u) => u,
Err(e) => {
warn!("falling back to current user id for Wayland: {:?}", e);
geteuid()
}
};
let crosvm_gid = match get_group_id(&crosvm_user_group) {
Ok(u) => u,
Err(e) => {
warn!("falling back to current group id for Wayland: {:?}", e);
getegid()
}
};
jail.change_uid(crosvm_uid);
jail.change_gid(crosvm_gid);
jail.uidmap(&format!("{0} {0} 1", crosvm_uid))
.map_err(Error::SettingUidMap)?;
jail.gidmap(&format!("{0} {0} 1", crosvm_gid))
.map_err(Error::SettingGidMap)?;
Some(jail)
} else {
None
};
device_manager
.register_mmio(wl_box, jail, cmdline)
.map_err(Error::RegisterWayland)?;
}
if let Some(cid) = cfg.cid {
let vsock_box = Box::new(devices::virtio::vhost::Vsock::new(cid, &mem)
.map_err(Error::VhostVsockDeviceNew)?);
let jail = if cfg.multiprocess {
let policy_path: PathBuf = cfg.seccomp_policy_dir.join("vhost_vsock_device.policy");
Some(create_base_minijail(empty_root_path, &policy_path)?)
} else {
None
};
device_manager
.register_mmio(vsock_box, jail, cmdline)
.map_err(Error::RegisterVsock)?;
}
Ok(device_manager.bus)
}
fn setup_vcpu(kvm: &Kvm,
vm: &Vm,
cpu_id: u32,
vcpu_count: u32)
-> Result<Vcpu> {
let vcpu = Vcpu::new(cpu_id as libc::c_ulong, &kvm, &vm)
.map_err(Error::CreateVcpu)?;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
Arch::configure_vcpu(vm.get_memory(), &kvm, &vcpu, cpu_id as u64, vcpu_count as u64).
map_err(Error::ConfigureVcpu)?;
Ok(vcpu)
}
fn run_vcpu(vcpu: Vcpu,
cpu_id: u32,
start_barrier: Arc<Barrier>,
io_bus: devices::Bus,
mmio_bus: devices::Bus,
exit_evt: EventFd,
kill_signaled: Arc<AtomicBool>) -> Result<JoinHandle<()>> {
thread::Builder::new()
.name(format!("crosvm_vcpu{}", cpu_id))
.spawn(move || {
unsafe {
extern "C" fn handle_signal() {}
// Our signal handler does nothing and is trivially async signal safe.
register_signal_handler(SIGRTMIN() + 0, handle_signal)
.expect("failed to register vcpu signal handler");
}
start_barrier.wait();
loop {
let run_res = vcpu.run();
match run_res {
Ok(run) => {
match run {
VcpuExit::IoIn(addr, data) => {
io_bus.read(addr as u64, data);
}
VcpuExit::IoOut(addr, data) => {
io_bus.write(addr as u64, data);
}
VcpuExit::MmioRead(addr, data) => {
mmio_bus.read(addr, data);
}
VcpuExit::MmioWrite(addr, data) => {
mmio_bus.write(addr, data);
}
VcpuExit::Hlt => break,
VcpuExit::Shutdown => break,
r => warn!("unexpected vcpu exit: {:?}", r),
}
}
Err(e) => {
match e.errno() {
libc::EAGAIN | libc::EINTR => {},
_ => {
error!("vcpu hit unknown error: {:?}", e);
break;
}
}
}
}
if kill_signaled.load(Ordering::SeqCst) {
break;
}
}
exit_evt
.write(1)
.expect("failed to signal vcpu exit eventfd");
})
.map_err(Error::SpawnVcpu)
}
fn run_control(vm: &mut Vm,
control_sockets: Vec<UnlinkUnixDatagram>,
next_dev_pfn: &mut u64,
stdio_serial: Arc<Mutex<devices::Serial>>,
exit_evt: EventFd,
sigchld_fd: SignalFd,
kill_signaled: Arc<AtomicBool>,
vcpu_handles: Vec<JoinHandle<()>>,
balloon_host_socket: UnixDatagram,
_irqchip_fd: Option<File>)
-> Result<()> {
const MAX_VM_FD_RECV: usize = 1;
const EXIT: u32 = 0;
const STDIN: u32 = 1;
const CHILD_SIGNAL: u32 = 2;
const VM_BASE: u32 = 3;
