blob: c158016ba5efd5ba30eadc0cae17820f878b3f62 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_emit.cpp
*
* This file supports emitting code from the FS LIR to the actual
* native instructions.
*/
extern "C" {
#include "main/macros.h"
#include "brw_context.h"
#include "brw_eu.h"
} /* extern "C" */
#include "brw_fs.h"
#include "brw_cfg.h"
fs_generator::fs_generator(struct brw_context *brw,
struct brw_wm_compile *c,
struct gl_shader_program *prog,
struct gl_fragment_program *fp,
bool dual_source_output)
: brw(brw), c(c), prog(prog), fp(fp), dual_source_output(dual_source_output)
{
intel = &brw->intel;
ctx = &intel->ctx;
shader = prog ? prog->_LinkedShaders[MESA_SHADER_FRAGMENT] : NULL;
mem_ctx = c;
p = rzalloc(mem_ctx, struct brw_compile);
brw_init_compile(brw, p, mem_ctx);
}
fs_generator::~fs_generator()
{
}
void
fs_generator::patch_discard_jumps_to_fb_writes()
{
if (intel->gen < 6 || this->discard_halt_patches.is_empty())
return;
/* There is a somewhat strange undocumented requirement of using
* HALT, according to the simulator. If some channel has HALTed to
* a particular UIP, then by the end of the program, every channel
* must have HALTed to that UIP. Furthermore, the tracking is a
* stack, so you can't do the final halt of a UIP after starting
* halting to a new UIP.
*
* Symptoms of not emitting this instruction on actual hardware
* included GPU hangs and sparkly rendering on the piglit discard
* tests.
*/
struct brw_instruction *last_halt = gen6_HALT(p);
last_halt->bits3.break_cont.uip = 2;
last_halt->bits3.break_cont.jip = 2;
int ip = p->nr_insn;
foreach_list(node, &this->discard_halt_patches) {
ip_record *patch_ip = (ip_record *)node;
struct brw_instruction *patch = &p->store[patch_ip->ip];
assert(patch->header.opcode == BRW_OPCODE_HALT);
/* HALT takes a half-instruction distance from the pre-incremented IP. */
patch->bits3.break_cont.uip = (ip - patch_ip->ip) * 2;
}
this->discard_halt_patches.make_empty();
}
void
fs_generator::generate_fb_write(fs_inst *inst)
{
bool eot = inst->eot;
struct brw_reg implied_header;
uint32_t msg_control;
/* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
* move, here's g1.
*/
brw_push_insn_state(p);
brw_set_mask_control(p, BRW_MASK_DISABLE);
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
if (fp->UsesKill) {
struct brw_reg pixel_mask;
if (intel->gen >= 6)
pixel_mask = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
else
pixel_mask = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
brw_MOV(p, pixel_mask, brw_flag_reg(0, 1));
}
if (inst->header_present) {
if (intel->gen >= 6) {
brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
brw_MOV(p,
retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD),
retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
if (inst->target > 0 && c->key.replicate_alpha) {
/* Set "Source0 Alpha Present to RenderTarget" bit in message
* header.
*/
brw_OR(p,
vec1(retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD)),
vec1(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)),
brw_imm_ud(0x1 << 11));
}
if (inst->target > 0) {
/* Set the render target index for choosing BLEND_STATE. */
brw_MOV(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE,
inst->base_mrf, 2),
BRW_REGISTER_TYPE_UD),
brw_imm_ud(inst->target));
}
implied_header = brw_null_reg();
} else {
implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
brw_MOV(p,
brw_message_reg(inst->base_mrf + 1),
brw_vec8_grf(1, 0));
}
} else {
implied_header = brw_null_reg();
}
if (this->dual_source_output)
msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
else if (dispatch_width == 16)
msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
else
msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
brw_pop_insn_state(p);
brw_fb_WRITE(p,
dispatch_width,
inst->base_mrf,
implied_header,
msg_control,
inst->target,
inst->mlen,
0,
eot,
inst->header_present);
}
/* Computes the integer pixel x,y values from the origin.
*
* This is the basis of gl_FragCoord computation, but is also used
* pre-gen6 for computing the deltas from v0 for computing
* interpolation.
*/
void
fs_generator::generate_pixel_xy(struct brw_reg dst, bool is_x)
{
struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
struct brw_reg src;
struct brw_reg deltas;
if (is_x) {
src = stride(suboffset(g1_uw, 4), 2, 4, 0);
deltas = brw_imm_v(0x10101010);
} else {
src = stride(suboffset(g1_uw, 5), 2, 4, 0);
deltas = brw_imm_v(0x11001100);
}
if (dispatch_width == 16) {
dst = vec16(dst);
}
/* We do this 8 or 16-wide, but since the destination is UW we
* don't do compression in the 16-wide case.
*/
brw_push_insn_state(p);
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_ADD(p, dst, src, deltas);
brw_pop_insn_state(p);
}
void
fs_generator::generate_linterp(fs_inst *inst,
struct brw_reg dst, struct brw_reg *src)
{
struct brw_reg delta_x = src[0];
struct brw_reg delta_y = src[1];
struct brw_reg interp = src[2];
if (brw->has_pln &&
delta_y.nr == delta_x.nr + 1 &&
(intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
brw_PLN(p, dst, interp, delta_x);
} else {
brw_LINE(p, brw_null_reg(), interp, delta_x);
brw_MAC(p, dst, suboffset(interp, 1), delta_y);
}
}
void
fs_generator::generate_math1_gen7(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src0)
{
assert(inst->mlen == 0);
brw_math(p, dst,
brw_math_function(inst->opcode),
0, src0,
BRW_MATH_DATA_VECTOR,
BRW_MATH_PRECISION_FULL);
}
void
fs_generator::generate_math2_gen7(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src0,
struct brw_reg src1)
{
assert(inst->mlen == 0);
brw_math2(p, dst, brw_math_function(inst->opcode), src0, src1);
}
void
fs_generator::generate_math1_gen6(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src0)
{
int op = brw_math_function(inst->opcode);
assert(inst->mlen == 0);
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_math(p, dst,
op,
0, src0,
BRW_MATH_DATA_VECTOR,
BRW_MATH_PRECISION_FULL);
if (dispatch_width == 16) {
brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
brw_math(p, sechalf(dst),
op,
0, sechalf(src0),
BRW_MATH_DATA_VECTOR,
BRW_MATH_PRECISION_FULL);
brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
}
}
void
fs_generator::generate_math2_gen6(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src0,
struct brw_reg src1)
{
int op = brw_math_function(inst->opcode);
assert(inst->mlen == 0);
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_math2(p, dst, op, src0, src1);
if (dispatch_width == 16) {
brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
brw_math2(p, sechalf(dst), op, sechalf(src0), sechalf(src1));
brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
}
}
void
fs_generator::generate_math_gen4(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src)
{
int op = brw_math_function(inst->opcode);
assert(inst->mlen >= 1);
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_math(p, dst,
op,
inst->base_mrf, src,
BRW_MATH_DATA_VECTOR,
BRW_MATH_PRECISION_FULL);
if (dispatch_width == 16) {
brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
brw_math(p, sechalf(dst),
op,
inst->base_mrf + 1, sechalf(src),
BRW_MATH_DATA_VECTOR,
BRW_MATH_PRECISION_FULL);
brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
}
}
void
fs_generator::generate_math_g45(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src)
{
if (inst->opcode == SHADER_OPCODE_POW ||
inst->opcode == SHADER_OPCODE_INT_QUOTIENT ||
inst->opcode == SHADER_OPCODE_INT_REMAINDER) {
generate_math_gen4(inst, dst, src);
return;
}
int op = brw_math_function(inst->opcode);
assert(inst->mlen >= 1);
brw_math(p, dst,
op,
inst->base_mrf, src,
BRW_MATH_DATA_VECTOR,
BRW_MATH_PRECISION_FULL);
}
void
fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
{
int msg_type = -1;
int rlen = 4;
uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
uint32_t return_format;
switch (dst.type) {
case BRW_REGISTER_TYPE_D:
return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
break;
case BRW_REGISTER_TYPE_UD:
return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
break;
default:
return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
break;
}
if (dispatch_width == 16)
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
if (intel->gen >= 5) {
switch (inst->opcode) {
case SHADER_OPCODE_TEX:
if (inst->shadow_compare) {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
} else {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
}
break;
case FS_OPCODE_TXB:
if (inst->shadow_compare) {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
} else {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
}
break;
case SHADER_OPCODE_TXL:
if (inst->shadow_compare) {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
} else {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
}
break;
case SHADER_OPCODE_TXS:
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
break;
case SHADER_OPCODE_TXD:
if (inst->shadow_compare) {
/* Gen7.5+. Otherwise, lowered by brw_lower_texture_gradients(). */
assert(intel->is_haswell);
msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
} else {
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
}
break;
case SHADER_OPCODE_TXF:
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
break;
case SHADER_OPCODE_TXF_MS:
if (intel->gen >= 7)
msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
else
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
break;
case SHADER_OPCODE_LOD:
msg_type = GEN5_SAMPLER_MESSAGE_LOD;
break;
default:
assert(!"not reached");
break;
}
} else {
switch (inst->opcode) {
case SHADER_OPCODE_TEX:
/* Note that G45 and older determines shadow compare and dispatch width
* from message length for most messages.