let stdin_handle = stdin();
let stdin_lock = stdin_handle.lock();
stdin_lock
.set_raw_mode()
.expect("failed to set terminal raw mode");
let mut pollables = Vec::new();
pollables.push((EXIT, &exit_evt as &Pollable));
pollables.push((STDIN, &stdin_lock as &Pollable));
pollables.push((CHILD_SIGNAL, &sigchld_fd as &Pollable));
for (i, socket) in control_sockets.iter().enumerate() {
pollables.push((VM_BASE + i as u32, socket.as_ref() as &Pollable));
}
let mut poller = Poller::new(pollables.len());
let mut scm = Scm::new(MAX_VM_FD_RECV);
'poll: loop {
let tokens = {
match poller.poll(&pollables[..]) {
Ok(v) => v,
Err(e) => {
error!("failed to poll: {:?}", e);
break;
}
}
};
for &token in tokens {
match token {
EXIT => {
info!("vcpu requested shutdown");
break 'poll;
}
STDIN => {
let mut out = [0u8; 64];
match stdin_lock.read_raw(&mut out[..]) {
Ok(0) => {
// Zero-length read indicates EOF. Remove from pollables.
pollables.retain(|&pollable| pollable.0 != STDIN);
},
Err(e) => {
warn!("error while reading stdin: {:?}", e);
pollables.retain(|&pollable| pollable.0 != STDIN);
},
Ok(count) => {
stdio_serial
.lock()
.unwrap()
.queue_input_bytes(&out[..count])
.expect("failed to queue bytes into serial port");
},
}
}
CHILD_SIGNAL => {
// Print all available siginfo structs, then exit the loop.
loop {
let result = sigchld_fd.read().map_err(Error::SignalFd)?;
if let Some(siginfo) = result {
error!("child {} died: signo {}, status {}, code {}",
siginfo.ssi_pid,
siginfo.ssi_signo,
siginfo.ssi_status,
siginfo.ssi_code);
}
break 'poll;
}
}
t if t >= VM_BASE && t < VM_BASE + (control_sockets.len() as u32) => {
let socket = &control_sockets[(t - VM_BASE) as usize];
match VmRequest::recv(&mut scm, socket.as_ref()) {
Ok(request) => {
let mut running = true;
let response =
request.execute(vm, next_dev_pfn,
&mut running, &balloon_host_socket);
if let Err(e) = response.send(&mut scm, socket.as_ref()) {
error!("failed to send VmResponse: {:?}", e);
}
if !running {
info!("control socket requested exit");
break 'poll;
}
}
Err(e) => error!("failed to recv VmRequest: {:?}", e),
}
}
_ => {}
}
}
}
// vcpu threads MUST see the kill signaled flag, otherwise they may
// re-enter the VM.
kill_signaled.store(true, Ordering::SeqCst);
for handle in vcpu_handles {
match handle.kill(SIGRTMIN() + 0) {
Ok(_) => {
if let Err(e) = handle.join() {
error!("failed to join vcpu thread: {:?}", e);
}
}
Err(e) => error!("failed to kill vcpu thread: {:?}", e),
}
}
stdin_lock
.set_canon_mode()
.expect("failed to restore canonical mode for terminal");
Ok(())
}
pub fn run_config(cfg: Config) -> Result<()> {
if cfg.multiprocess {
// Printing something to the syslog before entering minijail so that libc's syslogger has a
// chance to open files necessary for its operation, like `/etc/localtime`. After jailing,
// access to those files will not be possible.
info!("crosvm entering multiprocess mode");
}
// Masking signals is inherently dangerous, since this can persist across clones/execs. Do this
// before any jailed devices have been spawned, so that we can catch any of them that fail very
// quickly.