*/
assert(dispatch_width == 8);
msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
if (inst->shadow_compare) {
assert(inst->mlen == 6);
} else {
assert(inst->mlen <= 4);
}
break;
case FS_OPCODE_TXB:
if (inst->shadow_compare) {
assert(inst->mlen == 6);
msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
} else {
assert(inst->mlen == 9);
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
}
break;
case SHADER_OPCODE_TXL:
if (inst->shadow_compare) {
assert(inst->mlen == 6);
msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
} else {
assert(inst->mlen == 9);
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
}
break;
case SHADER_OPCODE_TXD:
/* There is no sample_d_c message; comparisons are done manually */
assert(inst->mlen == 7 || inst->mlen == 10);
msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
break;
case SHADER_OPCODE_TXF:
assert(inst->mlen == 9);
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
break;
case SHADER_OPCODE_TXS:
assert(inst->mlen == 3);
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
break;
default:
assert(!"not reached");
break;
}
}
assert(msg_type != -1);
if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
rlen = 8;
dst = vec16(dst);
}
/* Load the message header if present. If there's a texture offset,
* we need to set it up explicitly and load the offset bitfield.
* Otherwise, we can use an implied move from g0 to the first message reg.
*/
if (inst->texture_offset) {
brw_push_insn_state(p);
brw_set_mask_control(p, BRW_MASK_DISABLE);
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
/* Explicitly set up the message header by copying g0 to the MRF. */
brw_MOV(p, retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD),
retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
/* Then set the offset bits in DWord 2. */
brw_MOV(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE,
inst->base_mrf, 2), BRW_REGISTER_TYPE_UD),
brw_imm_ud(inst->texture_offset));
brw_pop_insn_state(p);
} else if (inst->header_present) {
/* Set up an implied move from g0 to the MRF. */
src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
}
brw_SAMPLE(p,
retype(dst, BRW_REGISTER_TYPE_UW),
inst->base_mrf,
src,
SURF_INDEX_TEXTURE(inst->sampler),
inst->sampler,
msg_type,
rlen,
inst->mlen,
inst->header_present,
simd_mode,
return_format);
}
/* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
* looking like:
*
* arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
*
* and we're trying to produce:
*
* DDX DDY
* dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
* (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
* (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
* (ss0.br - ss0.bl) (ss0.tr - ss0.br)
* (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
* (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
* (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
* (ss1.br - ss1.bl) (ss1.tr - ss1.br)
*
* and add another set of two more subspans if in 16-pixel dispatch mode.
*
* For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
* for each pair, and vertstride = 2 jumps us 2 elements after processing a
* pair. But for DDY, it's harder, as we want to produce the pairs swizzled
* between each other. We could probably do it like ddx and swizzle the right
* order later, but bail for now and just produce
* ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
*/
void
fs_generator::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
{
struct brw_reg src0 = brw_reg(src.file, src.nr, 1,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_2,
BRW_WIDTH_2,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
struct brw_reg src1 = brw_reg(src.file, src.nr, 0,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_2,
BRW_WIDTH_2,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
brw_ADD(p, dst, src0, negate(src1));
}
/* The negate_value boolean is used to negate the derivative computation for
* FBOs, since they place the origin at the upper left instead of the lower
* left.
*/
void
fs_generator::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src,
bool negate_value)
{
struct brw_reg src0 = brw_reg(src.file, src.nr, 0,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_4,
BRW_WIDTH_4,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
struct brw_reg src1 = brw_reg(src.file, src.nr, 2,
BRW_REGISTER_TYPE_F,
BRW_VERTICAL_STRIDE_4,
BRW_WIDTH_4,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
if (negate_value)
brw_ADD(p, dst, src1, negate(src0));
else
brw_ADD(p, dst, src0, negate(src1));
}
void
fs_generator::generate_discard_jump(fs_inst *inst)
{
assert(intel->gen >= 6);
/* This HALT will be patched up at FB write time to point UIP at the end of
* the program, and at brw_uip_jip() JIP will be set to the end of the
* current block (or the program).
*/
this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
brw_push_insn_state(p);
brw_set_mask_control(p, BRW_MASK_DISABLE);
gen6_HALT(p);
brw_pop_insn_state(p);
}
void
fs_generator::generate_spill(fs_inst *inst, struct brw_reg src)
{
assert(inst->mlen != 0);
brw_MOV(p,
retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_UD),
retype(src, BRW_REGISTER_TYPE_UD));
brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf), 1,
inst->offset);
}
void
fs_generator::generate_unspill(fs_inst *inst, struct brw_reg dst)
{
assert(inst->mlen != 0);
brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf), 1,
inst->offset);
}
void
fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
struct brw_reg dst,
struct brw_reg index,
struct brw_reg offset)
{
assert(inst->mlen != 0);
assert(index.file == BRW_IMMEDIATE_VALUE &&
index.type == BRW_REGISTER_TYPE_UD);
uint32_t surf_index = index.dw1.ud;
assert(offset.file == BRW_IMMEDIATE_VALUE &&
offset.type == BRW_REGISTER_TYPE_UD);
uint32_t read_offset = offset.dw1.ud;
brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
read_offset, surf_index);
}
void
fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
struct brw_reg dst,
struct brw_reg index,
struct brw_reg offset)
{
assert(inst->mlen == 0);
assert(index.file == BRW_IMMEDIATE_VALUE &&
index.type == BRW_REGISTER_TYPE_UD);
uint32_t surf_index = index.dw1.ud;
assert(offset.file == BRW_GENERAL_REGISTER_FILE);
/* Reference just the dword we need, to avoid angering validate_reg(). */
offset = brw_vec1_grf(offset.nr, 0);
brw_push_insn_state(p);
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_set_mask_control(p, BRW_MASK_DISABLE);
struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND);
brw_pop_insn_state(p);
/* We use the SIMD4x2 mode because we want to end up with 4 components in
* the destination loaded consecutively from the same offset (which appears
* in the first component, and the rest are ignored).
*/
dst.width = BRW_WIDTH_4;
brw_set_dest(p, send, dst);
brw_set_src0(p, send, offset);
brw_set_sampler_message(p, send,
surf_index,
0, /* LD message ignores sampler unit */
GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1, /* rlen */
1, /* mlen */
false, /* no header */
BRW_SAMPLER_SIMD_MODE_SIMD4X2,
0);
}
void
fs_generator::generate_varying_pull_constant_load(fs_inst *inst,
struct brw_reg dst,
struct brw_reg index,
struct brw_reg offset)
{
assert(intel->gen < 7); /* Should use the gen7 variant. */
assert(inst->header_present);
assert(inst->mlen);
assert(index.file == BRW_IMMEDIATE_VALUE &&
index.type == BRW_REGISTER_TYPE_UD);
uint32_t surf_index = index.dw1.ud;
uint32_t simd_mode, rlen, msg_type;
if (dispatch_width == 16) {
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
rlen = 8;
} else {
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
rlen = 4;
}
if (intel->gen >= 5)
msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
else {
/* We always use the SIMD16 message so that we only have to load U, and
* not V or R.
*/
msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
assert(inst->mlen == 3);
assert(inst->regs_written == 8);
rlen = 8;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
}
struct brw_reg offset_mrf = retype(brw_message_reg(inst->base_mrf + 1),
BRW_REGISTER_TYPE_D);
brw_MOV(p, offset_mrf, offset);
struct brw_reg header = brw_vec8_grf(0, 0);
gen6_resolve_implied_move(p, &header, inst->base_mrf);
struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND);
send->header.compression_control = BRW_COMPRESSION_NONE;
brw_set_dest(p, send, dst);
brw_set_src0(p, send, header);
if (intel->gen < 6)
send->header.destreg__conditionalmod = inst->base_mrf;
/* Our surface is set up as floats, regardless of what actual data is
* stored in it.
*/
uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
brw_set_sampler_message(p, send,
surf_index,
0, /* sampler (unused) */
msg_type,
rlen,
inst->mlen,
inst->header_present,
simd_mode,
return_format);
}
void
fs_generator::generate_varying_pull_constant_load_gen7(fs_inst *inst,
struct brw_reg dst,
struct brw_reg index,
struct brw_reg offset)
{
assert(intel->gen >= 7);
/* Varying-offset pull constant loads are treated as a normal expression on
* gen7, so the fact that it's a send message is hidden at the IR level.
*/
assert(!inst->header_present);
assert(!inst->mlen);
assert(index.file == BRW_IMMEDIATE_VALUE &&
index.type == BRW_REGISTER_TYPE_UD);
uint32_t surf_index = index.dw1.ud;
uint32_t simd_mode, rlen, mlen;
if (dispatch_width == 16) {
mlen = 2;
rlen = 8;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
} else {
mlen = 1;
rlen = 4;
simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
}
struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND);
brw_set_dest(p, send, dst);
brw_set_src0(p, send, offset);
brw_set_sampler_message(p, send,
surf_index,
0, /* LD message ignores sampler unit */
GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
rlen,
mlen,
false, /* no header */
simd_mode,
0);
}
/**
* Cause the current pixel/sample mask (from R1.7 bits 15:0) to be transferred
* into the flags register (f0.0).
*
* Used only on Gen6 and above.