let sigchld_fd = SignalFd::new(libc::SIGCHLD).map_err(Error::CreateSignalFd)?;
let mut control_sockets = Vec::new();
if let Some(ref path) = cfg.socket_path {
let path = Path::new(path);
let control_socket = UnixDatagram::bind(path).map_err(Error::CreateSocket)?;
control_sockets.push(UnlinkUnixDatagram(control_socket));
}
let kill_signaled = Arc::new(AtomicBool::new(false));
let exit_evt = EventFd::new().map_err(Error::CreateEventFd)?;
let mem_size = cfg.memory.unwrap_or(256) << 20;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
let mem = Arch::setup_memory(mem_size as u64).map_err(|e| Error::CreateGuestMemory(e))?;
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
let mem = GuestMemory::new(&vec![(GuestAddress(0), mem_size as u64)]).
map_err(|e| Error::CreateGuestMemory(Box::new(e)))?;
let kvm = Kvm::new().map_err(Error::CreateKvm)?;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
let mut vm = Arch::create_vm(&kvm, mem.clone()).map_err(|e| Error::CreateVm(e))?;
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
let mut vm = Vm::new(&kvm, mem.clone()).map_err(|e| Error::CreateVm(Box::new(e)))?;
let vcpu_count = cfg.vcpu_count.unwrap_or(1);
let mut vcpu_handles = Vec::with_capacity(vcpu_count as usize);
let vcpu_thread_barrier = Arc::new(Barrier::new((vcpu_count + 1) as usize));
let mut vcpus = Vec::with_capacity(vcpu_count as usize);
for cpu_id in 0..vcpu_count {
let vcpu = setup_vcpu(&kvm, &vm, cpu_id, vcpu_count)?;
vcpus.push(vcpu);
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
let irq_chip = Arch::create_irq_chip(&vm).map_err(|e| Error::CreateIrqChip(e))?;
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
let irq_chip = None;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
let mut cmdline = Arch::get_base_linux_cmdline();
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
let mut cmdline = kernel_cmdline::Cmdline::new(128);
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
let mut next_dev_pfn = Arch::get_base_dev_pfn(mem_size as u64);
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
let mut next_dev_pfn = 0;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
let (io_bus, stdio_serial) = Arch::setup_io_bus(&mut vm,
exit_evt.try_clone().
map_err(Error::CloneEventFd)?).
map_err(|e| Error::SetupIoBus(e))?;
// The non x86 case is kind of bogus using the exit_evt as an fd for serial
// It's purpose is just to make the build happy since it doesn't actually run anyway
#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
let (io_bus, stdio_serial) = (devices::Bus::new(),
Arc::new(Mutex::new(devices::Serial::new_out(
exit_evt.try_clone().map_err(Error::CloneEventFd)?,
Box::new(stdout())))));
let (balloon_host_socket, balloon_device_socket) = UnixDatagram::pair()
.map_err(Error::CreateSocket)?;
let mmio_bus = setup_mmio_bus(&cfg,
&mut vm,
&mem,
&mut cmdline,
&mut control_sockets,
balloon_device_socket)?;
for param in &cfg.params {
cmdline.insert_str(&param).map_err(Error::Cmdline)?;
}
let mut kernel_image = File::open(cfg.kernel_path.as_path())
.map_err(|e| Error::OpenKernel(cfg.kernel_path.clone(), e))?;
// separate out load_kernel from other setup to get a specific error for
// kernel loading
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
Arch::load_kernel(&mem, &mut kernel_image).map_err(|e| Error::LoadKernel(e))?;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
Arch::setup_system_memory(&mem, mem_size as u64, vcpu_count,
&CString::new(cmdline).unwrap()).
map_err(|e| Error::SetupSystemMemory(e))?;
for (cpu_id, vcpu) in vcpus.into_iter().enumerate() {
let handle = run_vcpu(vcpu,
cpu_id as u32,
vcpu_thread_barrier.clone(),
io_bus.clone(),
mmio_bus.clone(),
exit_evt.try_clone().map_err(Error::CloneEventFd)?,
kill_signaled.clone())?;
vcpu_handles.push(handle);
}
vcpu_thread_barrier.wait();
run_control(&mut vm,
control_sockets,
&mut next_dev_pfn,
stdio_serial,
exit_evt,
sigchld_fd,
kill_signaled,
vcpu_handles,
balloon_host_socket,
irq_chip)
}