*/
void
fs_generator::generate_mov_dispatch_to_flags(fs_inst *inst)
{
struct brw_reg flags = brw_flag_reg(0, inst->flag_subreg);
struct brw_reg dispatch_mask;
if (intel->gen >= 6)
dispatch_mask = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
else
dispatch_mask = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
brw_push_insn_state(p);
brw_set_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, flags, dispatch_mask);
brw_pop_insn_state(p);
}
static uint32_t brw_file_from_reg(fs_reg *reg)
{
switch (reg->file) {
case ARF:
return BRW_ARCHITECTURE_REGISTER_FILE;
case GRF:
return BRW_GENERAL_REGISTER_FILE;
case MRF:
return BRW_MESSAGE_REGISTER_FILE;
case IMM:
return BRW_IMMEDIATE_VALUE;
default:
assert(!"not reached");
return BRW_GENERAL_REGISTER_FILE;
}
}
static struct brw_reg
brw_reg_from_fs_reg(fs_reg *reg)
{
struct brw_reg brw_reg;
switch (reg->file) {
case GRF:
case ARF:
case MRF:
if (reg->smear == -1) {
brw_reg = brw_vec8_reg(brw_file_from_reg(reg), reg->reg, 0);
} else {
brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->reg, reg->smear);
}
brw_reg = retype(brw_reg, reg->type);
if (reg->sechalf)
brw_reg = sechalf(brw_reg);
break;
case IMM:
switch (reg->type) {
case BRW_REGISTER_TYPE_F:
brw_reg = brw_imm_f(reg->imm.f);
break;
case BRW_REGISTER_TYPE_D:
brw_reg = brw_imm_d(reg->imm.i);
break;
case BRW_REGISTER_TYPE_UD:
brw_reg = brw_imm_ud(reg->imm.u);
break;
default:
assert(!"not reached");
brw_reg = brw_null_reg();
break;
}
break;
case HW_REG:
brw_reg = reg->fixed_hw_reg;
break;
case BAD_FILE:
/* Probably unused. */
brw_reg = brw_null_reg();
break;
case UNIFORM:
assert(!"not reached");
brw_reg = brw_null_reg();
break;
default:
assert(!"not reached");
brw_reg = brw_null_reg();
break;
}
if (reg->abs)
brw_reg = brw_abs(brw_reg);
if (reg->negate)
brw_reg = negate(brw_reg);
return brw_reg;
}
/**
* Sets the first word of a vgrf for gen7+ simd4x2 uniform pull constant
* sampler LD messages.
*
* We don't want to bake it into the send message's code generation because
* that means we don't get a chance to schedule the instructions.
*/
void
fs_generator::generate_set_simd4x2_offset(fs_inst *inst,
struct brw_reg dst,
struct brw_reg value)
{
assert(value.file == BRW_IMMEDIATE_VALUE);
brw_push_insn_state(p);
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_set_mask_control(p, BRW_MASK_DISABLE);
brw_MOV(p, retype(brw_vec1_reg(dst.file, dst.nr, 0), value.type), value);
brw_pop_insn_state(p);
}
/**
* Change the register's data type from UD to W, doubling the strides in order
* to compensate for halving the data type width.
*/
static struct brw_reg
ud_reg_to_w(struct brw_reg r)
{
assert(r.type == BRW_REGISTER_TYPE_UD);
r.type = BRW_REGISTER_TYPE_W;
/* The BRW_*_STRIDE enums are defined so that incrementing the field
* doubles the real stride.
*/
if (r.hstride != 0)
++r.hstride;
if (r.vstride != 0)
++r.vstride;
return r;
}
void
fs_generator::generate_pack_half_2x16_split(fs_inst *inst,
struct brw_reg dst,
struct brw_reg x,
struct brw_reg y)
{
assert(intel->gen >= 7);
assert(dst.type == BRW_REGISTER_TYPE_UD);
assert(x.type == BRW_REGISTER_TYPE_F);
assert(y.type == BRW_REGISTER_TYPE_F);
/* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
*
* Because this instruction does not have a 16-bit floating-point type,
* the destination data type must be Word (W).
*
* The destination must be DWord-aligned and specify a horizontal stride
* (HorzStride) of 2. The 16-bit result is stored in the lower word of
* each destination channel and the upper word is not modified.
*/
struct brw_reg dst_w = ud_reg_to_w(dst);
/* Give each 32-bit channel of dst the form below , where "." means
* unchanged.
* 0x....hhhh
*/
brw_F32TO16(p, dst_w, y);
/* Now the form:
* 0xhhhh0000
*/
brw_SHL(p, dst, dst, brw_imm_ud(16u));
/* And, finally the form of packHalf2x16's output:
* 0xhhhhllll
*/
brw_F32TO16(p, dst_w, x);
}
void
fs_generator::generate_unpack_half_2x16_split(fs_inst *inst,
struct brw_reg dst,
struct brw_reg src)
{
assert(intel->gen >= 7);
assert(dst.type == BRW_REGISTER_TYPE_F);
assert(src.type == BRW_REGISTER_TYPE_UD);
/* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
*
* Because this instruction does not have a 16-bit floating-point type,
* the source data type must be Word (W). The destination type must be
* F (Float).
*/
struct brw_reg src_w = ud_reg_to_w(src);
/* Each channel of src has the form of unpackHalf2x16's input: 0xhhhhllll.
* For the Y case, we wish to access only the upper word; therefore
* a 16-bit subregister offset is needed.
*/
assert(inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X ||
inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y);
if (inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y)
src_w.subnr += 2;
brw_F16TO32(p, dst, src_w);
}
void
fs_generator::generate_shader_time_add(fs_inst *inst,
struct brw_reg payload,
struct brw_reg offset,
struct brw_reg value)
{
assert(intel->gen >= 7);
brw_push_insn_state(p);
brw_set_mask_control(p, true);
assert(payload.file == BRW_GENERAL_REGISTER_FILE);
struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
offset.type);
struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
value.type);
assert(offset.file == BRW_IMMEDIATE_VALUE);
if (value.file == BRW_GENERAL_REGISTER_FILE) {
value.width = BRW_WIDTH_1;
value.hstride = BRW_HORIZONTAL_STRIDE_0;
value.vstride = BRW_VERTICAL_STRIDE_0;
} else {
assert(value.file == BRW_IMMEDIATE_VALUE);
}
/* Trying to deal with setup of the params from the IR is crazy in the FS8
* case, and we don't really care about squeezing every bit of performance
* out of this path, so we just emit the MOVs from here.
*/
brw_MOV(p, payload_offset, offset);
brw_MOV(p, payload_value, value);
brw_shader_time_add(p, payload, SURF_INDEX_WM_SHADER_TIME);
brw_pop_insn_state(p);
}
void
fs_generator::generate_code(exec_list *instructions)
{
int last_native_insn_offset = p->next_insn_offset;
const char *last_annotation_string = NULL;
const void *last_annotation_ir = NULL;
if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
if (shader) {
printf("Native code for fragment shader %d (%d-wide dispatch):\n",
prog->Name, dispatch_width);
} else {
printf("Native code for fragment program %d (%d-wide dispatch):\n",
fp->Base.Id, dispatch_width);
}
}
cfg_t *cfg = NULL;
if (unlikely(INTEL_DEBUG & DEBUG_WM))
cfg = new(mem_ctx) cfg_t(mem_ctx, instructions);
foreach_list(node, instructions) {
fs_inst *inst = (fs_inst *)node;
struct brw_reg src[3], dst;
if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
foreach_list(node, &cfg->block_list) {
bblock_link *link = (bblock_link *)node;
bblock_t *block = link->block;
if (block->start == inst) {
printf(" START B%d", block->block_num);
foreach_list(predecessor_node, &block->parents) {
bblock_link *predecessor_link =
(bblock_link *)predecessor_node;
bblock_t *predecessor_block = predecessor_link->block;
printf(" <-B%d", predecessor_block->block_num);
}
printf("\n");
}
}
if (last_annotation_ir != inst->ir) {
last_annotation_ir = inst->ir;
if (last_annotation_ir) {
printf(" ");
if (shader)
((ir_instruction *)inst->ir)->print();
else {
const prog_instruction *fpi;
fpi = (const prog_instruction *)inst->ir;
printf("%d: ", (int)(fpi - fp->Base.Instructions));
_mesa_fprint_instruction_opt(stdout,
fpi,
0, PROG_PRINT_DEBUG, NULL);
}
printf("\n");
}
}
if (last_annotation_string != inst->annotation) {
last_annotation_string = inst->annotation;
if (last_annotation_string)
printf(" %s\n", last_annotation_string);
}
}
for (unsigned int i = 0; i < 3; i++) {
src[i] = brw_reg_from_fs_reg(&inst->src[i]);
/* The accumulator result appears to get used for the
* conditional modifier generation. When negating a UD
* value, there is a 33rd bit generated for the sign in the
* accumulator value, so now you can't check, for example,
* equality with a 32-bit value. See piglit fs-op-neg-uvec4.
*/
assert(!inst->conditional_mod ||
inst->src[i].type != BRW_REGISTER_TYPE_UD ||
!inst->src[i].negate);
}
dst = brw_reg_from_fs_reg(&inst->dst);
brw_set_conditionalmod(p, inst->conditional_mod);
brw_set_predicate_control(p, inst->predicate);
brw_set_predicate_inverse(p, inst->predicate_inverse);
brw_set_flag_reg(p, 0, inst->flag_subreg);
brw_set_saturate(p, inst->saturate);
brw_set_mask_control(p, inst->force_writemask_all);
if (inst->force_uncompressed || dispatch_width == 8) {
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
} else if (inst->force_sechalf) {
brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
} else {
brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
}
switch (inst->opcode) {
case BRW_OPCODE_MOV:
brw_MOV(p, dst, src[0]);
break;
case BRW_OPCODE_ADD:
brw_ADD(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MUL:
brw_MUL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_MACH:
brw_set_acc_write_control(p, 1);
brw_MACH(p, dst, src[0], src[1]);
brw_set_acc_write_control(p, 0);
break;
case BRW_OPCODE_MAD:
brw_set_access_mode(p, BRW_ALIGN_16);
if (dispatch_width == 16) {
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_MAD(p, dst, src[0], src[1], src[2]);
brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
brw_MAD(p, sechalf(dst), sechalf(src[0]), sechalf(src[1]), sechalf(src[2]));
brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
} else {
brw_MAD(p, dst, src[0], src[1], src[2]);
}
brw_set_access_mode(p, BRW_ALIGN_1);
break;
case BRW_OPCODE_LRP:
brw_set_access_mode(p, BRW_ALIGN_16);
if (dispatch_width == 16) {
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_LRP(p, dst, src[0], src[1], src[2]);
brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
brw_LRP(p, sechalf(dst), sechalf(src[0]), sechalf(src[1]), sechalf(src[2]));
brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
} else {
brw_LRP(p, dst, src[0], src[1], src[2]);
}
brw_set_access_mode(p, BRW_ALIGN_1);
break;
case BRW_OPCODE_FRC:
brw_FRC(p, dst, src[0]);
break;
case BRW_OPCODE_RNDD:
brw_RNDD(p, dst, src[0]);
break;
case BRW_OPCODE_RNDE:
brw_RNDE(p, dst, src[0]);
break;
case BRW_OPCODE_RNDZ:
brw_RNDZ(p, dst, src[0]);
break;
case BRW_OPCODE_AND:
brw_AND(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_OR:
brw_OR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_XOR:
brw_XOR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_NOT:
brw_NOT(p, dst, src[0]);
break;
case BRW_OPCODE_ASR:
brw_ASR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_SHR:
brw_SHR(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_SHL:
brw_SHL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_F32TO16:
brw_F32TO16(p, dst, src[0]);
break;
case BRW_OPCODE_F16TO32:
brw_F16TO32(p, dst, src[0]);
break;
case BRW_OPCODE_CMP:
brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
break;
case BRW_OPCODE_SEL:
brw_SEL(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_BFREV:
/* BFREV only supports UD type for src and dst. */
brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
retype(src[0], BRW_REGISTER_TYPE_UD));
break;
case BRW_OPCODE_FBH:
/* FBH only supports UD type for dst. */
brw_FBH(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]);
break;
case BRW_OPCODE_FBL:
/* FBL only supports UD type for dst. */
brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]);
break;
case BRW_OPCODE_CBIT:
/* CBIT only supports UD type for dst. */
brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]);
break;
case BRW_OPCODE_BFE:
brw_set_access_mode(p, BRW_ALIGN_16);
if (dispatch_width == 16) {
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_BFE(p, dst, src[0], src[1], src[2]);
brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
brw_BFE(p, sechalf(dst), sechalf(src[0]), sechalf(src[1]), sechalf(src[2]));
brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
} else {
brw_BFE(p, dst, src[0], src[1], src[2]);
}
brw_set_access_mode(p, BRW_ALIGN_1);
break;
case BRW_OPCODE_BFI1:
brw_BFI1(p, dst, src[0], src[1]);
break;
case BRW_OPCODE_BFI2:
brw_set_access_mode(p, BRW_ALIGN_16);
if (dispatch_width == 16) {
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_BFI2(p, dst, src[0], src[1], src[2]);
brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF);
brw_BFI2(p, sechalf(dst), sechalf(src[0]), sechalf(src[1]), sechalf(src[2]));
brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
} else {
brw_BFI2(p, dst, src[0], src[1], src[2]);
}
brw_set_access_mode(p, BRW_ALIGN_1);
break;
case BRW_OPCODE_IF:
if (inst->src[0].file != BAD_FILE) {
/* The instruction has an embedded compare (only allowed on gen6) */
assert(intel->gen == 6);
gen6_IF(p, inst->conditional_mod, src[0], src[1]);
} else {
brw_IF(p, dispatch_width == 16 ? BRW_EXECUTE_16 : BRW_EXECUTE_8);
}
break;
case BRW_OPCODE_ELSE:
brw_ELSE(p);
break;
case BRW_OPCODE_ENDIF:
brw_ENDIF(p);
break;
case BRW_OPCODE_DO:
brw_DO(p, BRW_EXECUTE_8);
break;
case BRW_OPCODE_BREAK:
brw_BREAK(p);
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
break;
case BRW_OPCODE_CONTINUE:
/* FINISHME: We need to write the loop instruction support still. */
if (intel->gen >= 6)
gen6_CONT(p);
else
brw_CONT(p);
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
break;
case BRW_OPCODE_WHILE:
brw_WHILE(p);
break;
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SQRT:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_COS:
if (intel->gen >= 7) {
generate_math1_gen7(inst, dst, src[0]);
} else if (intel->gen == 6) {
generate_math1_gen6(inst, dst, src[0]);
} else if (intel->gen == 5 || intel->is_g4x) {
generate_math_g45(inst, dst, src[0]);
} else {
generate_math_gen4(inst, dst, src[0]);
}
break;
case SHADER_OPCODE_INT_QUOTIENT:
case SHADER_OPCODE_INT_REMAINDER:
case SHADER_OPCODE_POW:
if (intel->gen >= 7) {
generate_math2_gen7(inst, dst, src[0], src[1]);
} else if (intel->gen == 6) {
generate_math2_gen6(inst, dst, src[0], src[1]);
} else {
generate_math_gen4(inst, dst, src[0]);
}
break;
case FS_OPCODE_PIXEL_X:
generate_pixel_xy(dst, true);
break;
case FS_OPCODE_PIXEL_Y:
generate_pixel_xy(dst, false);
break;
case FS_OPCODE_CINTERP:
brw_MOV(p, dst, src[0]);
break;
case FS_OPCODE_LINTERP:
generate_linterp(inst, dst, src);
break;
case SHADER_OPCODE_TEX:
case FS_OPCODE_TXB:
case SHADER_OPCODE_TXD:
case SHADER_OPCODE_TXF:
case SHADER_OPCODE_TXF_MS:
case SHADER_OPCODE_TXL:
case SHADER_OPCODE_TXS:
case SHADER_OPCODE_LOD:
generate_tex(inst, dst, src[0]);
break;
case FS_OPCODE_DDX:
generate_ddx(inst, dst, src[0]);
break;
case FS_OPCODE_DDY:
/* Make sure fp->UsesDFdy flag got set (otherwise there's no
* guarantee that c->key.render_to_fbo is set).
*/
assert(fp->UsesDFdy);
generate_ddy(inst, dst, src[0], c->key.render_to_fbo);
break;
case FS_OPCODE_SPILL:
generate_spill(inst, src[0]);
break;
case FS_OPCODE_UNSPILL:
generate_unspill(inst, dst);
break;
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
break;
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
break;
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
generate_varying_pull_constant_load(inst, dst, src[0], src[1]);
break;
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
generate_varying_pull_constant_load_gen7(inst, dst, src[0], src[1]);
break;
case FS_OPCODE_FB_WRITE:
generate_fb_write(inst);
break;
case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
generate_mov_dispatch_to_flags(inst);
break;
case FS_OPCODE_DISCARD_JUMP:
generate_discard_jump(inst);
break;
case SHADER_OPCODE_SHADER_TIME_ADD:
generate_shader_time_add(inst, src[0], src[1], src[2]);
break;
case FS_OPCODE_SET_SIMD4X2_OFFSET:
generate_set_simd4x2_offset(inst, dst, src[0]);
break;
case FS_OPCODE_PACK_HALF_2x16_SPLIT:
generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
break;
case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
generate_unpack_half_2x16_split(inst, dst, src[0]);
break;
case FS_OPCODE_PLACEHOLDER_HALT:
/* This is the place where the final HALT needs to be inserted if
* we've emitted any discards. If not, this will emit no code.
*/
patch_discard_jumps_to_fb_writes();
break;
default:
if (inst->opcode < (int) ARRAY_SIZE(opcode_descs)) {
_mesa_problem(ctx, "Unsupported opcode `%s' in FS",
opcode_descs[inst->opcode].name);
} else {
_mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
}
abort();
}
if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
brw_dump_compile(p, stdout,
last_native_insn_offset, p->next_insn_offset);
foreach_list(node, &cfg->block_list) {
bblock_link *link = (bblock_link *)node;
bblock_t *block = link->block;
if (block->end == inst) {
printf(" END B%d", block->block_num);
foreach_list(successor_node, &block->children) {
bblock_link *successor_link =
(bblock_link *)successor_node;
bblock_t *successor_block = successor_link->block;
printf(" ->B%d", successor_block->block_num);
}
printf("\n");
}
}
}
last_native_insn_offset = p->next_insn_offset;
}
if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
printf("\n");
}
brw_set_uip_jip(p);
/* OK, while the INTEL_DEBUG=wm above is very nice for debugging FS
* emit issues, it doesn't get the jump distances into the output,
* which is often something we want to debug. So this is here in
* case you're doing that.
*/
if (0) {
brw_dump_compile(p, stdout, 0, p->next_insn_offset);
}
}
const unsigned *
fs_generator::generate_assembly(exec_list *simd8_instructions,
exec_list *simd16_instructions,
unsigned *assembly_size)
{
dispatch_width = 8;
generate_code(simd8_instructions);
if (simd16_instructions) {
/* We have to do a compaction pass now, or the one at the end of
* execution will squash down where our prog_offset start needs
* to be.
*/
brw_compact_instructions(p);
/* align to 64 byte boundary. */
while ((p->nr_insn * sizeof(struct brw_instruction)) % 64) {
brw_NOP(p);
}
/* Save off the start of this 16-wide program */
c->prog_data.prog_offset_16 = p->nr_insn * sizeof(struct brw_instruction);
brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
dispatch_width = 16;
generate_code(simd16_instructions);
}
return brw_get_program(p, assembly_size);
}